Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A PERK–miR-211 axis suppresses circadian regulators and protein synthesis to promote cancer cell survival

Abstract

The unfolded protein response (UPR) is a stress-activated signalling pathway that regulates cell proliferation, metabolism and survival. The circadian clock coordinates metabolism and signal transduction with light/dark cycles. We explore how UPR signalling interfaces with the circadian clock. UPR activation induces a 10 h phase shift in circadian oscillations through induction of miR-211, a PERK-inducible microRNA that transiently suppresses both Bmal1 and Clock, core circadian regulators. Molecular investigation reveals that miR-211 directly regulates Bmal1 and Clock via distinct mechanisms. Suppression of Bmal1 and Clock has the anticipated impact on expression of select circadian genes, but we also find that repression of Bmal1 is essential for UPR-dependent inhibition of protein synthesis and cell adaptation to stresses that disrupt endoplasmic reticulum homeostasis. Our data demonstrate that c-Myc-dependent activation of the UPR inhibits Bmal1 in Burkitt’s lymphoma, thereby suppressing both circadian oscillation and ongoing protein synthesis to facilitate tumour progression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: PERK-dependent regulation of circadian oscillation.
Fig. 2: Light/dark reversal triggers the UPR.
Fig. 3: miR-211 directly regulates Clock.
Fig. 4: miR-211 directly targets Bmal1 5′UTR.
Fig. 5: Antagonizing miR-211 restores circadian oscillation.
Fig. 6: Bmal1 is lost in Myc-driven tumours.
Fig. 7: Bmal1 loss is critical for cell survival following ER stress.
Fig. 8: Bmal1 loss is critical for PERK-dependent inhibition of protein synthesis.

Similar content being viewed by others

References

  1. Diehl, J. A., Fuchs, S. Y. & Koumenis, C. The cell biology of the unfolded protein response. Gastroenterology 141, 38–41.e2 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Tirasophon, W., Welihinda, A. A. & Kaufman, R. J. A stress response pathway from the endoplasmic reticulum to the nucleus requires a novel bifunctional protein kinase/endoribonuclease (Ire1p) in mammalian cells. Genes Dev. 12, 1812–1824 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Yoshida, H., Haze, K., Yanagi, H., Yura, T. & Mori, K. Identification of the cis-acting endoplasmic reticulum stress response element responsible for transcriptional induction of mammalian glucose-regulated proteins. Involvement of basic leucine zipper transcription factors. J. Biol. Chem. 273, 33741–33749 (1998).

    Article  CAS  PubMed  Google Scholar 

  4. Lee, A. H., Iwakoshi, N. N. & Glimcher, L. H. XBP-1 regulates a subset of endoplasmic reticulum resident chaperone genes in the unfolded protein response. Mol. Cell Biol. 23, 7448–7459 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Calfon, M. et al. IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA. Nature 415, 92–96 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Yoshida, H., Matsui, T., Yamamoto, A., Okada, T. & Mori, K. XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell 107, 881–891 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Shi, Y. et al. Identification and characterization of pancreatic eukaryotic initiation factor 2 alpha-subunit kinase, PEK, involved in translational control. Mol. Cell Biol. 18, 7499–7509 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Harding, H. P., Zhang, Y. & Ron, D. Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase. Nature 397, 271–274 (1999).

    Article  CAS  PubMed  Google Scholar 

  9. Pytel, D., Majsterek, I. & Diehl, J. A. Tumor progression and the different faces of the PERK kinase. Oncogene 35, 1207–1215 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Bobrovnikova-Marjon, E. et al. PERK promotes cancer cell proliferation and tumor growth by limiting oxidative DNA damage. Oncogene 29, 3881–3895 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hart, L. S. et al. ER stress-mediated autophagy promotes Myc-dependent transformation and tumor growth. J. Clin. Invest. 122, 4621–4634 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Pytel, D. et al. PERK is a haploinsufficient tumor suppressor: gene dose determines tumor-suppressive versus tumor promoting properties of PERK in melanoma. PLoS Genet. 12, e1006518 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Bhattacharya, S. et al. Anti-tumorigenic effects of type 1 interferon are subdued by integrated stress responses. Oncogene 32, 4214–4221 (2013).

    Article  CAS  PubMed  Google Scholar 

  14. Harding, H. P., Zhang, Y., Bertolotti, A., Zeng, H. & Ron, D. PERK is essential for translational regulation and cell survival during the unfolded protein response. Mol. Cell 5, 897–904 (2000).

    Article  CAS  PubMed  Google Scholar 

  15. Zhang, P. et al. The PERK eukaryotic initiation factor 2α kinase is required for the development of the skeletal system, postnatal growth, and the function and viability of the pancreas. Mol. Cell. Biol. 22, 3864–3874 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gao, Y. et al. PERK is required in the adult pancreas and is essential for maintenance of glucose homeostasis. Mol. Cell. Biol. 32, 5129–5139 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lipton, J. O. et al. The circadian protein BMAL1 regulates translation in response to S6K1-mediated phosphorylation. Cell 161, 1138–1151 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bass, J. & Takahashi, J. S. Circadian integration of metabolism and energetics. Science 330, 1349–1354 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bu, Y. & Diehl, J. A. PERK integrates oncogenic signaling and cell survival during cancer development. J. Cell. Physiol. 231, 2088–2096 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Baggs, J. E. et al. Network features of the mammalian circadian clock. PLoS Biol. 7, e52 (2009).

    Article  PubMed  Google Scholar 

  21. Axten, J. M. et al. Discovery of 7-methyl-5-(1-{[3-(trifluoromethyl)phenyl]acetyl}-2,3-dihydro-1H-indol-5-yl)-7H-pyrrolo[2,3-d]pyrimidin-4-amine (GSK2606414), a potent and selective first-in-class inhibitor of protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK). J. Med. Chem. 55, 7193–7207 (2012).

    Article  CAS  PubMed  Google Scholar 

  22. Chitnis, N. S. et al. miR-211 is a prosurvival microRNA that regulates chop expression in a PERK-dependent manner. Mol. Cell 48, 353–364 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Harfe, B. D., McManus, M. T., Mansfield, J. H., Hornstein, E. & Tabin, C. J. The RNaseIII enzyme Dicer is required for morphogenesis but not patterning of the vertebrate limb. Proc. Natl Acad. Sci. USA 102, 10898–10903 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Verdel, A. et al. RNAi-mediated targeting of heterochromatin by the RITS complex. Science 303, 672–676 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Orom, U. A. & Lund, A. H. Isolation of microRNA targets using biotinylated synthetic microRNAs. Methods 43, 162–165 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. Barna, M. et al. Suppression of Myc oncogenic activity by ribosomal protein haploinsufficiency. Nature 456, 971–975 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ruggero, D. The role of Myc-induced protein synthesis in cancer. Cancer Res. 69, 8839–8843 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Altman, B. J. et al. MYC disrupts the circadian clock and metabolism in cancer cells. Cell Metab. 22, 1009–1019 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Garten, A. et al. Physiological and pathophysiological roles of NAMPT and NAD metabolism. Nat. Rev. Endocrinol. 11, 535–546 (2015).

    CAS  PubMed  Google Scholar 

  30. Atwood, A. et al. Cell-autonomous circadian clock of hepatocytes drives rhythms in transcription and polyamine synthesis. Proc. Natl Acad. Sci. USA 108, 18560–18565 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Eckel-Mahan, K. L. et al. Reprogramming of the circadian clock by nutritional challenge. Cell 155, 1464–1478 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Li, Y. et al. PRMT5 is required for lymphomagenesis triggered by multiple oncogenic drivers. Cancer Discov. 5, 288–303 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Basso, K. et al. Reverse engineering of regulatory networks in human B cells. Nat. Genet. 37, 382–390 (2005).

    Article  CAS  PubMed  Google Scholar 

  34. Avivar-Valderas, A. et al. Regulation of autophagy during ECM detachment is linked to a selective inhibition of mTORC1 by PERK. Oncogene 32, 4932–4940 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Gyorffy, B., Surowiak, P., Budczies, J. & Lanczky, A. Online survival analysis software to assess the prognostic value of biomarkers using transcriptomic data in non-small-cell lung cancer. PLoS ONE 8, e82241 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Delmore, J. E. et al. BET bromodomain inhibition as a therapeutic strategy to target c-Myc. Cell 146, 904–917 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Belinsky, M. G., Chen, Z. S., Shchaveleva, I., Zeng, H. & Kruh, G. D. Characterization of the drug resistance and transport properties of multidrug resistance protein 6 (MRP6, ABCC6). Cancer Res. 62, 6172–6177 (2002).

    CAS  PubMed  Google Scholar 

  38. Valentijn, L. J. et al. Inhibition of a new differentiation pathway in neuroblastoma by copy number defects of N-myc, Cdc42, and nm23 genes. Cancer Res. 65, 3136–3145 (2005).

    Article  CAS  PubMed  Google Scholar 

  39. Ushmorov, A. et al. N-myc augments death and attenuates protective effects of Bcl-2 in trophically stressed neuroblastoma cells. Oncogene 27, 3424–3434 (2008).

    Article  CAS  PubMed  Google Scholar 

  40. Yoshida, A., Lee, E. K. & Diehl, J. A. Induction of therapeutic senescence in vemurafenib-resistant melanoma by extended inhibition of CDK4/6. Cancer Res. 76, 2990–3002 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Xu, Z. et al. miR-216b regulation of c-Jun mediates GADD153/CHOP-dependent apoptosis. Nat. Commun. 7, 11422 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Aggarwal, P. et al. Nuclear cyclin D1/CDK4 kinase regulates CUL4 expression and triggers neoplastic growth via activation of the PRMT5 methyltransferase. Cancer Cell 18, 329–340 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank J. Hogenesch (University of Cincinnati) for providing the U2OS BMAL1::Luc cell line. The authors thank Y. Koutalos (Medical University of South Carolina) for providing the animal darkroom facility, S. Mehrotra (Medical University of South Carolina) and C. Wallace Fugle (Medical University of South Carolina) for technique support, L.J. Valentijn (University of Amsterdam) for providing the SKNAS-NmycER cell line, and the Medical University of South Carolina pathology core research facility and Y. Shao for histological analysis. The authors also acknowledge assistance from the Division of Laboratory Animal Resource (DLAR) and the flow cytometry facility in the Medical University of South Carolina. This work was supported by National Institutes of Health grants P01CA165997 (to C.K., D.R., S.Y.F. and J.A.D.).

Author information

Authors and Affiliations

Authors

Contributions

J.A.D. developed the concept, designed experiments, analysed data and wrote the manuscript. Y.B. performed experiments, analysed data and prepared the manuscript. A.Y., N.C., B.J.A., F.T., A.T., A.O. and V.G. performed experiments. G.B.W. provided human samples of tonsils. K.E.A. carried out statistical analysis. S.M., C.V.D., D.R., C.K. and S.Y.F. provided intellectual input and reagents.

Corresponding author

Correspondence to J. Alan Diehl.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–8, plus legends and references.

Life Sciences Reporting Summary

Supplementary Table 1

Sequences for qPCR primers used in this study.

Supplementary Table 2

Information on antibodies used in this study.

Supplementary Table 3

Statistics Source Data.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bu, Y., Yoshida, A., Chitnis, N. et al. A PERK–miR-211 axis suppresses circadian regulators and protein synthesis to promote cancer cell survival. Nat Cell Biol 20, 104–115 (2018). https://doi.org/10.1038/s41556-017-0006-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41556-017-0006-y

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer