Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Defining murine organogenesis at single-cell resolution reveals a role for the leukotriene pathway in regulating blood progenitor formation

Abstract

During gastrulation, cell types from all three germ layers are specified and the basic body plan is established1. However, molecular analysis of this key developmental stage has been hampered by limited cell numbers and a paucity of markers. Single-cell RNA sequencing circumvents these problems, but has so far been limited to specific organ systems2. Here, we report single-cell transcriptomic characterization of >20,000 cells immediately following gastrulation at E8.25 of mouse development. We identify 20 major cell types, which frequently contain substructure, including three distinct signatures in early foregut cells. Pseudo-space ordering of somitic progenitor cells identifies dynamic waves of transcription and candidate regulators, which are validated by molecular characterization of spatially resolved regions of the embryo. Within the endothelial population, cells that transition from haemogenic endothelial to erythro-myeloid progenitors specifically express Alox5 and its co-factor Alox5ap, which control leukotriene production. Functional assays using mouse embryonic stem cells demonstrate that leukotrienes promote haematopoietic progenitor cell generation. Thus, this comprehensive single-cell map can be exploited to reveal previously unrecognized pathways that contribute to tissue development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Purchase on Springer Link

Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: scRNA-seq of whole mouse E8.25 embryos identifies 20 major cell types.
Fig. 2: Substructure within the E8.25 mouse foregut.
Fig. 3: Oscillating patterns of gene expression during somitogenesis can be inferred from scRNA-seq data.
Fig. 4: The endothelium can be subdivided based on maturity and location of origin.
Fig. 5: The leukotriene biosynthesis pathway drives blood formation.

Similar content being viewed by others

References

  1. Kaufman, M. & Bard, J. The Anatomical Basis of Mouse Development. (Academic Press, San Diego, 1999).

    Google Scholar 

  2. Wang, Y. & Navin, N. E. Advances and applications of single-cell sequencing technologies. Mol. Cell 58, 598–609 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Grapin-Botton, A. in StemBook (ed. The Stem Cell Research Community) (Stembook, 2008); http://www.stembook.org/node/524

  4. Inoue-Yokoo, T., Tani, K. & Sugiyama, D. Mesodermal and hematopoietic differentiation from ES and iPS cells. Stem Cell Rev. 9, 422–434 (2013).

    Article  CAS  PubMed  Google Scholar 

  5. Tang, K., Peng, G., Qiao, Y., Song, L. & Jing, N. Intrinsic regulations in neural fate commitment. Dev. Growth Differ. 57, 109–120 (2015).

    Article  CAS  PubMed  Google Scholar 

  6. Spence, J. R., Lauf, R. & Shroyer, N. F. Vertebrate intestinal endoderm development. Dev. Dyn. 240, 501–520 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Haghverdi, L., Buttner, M., Wolf, F. A., Buettner, F. & Theis, F. J. Diffusion pseudotime robustly reconstructs lineage branching. Nat. Methods 13, 845–848 (2016).

    Article  CAS  PubMed  Google Scholar 

  8. Yap, C., Goh, H. N., Familari, M., Rathjen, P. D. & Rathjen, J. The formation of proximal and distal definitive endoderm populations in culture requires p38 MAPK activity. J. Cell Sci. 127, 2204–2216 (2014).

    Article  CAS  PubMed  Google Scholar 

  9. Hou, J. et al. A systematic screen for genes expressed in definitive endoderm by Serial Analysis of Gene Expression (SAGE). BMC Dev. Biol. 7, 92 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Si-Tayeb, K., Lemaigre, F. P. & Duncan, S. A. Organogenesis and development of the liver. Dev. Cell 18, 175–189 (2010).

    Article  CAS  PubMed  Google Scholar 

  11. Becker, M. B., Zulch, A., Bosse, A. & Gruss, P. Irx1 and Irx2 expression in early lung development. Mech. Dev. 106, 155–158 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Mou, H. et al. Generation of multipotent lung and airway progenitors from mouse ESCs and patient-specific cystic fibrosis iPSCs. Cell Stem Cell 10, 385–397 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Franklin, V. et al. Regionalisation of the endoderm progenitors and morphogenesis of the gut portals of the mouse embryo. Mech. Dev. 125, 587–600 (2008).

    Article  CAS  PubMed  Google Scholar 

  14. Andoniadou, C. L. et al. Lack of the murine homeobox gene Hesx1 leads to a posterior transformation of the anterior forebrain. Development 134, 1499–1508 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Scialdone, A. et al. Computational assignment of cell-cycle stage from single-cell transcriptome data. Methods 85, 54–61 (2015).

    Article  CAS  PubMed  Google Scholar 

  16. Oates, A. C., Morelli, L. G. & Ares, S. Patterning embryos with oscillations: structure, function and dynamics of the vertebrate segmentation clock. Development 139, 625–639 (2012).

    Article  CAS  PubMed  Google Scholar 

  17. Dunwoodie, S. L., Rodriguez, T. A. & Beddington, R. S. Msg1 and Mrg1, founding members of a gene family, show distinct patterns of gene expression during mouse embryogenesis. Mech. Dev. 72, 27–40 (1998).

    Article  CAS  PubMed  Google Scholar 

  18. Plisov, S. et al. Cited1 is a bifunctional transcriptional cofactor that regulates early nephronic patterning. J. Am. Soc. Nephrol. 16, 1632–1644 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Dahmann, C., Oates, A. C. & Brand, M. Boundary formation and maintenance in tissue development. Nat. Rev. Genet. 12, 43–55 (2011).

    Article  CAS  PubMed  Google Scholar 

  20. De Val, S. & Black, B. L. Transcriptional control of endothelial cell development. Dev. Cell 16, 180–195 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Scotti, M. & Kmita, M. Recruitment of 5′ Hoxa genes in the allantois is essential for proper extra-embryonic function in placental mammals. Development 139, 731–739 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Drake, C. J. & Fleming, P. A. Vasculogenesis in the day 6.5 to 9.5 mouse embryo. Blood 95, 1671–1679 (2000).

    CAS  PubMed  Google Scholar 

  23. Lee, L. K. et al. LYVE1 marks the divergence of yolk sac definitive hemogenic endothelium from the primitive erythroid lineage. Cell Rep. 17, 2286–2298 (2016).

    Article  CAS  PubMed  Google Scholar 

  24. McGrath, K. E. et al. Distinct sources of hematopoietic progenitors emerge before HSCs and provide functional blood cells in the mammalian embryo. Cell Rep. 11, 1892–1904 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Scialdone, A. et al. Resolving early mesoderm diversification through single-cell expression profiling. Nature 535, 289–293 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hayashi, K., de Sousa Lopes, S. M. & Surani, M. A. Germ cell specification in mice. Science 316, 394–396 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Slukvin, I. Generating human hematopoietic stem cells in vitro—exploring endothelial to hematopoietic transition as a portal for stemness acquisition. FEBS Lett. 590, 4126–4143 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Thambyrajah, R. et al. New insights into the regulation by RUNX1 and GFI1(s) proteins of the endothelial to hematopoietic transition generating primordial hematopoietic cells. Cell Cycle 15, 2108–2114 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Jiang, X. et al. Let-7 microRNA-dependent control of leukotriene signaling regulates the transition of hematopoietic niche in mice. Nat. Commun. 8, 128 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Li, P. et al. Epoxyeicosatrienoic acids enhance embryonic haematopoiesis and adult marrow engraftment. Nature 523, 468–471 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  31. North, T. E. et al. Prostaglandin E2 regulates vertebrate haematopoietic stem cell homeostasis. Nature 447, 1007–1011 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Cutler, C. et al. Prostaglandin-modulated umbilical cord blood hematopoietic stem cell transplantation. Blood 122, 3074–3081 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lun, A. T., Bach, K. & Marioni, J. C. Pooling across cells to normalize single-cell RNA sequencing data with many zero counts. Genome Biol. 17, 75 (2016).

    Article  PubMed  Google Scholar 

  34. Lun, A. T., McCarthy, D. J. & Marioni, J. C. A step-by-step workflow for low-level analysis of single-cell RNA-seq data with Bioconductor. F1000Res. 5, 2122 (2016).

    PubMed  PubMed Central  Google Scholar 

  35. Kolodziejczyk, A. A. et al. Single cell RNA-sequencing of pluripotent states unlocks modular transcriptional variation. Cell Stem Cell 17, 471–485 (2015).

    Article  CAS  Google Scholar 

  36. Rtsne: T-distributed stochastic neighbor embedding using Barnes–Hut implementation. R package version 0.11 (Krijthe, J., 2015); https://github.com/jkrijthe/Rtsne

  37. Langfelder, P., Zhang, B. & Horvath, S. Defining clusters from a hierarchical cluster tree: the Dynamic Tree Cut package for R. Bioinformatics 24, 719–720 (2008).

    Article  CAS  PubMed  Google Scholar 

  38. Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010).

    Article  CAS  PubMed  Google Scholar 

  39. Angerer, P. et al. destiny: diffusion maps for large-scale single-cell data in R. Bioinformatics 32, 1241–1243 (2016).

    Article  CAS  PubMed  Google Scholar 

  40. Chlis, N. K., Wolf, F. A. & Theis, F. J. Model-based branching point detection in single-cell data by K-branches clustering. Bioinformatics 33, 3211–3219 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  41. cluster: Cluster analysis basics and extensions. R package version 2.0.5 (Maechler, M., Rousseeuw, P., Struyf, A., Hubert, M. & Hornik, K., 2016).

  42. Hannan, N. R., Segeritz, C. P., Touboul, T. & Vallier, L. Production of hepatocyte-like cells from human pluripotent stem cells. Nat. Protoc. 8, 430–437 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kim, D. et al. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 14, R36 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Liao, Y., Smyth, G. K. & Shi, W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923–930 (2014).

    Article  CAS  PubMed  Google Scholar 

  45. Picelli, S. et al. Full-length RNA-seq from single cells using Smart-seq2. Nat. Protoc. 9, 171–181 (2014).

    Article  CAS  PubMed  Google Scholar 

  46. Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).

    Article  CAS  PubMed  Google Scholar 

  47. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank A. Lun for help with the Cell Ranger tool and the CRUK Cambridge Institute Genomics and Bioinformatics Cores for supporting the DNA sequencing and demultiplexing of the data. Research in the authors’ laboratories is supported by the MRC, CRUK, Bloodwise, the Leukemia and Lymphoma Society, NIH-NIDDK, the Sanger-EBI Single Cell Centre and core support grants by the Wellcome Trust to the Cambridge Institute for Medical Research and Wellcome Trust-MRC Cambridge Stem Cell Institute, and by core funding from Cancer Research UK and the European Molecular Biology Laboratory. W.J. is a Wellcome Trust Clinical Research Fellow. B.P.-S is funded by the Wellcome Trust 4 Year PhD programme in Stem Cell Biology and Medicine and the University of Cambridge. A.S. is supported by the Sanger-EBI Single Cell Centre. L.V. is supported by the ERC starting grant Relieve-IMDs. This work was funded as part of the Wellcome Trust Strategic Award 105031/D/14/Z “Tracing early mammalian lineage decisions by single cell genomics” awarded to W. Reik, S. Teichmann, J.N., B.D.S., T. Voet, S.S., L.V., B.G. and J.C.M.

Author information

Authors and Affiliations

Authors

Contributions

W.J., B.P.-S., V.L., R.T., F.J.C.-N., C.M., J.N. and S.S. performed the experiments. X.I.-S., B.P.-S. and A.S. analysed the data. W.J., D.J.J., L.V. and B.D.S. provided expertise. X.I.-S., W.J., B.P.-S., A.S., D.J.J., L.V., B.G. and J.C.M. interpreted the results. B.G. and J.C.M. conceived the project. X.I.-S., B.P.-S., A.S., B.G. and J.C.M. wrote the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Berthold Göttgens or John C. Marioni.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–5 and Supplementary References.

Life Sciences Reporting Summary

Supplementary Table 1

The different samples contribute equally to each of the 20 identified subpopulations.

Supplementary Table 2

Differential expression between the germ layers.

Supplementary Table 3

Differential expression between three foregut subpopulations.

Supplementary Table 4

Transcriptomes of the primordial germ cells.

Videos

Supplementary Video 1

Dissection strategy used to validate the oscillating genes in the presomitic mesoderm.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ibarra-Soria, X., Jawaid, W., Pijuan-Sala, B. et al. Defining murine organogenesis at single-cell resolution reveals a role for the leukotriene pathway in regulating blood progenitor formation. Nat Cell Biol 20, 127–134 (2018). https://doi.org/10.1038/s41556-017-0013-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41556-017-0013-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing