Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Transient Scute activation via a self-stimulatory loop directs enteroendocrine cell pair specification from self-renewing intestinal stem cells

An Author Correction to this article was published on 19 April 2018

This article has been updated

Abstract

The process through which multiple types of cell-lineage-restricted progenitor cells are specified from multipotent stem cells is unclear. Here we show that, in intestinal stem cell lineages in adult Drosophila, in which the Delta-Notch-signalling-guided progenitor cell differentiation into enterocytes is the default mode, the specification of enteroendocrine cells (EEs) is initiated by transient Scute activation in a process driven by transcriptional self-stimulation combined with a negative feedback regulation between Scute and Notch targets. Scute activation induces asymmetric intestinal stem cell divisions that generate EE progenitor cells. The mitosis-inducing and fate-inducing activities of Scute guide each EE progenitor cell to divide exactly once prior to its terminal differentiation, yielding a pair of EEs. The transient expression of a fate inducer therefore specifies both type and numbers of committed progenitor cells originating from stem cells, which could represent a general mechanism used for diversifying committed progenitor cells from multipotent stem cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: An EE-regeneration model reveals that ISCs self-renew during the generation of EE pairs.
Fig. 2: Transient Sc expression precedes EE generation from ISCs.
Fig. 3: Notch mutant ISCs have increased Sc expression and only generate EE cells.
Fig. 4: Sc functions as both a mitogenic factor and a cell-fate inducer.
Fig. 5: Process of sc-overexpression-induced EE generation from ISCs.
Fig. 6: Sc induces E(spl) genes in ISCs.
Fig. 7: Regulatory feedback loops control Sc expression in ISCs.

Similar content being viewed by others

Change history

  • 19 April 2018

    In the version of this Article originally published, the author had misnumbered the reference citations in the Methods, using numbers 1–14 instead of 46–59. These errors have now been corrected in all online versions of the Article.

References

  1. Neumuller, R. A. & Knoblich, J. A. Dividing cellular asymmetry: asymmetric cell division and its implications for stem cells and cancer. Genes. Dev. 23, 2675–2699 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Morrison, S. J. & Spradling, A. C. Stem cells and niches: mechanisms that promote stem cell maintenance throughout life. Cell 132, 598–611 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Li, L. & Xie, T. Stem cell niche: structure and function. Annu. Rev. Cell. Dev. Biol. 21, 605–631 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. Snippert, H. J. et al. Intestinal crypt homeostasis results from neutral competition between symmetrically dividing Lgr5 stem cells. Cell 143, 134–144 (2010).

    Article  CAS  PubMed  Google Scholar 

  5. Lopez-Garcia, C., Klein, A. M., Simons, B. D. & Winton, D. J. Intestinal stem cell replacement follows a pattern of neutral drift. Science 330, 822–825 (2010).

    Article  CAS  PubMed  Google Scholar 

  6. Ohlstein, B. & Spradling, A. Multipotent Drosophila intestinal stem cells specify daughter cell fates by differential notch signaling. Science 315, 988–992 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. Ohlstein, B. & Spradling, A. The adult Drosophila posterior midgut is maintained by pluripotent stem cells. Nature 439, 470–474 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. Micchelli, C. A. & Perrimon, N. Evidence that stem cells reside in the adult Drosophila midgut epithelium. Nature 439, 475–479 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Biteau, B. & Jasper, H. Slit/Robo signaling regulates cell fate decisions in the intestinal stem cell lineage of Drosophila. Cell. Rep. 7, 1867–1875 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zeng, X. & Hou, S. X. Enteroendocrine cells are generated from stem cells through a distinct progenitor in the adult Drosophila posterior midgut. Development 142, 644–653 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wang, C., Guo, X., Dou, K., Chen, H. & Xi, R. Ttk69 acts as a master repressor of enteroendocrine cell specification in Drosophila intestinal stem cell lineages. Development 142, 3321–3331 (2015).

    Article  CAS  PubMed  Google Scholar 

  12. Bardin, A. J., Perdigoto, C. N., Southall, T. D., Brand, A. H. & Schweisguth, F. Transcriptional control of stem cell maintenance in the Drosophila intestine. Development 137, 705–714 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Amcheslavsky, A. et al. Enteroendocrine cells support intestinal stem-cell-mediated homeostasis in Drosophila. Cell. Rep. 9, 32–39 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Beehler-Evans, R. & Micchelli, C. A. Generation of enteroendocrine cell diversity in midgut stem cell lineages. Development 142, 654–664 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Guo, Z. & Ohlstein, B. Stem cell regulation. Bidirectional Notch signaling regulates Drosophila intestinal stem cell multipotency. Science 350, aab0988 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Cubas, P., de Celis, J. F., Campuzano, S. & Modolell, J. Proneural clusters of achaete-scute expression and the generation of sensory organs in the Drosophila imaginal wing disc. Genes. Dev. 5, 996–1008 (1991).

    Article  CAS  PubMed  Google Scholar 

  17. Jenett, A. et al. A GAL4-driver line resource for Drosophila neurobiology. Cell. Rep. 2, 991–1001 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Struhl, G. & Basler, K. Organizing activity of wingless protein in Drosophila. Cell 72, 527–540 (1993).

    Article  CAS  PubMed  Google Scholar 

  19. Patel, P. H., Dutta, D. & Edgar, B. A. Niche appropriation by Drosophila intestinal stem cell tumours. Nat. Cell. Biol. 17, 1182–1192 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lai, S. L. & Doe, C. Q. Transient nuclear Prospero induces neural progenitor quiescence. eLife 3, e03363 (2014).

    PubMed Central  Google Scholar 

  21. Li, L. & Vaessin, H. Pan-neural Prospero terminates cell proliferation during Drosophila neurogenesis. Genes. Dev. 14, 147–151 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Zeng, X. et al. Genome-wide RNAi screen identifies networks involved in intestinal stem cell regulation in Drosophila. Cell. Rep. 10, 1226–1238 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Singson, A., Leviten, M. W., Bang, A. G., Hua, X. H. & Posakony, J. W. Direct downstream targets of proneural activators in the imaginal disc include genes involved in lateral inhibitory signaling. Genes. Dev. 8, 2058–2071 (1994).

    Article  CAS  PubMed  Google Scholar 

  24. Nellesen, D. T., Lai, E. C. & Posakony, J. W. Discrete enhancer elements mediate selective responsiveness of enhancer of split complex genes to common transcriptional activators. Dev. Biol. 213, 33–53 (1999).

    Article  CAS  PubMed  Google Scholar 

  25. Culi, J. & Modolell, J. Proneural gene self-stimulation in neural precursors: an essential mechanism for sense organ development that is regulated by Notch signaling. Genes. Dev. 12, 2036–2047 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Jimenez, G. & Ish-Horowicz, D. A chimeric enhancer-of-split transcriptional activator drives neural development and achaete–scute expression. Mol. Cell. Biol. 17, 4355–4362 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Dawson, S. R., Turner, D. L., Weintraub, H. & Parkhurst, S. M. Specificity for the hairy/enhancer of split basic helix-loop-helix (bHLH) proteins maps outside the bHLH domain and suggests two separable modes of transcriptional repression. Mol. Cell. Biol. 15, 6923–6931 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Housden, B. E., Li, J. & Bray, S. J. Visualizing Notch signaling in vivo in Drosophila tissues. Methods Mol. Biol. 1187, 101–113 (2014).

    Article  PubMed  Google Scholar 

  29. Li, Y. et al. Transcription factor antagonism controls enteroendocrine cell specification from intestinal stem cells. Sci. Rep. 7, 988 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Schrons, H., Knust, E. & Campos-Ortega, J. A. The enhancer of split complex and adjacent genes in the 96F region of Drosophila melanogaster are required for segregation of neural and epidermal progenitor cells. Genetics 132, 481–503 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Martinez, C., Modolell, J. & Garrell, J. Regulation of the proneural gene achaete by helix-loop-helix proteins. Mol. Cell. Biol. 13, 3514–3521 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Jiang, H. & Edgar, B. A. EGFR signaling regulates the proliferation of Drosophila adult midgut progenitors. Development 136, 483–493 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Takashima, S. et al. Development of the Drosophila entero-endocrine lineage and its specification by the Notch signaling pathway. Dev. Biol. 353, 161–172 (2011).

    Article  CAS  PubMed  Google Scholar 

  34. Micchelli, C. A., Sudmeier, L., Perrimon, N., Tang, S. & Beehler-Evans, R. Identification of adult midgut precursors in Drosophila. Gene Expr. Patterns 11, 12–21 (2011).

    Article  CAS  PubMed  Google Scholar 

  35. Takashima, S., Aghajanian, P., Younossi-Hartenstein, A. & Hartenstein, V. Origin and dynamic lineage characteristics of the developing Drosophila midgut stem cells. Dev. Biol. 416, 347–360 (2016).

    Article  CAS  PubMed  Google Scholar 

  36. Knoblich, J. A., Jan, L. Y. & Jan, Y. N. Asymmetric segregation of Numb and Prospero during cell division. Nature 377, 624–627 (1995).

    Article  CAS  PubMed  Google Scholar 

  37. Spana, E. P. & Doe, C. Q. The prospero transcription factor is asymmetrically localized to the cell cortex during neuroblast mitosis in Drosophila. Development 121, 3187–3195 (1995).

    CAS  PubMed  Google Scholar 

  38. Yin, C. & Xi, R. A phyllopod-mediated feedback loop promotes intestinal stem cell enteroendocrine commitment in Drosophila. Stem Cell Rep. https://doi.org/10.1016/j.stemcr.2017.11.014 (2017).

  39. Novak, B. & Tyson, J. J. Design principles of biochemical oscillators. Nat. Rev. Mol. Cell. Biol. 9, 981–991 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Clevers, H. The intestinal crypt, a prototype stem cell compartment. Cell 154, 274–284 (2013).

    Article  CAS  PubMed  Google Scholar 

  41. Homem, C. C. & Knoblich, J. A. Drosophila neuroblasts: a model for stem cell biology. Development 139, 4297–4310 (2012).

    Article  CAS  PubMed  Google Scholar 

  42. Choksi, S. P. et al. Prospero acts as a binary switch between self-renewal and differentiation in Drosophila neural stem cells. Dev. Cell. 11, 775–789 (2006).

    Article  CAS  PubMed  Google Scholar 

  43. Olsson, A. et al. Single-cell analysis of mixed-lineage states leading to a binary cell fate choice. Nature 537, 698–702 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Bechard, M. E. et al. Precommitment low-level Neurog3 expression defines a long-lived mitotic endocrine-biased progenitor pool that drives production of endocrine-committed cells. Genes. Dev. 30, 1852–1865 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kim, T. H. et al. Single-cell transcript profiles reveal multilineage priming in early progenitors derived from Lgr5+ intestinal stem cells. Cell. Rep. 16, 2053–2060 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ni, J. Q. et al. A genome-scale shRNA resource for transgenic RNAi in Drosophila. Nat. Methods 8, 405–407 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zeng, X., Chauhan, C. & Hou, S. X. Characterization of midgut stem cell- and enteroblast-specific Gal4 lines in Drosophila. Genesis 48, 607–611 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Jenett, A. et al. A GAL4-driver line resource for Drosophila neurobiology. Cell. Rep. 2, 991–1001 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Bivik, C. et al. Control of neural daughter cell proliferation by multi-level Notch/Su(H)/E(spl)-HLH signaling. PLoS. Genet. 12, e1005984 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Schrons, H., Knust, E. & Campos-Ortega, J. A. The enhancer of split complex and adjacent genes in the 96F region of Drosophila melanogaster are required for segregation of neural and epidermal progenitor cells. Genetics 132, 481–503 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Yu, Z. et al. Highly efficient genome modifications mediated by CRISPR/Cas9 in Drosophila. Genetics 195, 289–291 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Lin, G., Xu, N. & Xi, R. Paracrine wingless signalling controls self-renewal of Drosophila intestinal stem cells. Nature 455, 1119–1123 (2008).

    Article  CAS  PubMed  Google Scholar 

  53. Brand, A. H. & Perrimon, N. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118, 401–415 (1993).

    CAS  PubMed  Google Scholar 

  54. McGuire, S. E., Mao, Z. & Davis, R. L. Spatiotemporal gene expression targeting with the TARGET and gene-switch systems in Drosophila. Sci. STKE 2004, pl6 (2004).

    PubMed  Google Scholar 

  55. Lee, T. & Luo, L. Mosaic analysis with a repressible cell marker for studies of gene function in neuronal morphogenesis. Neuron 22, 451–461 (1999).

    Article  CAS  PubMed  Google Scholar 

  56. Dutta, D., Xiang, J. & Edgar, B. A. RNA expression profiling from FACS-isolated cells of the Drosophila intestine. Curr. Protoc. Stem Cell. Biol. 27, Unit 2F.2 (2013).

    PubMed  Google Scholar 

  57. Chen, J., Xu, N., Huang, H., Cai, T. & Xi, R. A feedback amplification loop between stem cells and their progeny promotes tissue regeneration and tumorigenesis. eLife 5, e14330 (2016).

    PubMed  PubMed Central  Google Scholar 

  58. Chen, J., Li, J., Huang, H. & Xi, R. Gene expression analysis of sorted cells by RNA-seq in Drosophila intestine. Bio-Protoc. 6, e2079 (2016).

    Google Scholar 

  59. Gutierrez-Triana, J. A., Mateo, J. L., Ibberson, D., Ryu, S. & Wittbrodt, J. iDamIDseq and iDEAR: an improved method and computational pipeline to profile chromatin-binding proteins. Development 143, 4272–4278 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank the members of the fly community, as identified in the Methods, for providing fly stocks and antibodies, the Bloomington Drosophila Stock Center, the Tsinghua Fly Center and the Developmental Studies Hybridoma Bank (DSHB) for reagents, and A. Spradling, J. Rajagopal and members of the Xi laboratory for critical reading, and J. Snyder for proofreading the manuscript. This work was supported by the National Key Research and Development Program of China (2017YFA0103602 to R.X), the National Basic Research Program of China (2014CB850002 and 2011CB812700 to R.X.) and the National Natural Science Foundation of China (31501105 to N.X.).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization was provided by J.C. and R.X. Methodology was designed by J.C., N.X., C.W., P.H., Z.J., H.H., Z.Y., T.C., R.J. and R.X. Investigations were carried out by J.C., N.X., C.W., P.H., H.H. and R.X. Formal analysis was performed by J.C., N.X., C.W., P.H., Z.J., H.H. and R.X. The manuscript was written by J.C., H.H. and R.X.

Corresponding author

Correspondence to Rongwen Xi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Xu, N., Wang, C. et al. Transient Scute activation via a self-stimulatory loop directs enteroendocrine cell pair specification from self-renewing intestinal stem cells. Nat Cell Biol 20, 152–161 (2018). https://doi.org/10.1038/s41556-017-0020-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41556-017-0020-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing