Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Mechanical cues control mutant p53 stability through a mevalonate–RhoA axis

Abstract

Tumour-associated p53 missense mutants act as driver oncogenes affecting cancer progression, metastatic potential and drug resistance (gain-of-function)1. Mutant p53 protein stabilization is a prerequisite for gain-of-function manifestation; however, it does not represent an intrinsic property of p53 mutants, but rather requires secondary events2. Moreover, mutant p53 protein levels are often heterogeneous even within the same tumour, raising questions on the mechanisms that control local mutant p53 accumulation in some tumour cells but not in their neighbours2,3. By investigating the cellular pathways that induce protection of mutant p53 from ubiquitin-mediated proteolysis, we found that HDAC6/Hsp90-dependent mutant p53 accumulation is sustained by RhoA geranylgeranylation downstream of the mevalonate pathway, as well as by RhoA- and actin-dependent transduction of mechanical inputs, such as the stiffness of the extracellular environment. Our results provide evidence for an unpredicted layer of mutant p53 regulation that relies on metabolic and mechanical cues.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Statins reduce missense mutant p53 protein levels in cancer cells.
Fig. 2: Statins unleash MDM2-mediated degradation of mutant p53 by disrupting its interaction with Hsp90.
Fig. 3: The SREBP–mevalonate pathway controls mutant p53 levels via GGPP.
Fig. 4: RhoA geranylgeranylation controls mutant p53 levels downstream of the mevalonate pathway.
Fig. 5: Mechanical cues control mutant p53 levels and activity via RhoA/actin cytoskeleton.

Similar content being viewed by others

References

  1. Mantovani, F., Walerych, D. & Del Sal, G. Targeting mutant p53 in cancer: a long road to precision therapy. FEBS J. 284, 837–850 (2016).

    Article  PubMed  Google Scholar 

  2. Terzian, T. et al. The inherent instability of mutant p53 is alleviated by Mdm2 or p16 INK4a loss. Genes Dev. 22, 1337–1344 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Koga, T. et al. Heterogeneous distribution of P53 immunoreactivity in human lung adenocarcinoma correlates with MDM2 protein expression, rather than with P53 gene mutation. Int. J. Cancer 95, 232–239 (2001).

    Article  CAS  PubMed  Google Scholar 

  4. Freed-Pastor, W. A. & Prives, C. Mutant p53: one name, many proteins. Genes Dev. 26, 1268–1286 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Girardini, J. E. et al. A Pin1/mutant p53 axis promotes aggressiveness in breast cancer. Cancer Cell 20, 79–91 (2011).

    Article  CAS  PubMed  Google Scholar 

  6. Ashcroft, M. & Vousden, K. H. Regulation of p53 stability. Oncogene 18, 7637–7643 (1999).

    Article  CAS  PubMed  Google Scholar 

  7. Bouchalova, P. et al. Mutant p53 accumulation in human breast cancer is not an intrinsic property or dependent on structural or functional disruption but is regulated by exogenous stress and receptor status. J. Pathol. 233, 238–246 (2014).

    Article  CAS  PubMed  Google Scholar 

  8. Sorrentino, G. et al. Metabolic control of YAP and TAZ by the mevalonate pathway. Nat. Cell Biol. 16, 357–366 (2014).

    Article  CAS  PubMed  Google Scholar 

  9. Sorrentino, G. et al. Glucocorticoid receptor signalling activates YAP in breast cancer. Nat. Commun. 8, 14073 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wang, Z. et al. Cardiac glycosides inhibit p53 synthesis by a mechanism relieved by Src or MAPK inhibition. Cancer Res. 69, 6556–6564 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hara, M. R. et al. A stress response pathway regulates DNA damage through β2-adrenoreceptors and β-arrestin-1. Nature 477, 349–353 (2011).

    Google Scholar 

  12. Mullen, P. J., Yu, R., Longo, J., Archer, M. C. & Penn, L. Z. The interplay between cell signalling and the mevalonate pathway in cancer. Nat. Rev. Cancer 16, 718–731 (2016).

    Article  CAS  PubMed  Google Scholar 

  13. Lukashchuk, N. & Vousden, K. H. Ubiquitination and degradation of mutant p53. Mol. Cell. Biol. 27, 8284–8295 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Malkin, D. Li-fraumeni syndrome. Genes Cancer 2, 475–84 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Esser, C., Scheffner, M. & Höhfeld, J. The chaperone-associated ubiquitin ligase CHIP is able to target p53 for proteasomal degradation. J. Biol. Chem. 280, 27443–27448 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Nagata, Y. et al. The stabilization mechanism of mutant-type p53 by impaired ubiquitination: the loss of wild-type p53 function and the hsp90 association. Oncogene 18, 6037–6049 (1999).

    Article  CAS  PubMed  Google Scholar 

  17. Li, D., Marchenko, N. D. & Moll, U. M. SAHA shows preferential cytotoxicity in mutant p53 cancer cells by destabilizing mutant p53 through inhibition of the HDAC6-Hsp90 chaperone axis. Cell Death Differ. 18, 1904–1913 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kovacs, J. J. et al. HDAC6 regulates Hsp90 acetylation and chaperone-dependent activation of glucocorticoid receptor. Mol. Cell 18, 601–607 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Lin, Y. C. et al. Statins increase p21 through inhibition of histone deacetylase activity and release of promoter-associated HDAC1/2. Cancer Res. 68, 2375–2383 (2008).

    Article  CAS  PubMed  Google Scholar 

  20. Feig, J. E. et al. Statins promote the regression of atherosclerosis via activation of the CCR7-dependent emigration pathway in macrophages. PLoS ONE 6, e28534 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Clarke, J. D., Hsu, A., Yu, Z., Dashwood, R. H. & Ho, E. Differential effects of sulforaphane on histone deacetylases, cell cycle arrest and apoptosis in normal prostate cells versus hyperplastic and cancerous prostate cells. Mol. Nutr. Food Res. 55, 999–1009 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Brown, M. S. & Goldstein, J. L. The SREBP pathway: regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor. Cell 89, 331–340 (1997).

    Article  CAS  PubMed  Google Scholar 

  23. Repko, E. M. & Maltese, W. A. Post-transitional isoprenylation of cellular proteins is altered in response to mevalonate availability. J. Biol. Chem. 264, 9945–9952 (1989).

    CAS  PubMed  Google Scholar 

  24. Zhang, F. L. & Casey, P. J. Protein prenylation: molecular mechanisms and functional consequences. Annu. Rev. Biochem. 65, 241–269 (1996).

    Article  CAS  PubMed  Google Scholar 

  25. Wang, Z. et al. Interplay of mevalonate and Hippo pathways regulates RHAMM transcription via YAP to modulate breast cancer cell motility. Proc. Natl Acad. Sci. USA 111, E89–E98 (2014).

    Article  CAS  PubMed  Google Scholar 

  26. Zhang, C. et al. Tumour-associated mutant p53 drives the Warburg effect. Nat. Commun. 4, 2935 (2013).

    Google Scholar 

  27. Mi, W. et al. Geranylgeranylation signals to the Hippo pathway for breast cancer cell proliferation and migration. Oncogene 34, 3095–3106 (2014).

  28. Ingber, D. E. Cellular mechanotransduction: putting all the pieces together again. FASEB J. 20, 811–822 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Butcher, D. T., Alliston, T. & Weaver, V. M. A tense situation: forcing tumour progression. Nat. Rev. Cancer 9, 108–22 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Janmey, P. A. & Miller, R. T. Mechanisms of mechanical signaling in development and disease. J. Cell Sci. 124, 9–18 (2011).

    Article  CAS  PubMed  Google Scholar 

  31. Miller, L. D. et al. An expression signature for p53 status in human breast cancer predicts mutation status, transcriptional effects, and patient survival. Proc. Natl Acad. Sci. USA 102, 13550–513555 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zanconato, F. et al. Genome-wide association between YAP/TAZ/TEAD and AP-1 at enhancers drives oncogenic growth. Nat. Cell Biol. 17, 1218–1227 (2015).

    Article  CAS  PubMed  Google Scholar 

  33. Aragona, M. et al. A mechanical checkpoint controls multicellular growth through YAP/TAZ regulation by actin-processing factors. Cell 154, 1047–1059 (2013).

    Article  CAS  PubMed  Google Scholar 

  34. Zanconato, F., Cordenonsi, M. & Piccolo, S. YAP/TAZ at the roots of cancer. Cancer Cell 29, 783–803 (2016).

    Article  CAS  PubMed  Google Scholar 

  35. Freed-Pastor, W. A. et al. Mutant p53 disrupts mammary tissue architecture via the mevalonate pathway. Cell 148, 244–258 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Destaing, O. et al. A novel Rho-mDia2-HDAC6 pathway controls podosome patterning through microtubule acetylation in osteoclasts. J. Cell Sci. 118, 2901–2911 (2005).

    Article  CAS  PubMed  Google Scholar 

  37. Boyault, C., Sadoul, K., Pabion, M. & Khochbin, S. HDAC6, at the crossroads between cytoskeleton and cell signaling by acetylation and ubiquitination. Oncogene 26, 5468–5476 (2007).

    Article  CAS  PubMed  Google Scholar 

  38. Parrales, A. et al. DNAJA1 controls the fate of misfolded mutant p53 through the mevalonate pathway. Nat. Cell Biol. 18, 1233–1243 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Netti, P. A., Berk, D. A., Swartz, M. A., Grodzinsky, A. J. & Jain, R. K. Role of extracellular matrix assembly in interstitial transport in solid tumours. Cancer Res. 60, 2497–2503 (2000).

    CAS  PubMed  Google Scholar 

  40. Colpaert, C. G. et al. The presence of a fibrotic focus in invasive breast carcinoma correlates with the expression of carbonic anhydrase IX and is a marker of hypoxia and poor prognosis. Breast Cancer Res. Treat. 81, 137–147 (2003).

    Article  CAS  PubMed  Google Scholar 

  41. Rustighi, A. et al. Prolyl-isomerase Pin1 controls normal and cancer stem cells of the breast. EMBO Mol. Med. 6, 99–119 (2014).

    Article  CAS  PubMed  Google Scholar 

  42. Irizarry, R. A. et al. Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 4, 249–264 (2003).

  43. Tusher, V. G., Tibshirani, R. & Chu, G. Significance analysis of microarrays applied to the ionizing radiation response. Proc. Natl Acad. Sci. USA 98, 5116–5121 (2001).

  44. Alonso, J. L. & Goldmann, W. H. Feeling the forces: atomic force microscopy in cell biology. Life Sci. 72, 2553–2560 (2003).

    Article  CAS  PubMed  Google Scholar 

  45. Sneddon, I. N. The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile. Int. J. Eng. Sci. 3, 47–57 (1965).

    Article  Google Scholar 

  46. Silwal-Pandit, L. et al. TP53 mutation spectrum in breast cancer is subtype specific and has distinct prognostic relevance. Clin. Cancer Res. 20, 3569–3580 (2014).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank A. Testa for discussions and proofreading the manuscript. We acknowledge G. Pastore for technical support. We thank S. Giulitti for preparation of hydrogels. We acknowledge support by the Italian Health Ministry (RF-2011-02346976 to G.D.S. and GR-2011-02348707 to D.S.), the Italian University and Research Ministry (PRIN-2015-8KZKE3), the Cariplo Foundation (grant no. 2014-0812) and Beneficentia-Stiftung to G.D.S. This work was supported by grants from the Associazione Italiana per la Ricerca sul Cancro (AIRC) and AIRC Special Program Molecular Clinical Oncology ‘5 per mille’ (grant no. 10016) to G.D.S., S.B., A.R. and S.P., and AIRC IG (grant no. 17659) to G.D.S. This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 670126-DENOVOSTEM) and an AIRC PI-Grant and by Epigenetics Flagship project CNR-Miur grants to S.P. M.M. is supported by the FIRB RBAP11Z4Z9 project from the Italian Ministry of Education and the FCT Investigator Programme IF/00694/2013 from the Portuguese Foundation for Science and Technology (FCT), Portugal. R.B. is a fellow of the Fondazione Italiana per la Ricerca sul Cancro (FIRC).

Author information

Authors and Affiliations

Authors

Contributions

E.I., G.S., K.L., R.B., A.Z. and L.A. performed the experiments. A.R. performed mouse experiments. M.M. performed the high-content screening. S.B. performed bioinformatic analysis. D.S. and L.U.S. performed AFM experiments. G.S., E.I. and G.D.S. designed experiments. G.S., F.M., S.P. and G.D.S. wrote the manuscript.

Corresponding author

Correspondence to Giannino Del Sal.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–6

Life Sciences Reporting Summary

Supplementary Table 1

Small molecule screening details

Supplementary Table 2

Small molecule screening results

Supplementary Table 3

List of siRNA sequences used

Supplementary Table 4

List of primers used for qRT-PCR

Supplementary Table 5

Details of the genes composing the stiffness, YAP/TAZ and mutant p53 signatures

Supplementary Table 6

Statistical source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ingallina, E., Sorrentino, G., Bertolio, R. et al. Mechanical cues control mutant p53 stability through a mevalonate–RhoA axis. Nat Cell Biol 20, 28–35 (2018). https://doi.org/10.1038/s41556-017-0009-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41556-017-0009-8

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer