Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Standardizing designed and emergent quantitative features in microphysiological systems

Abstract

Microphysiological systems (MPSs) are cellular models that replicate aspects of organ and tissue functions in vitro. In contrast with conventional cell cultures, MPSs often provide physiological mechanical cues to cells, include fluid flow and can be interlinked (hence, they are often referred to as microfluidic tissue chips or organs-on-chips). Here, by means of examples of MPSs of the vascular system, intestine, brain and heart, we advocate for the development of standards that allow for comparisons of quantitative physiological features in MPSs and humans. Such standards should ensure that the in vivo relevance and predictive value of MPSs can be properly assessed as fit-for-purpose in specific applications, such as the assessment of drug toxicity, the identification of therapeutics or the understanding of human physiology or disease. Specifically, we distinguish designed features, which can be controlled via the design of the MPS, from emergent features, which describe cellular function, and propose methods for improving MPSs with readouts and sensors for the quantitative monitoring of complex physiology towards enabling wider end-user adoption and regulatory acceptance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: MPSs can control and monitor physiological features.
Fig. 2: Design principles of MPSs of the human vasculature.
Fig. 3: Design principles of MPSs of the human intestine.
Fig. 4: Design principles of MPSs of the human heart.
Fig. 5: Design principles of MPSs of the human brain.
Fig. 6: Technical advances for the quantification of designed physiological features in MPSs.
Fig. 7: Technical advances for the quantification of emergent physiological features in MPSs.

Similar content being viewed by others

References

  1. Ingber, D. E. Human organs-on-chips for disease modelling, drug development and personalized medicine. Nat. Rev. Genet. 23, 467–491 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Vunjak-Novakovic, G., Ronaldson-Bouchard, K. & Radisic, M. Organs-on-a-chip models for biological research. Cell 184, 4597–4611 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Mastrangeli, M., Millet, S. & van den Eijnden-Van Raaij, J. Organ-on-chip in development: towards a roadmap for organs-on-chip. ALTEX 36, 650–668 (2019).

    Article  PubMed  Google Scholar 

  4. Ingber, D. E. Reverse engineering human pathophysiology with organs-on-chips. Cell 164, 1105–1109 (2016).

    Article  CAS  PubMed  Google Scholar 

  5. Low, L. A., Mummery, C. L., Berridge, B. R., Austin, C. P. & Tagle, D. A. Organs-on-chips: into the next decade. Nat. Rev. Drug Discov. 20, 345–361 (2020).

    Article  PubMed  Google Scholar 

  6. Mastrangeli, M. et al. Building blocks for a European organ-on-chip roadmap. ALTEX 36, 481–492 (2019).

    Article  PubMed  Google Scholar 

  7. Wu, Z. et al. Microfluidic printing of tunable hollow microfibers for vascular tissue engineering. Adv. Mater. Technol. 6, 2000683 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Linville, R. M. et al. Human iPSC-derived blood–brain barrier microvessels: validation of barrier function and endothelial cell behavior. Biomaterials 190–191, 24–37 (2019).

    Article  PubMed  Google Scholar 

  9. De Graaf, M. N. S. et al. Scalable microphysiological system to model three-dimensional blood vessels. APL Bioeng. 3, 026105 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Kim, S., Lee, H., Chung, M. & Jeon, N. L. Engineering of functional, perfusable 3D microvascular networks on a chip. Lab Chip 13, 1489–1500 (2013).

    Article  CAS  PubMed  Google Scholar 

  11. Campisi, M. et al. 3D self-organized microvascular model of the human blood–brain barrier with endothelial cells, pericytes and astrocytes. Biomaterials 180, 117–129 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Brandenberg, N. & Lutolf, M. P. In situ patterning of microfluidic networks in 3D cell-laden hydrogels. Adv. Mater. 28, 7450–7456 (2016).

    Article  CAS  PubMed  Google Scholar 

  13. Enrico, A. et al. Three dimensional microvascularized tissue models by laser‐based cavitation molding of collagen. Adv. Mater. 34, 2109823 (2022).

    Article  CAS  Google Scholar 

  14. Nikolaev, M. et al. Homeostatic mini-intestines through scaffold-guided organoid morphogenesis. Nature 585, 574–578 (2020).

    Article  PubMed  Google Scholar 

  15. MacQueen, L. A. et al. A tissue-engineered scale model of the heart ventricle. Nat. Biomed. Eng. 2, 930–941 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chen, Y. et al. A microfluidic circulatory system integrated with capillary-assisted pressure sensors. Lab Chip 17, 653–662 (2017).

    Article  PubMed  Google Scholar 

  17. Sarkar, A. et al. Efficient generation of CA3 neurons from human pluripotent stem cells enables modeling of hippocampal connectivity in vitro. Cell Stem Cell 22, 684–697 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Dauth, S. et al. Neurons derived from different brain regions are inherently different in vitro: a novel multiregional brain-on-a-chip. J. Neurophysiol. 117, 1320–1341 (2017).

    Article  CAS  PubMed  Google Scholar 

  19. Odawara, A., Gotoh, M. & Suzuki, I. A three-dimensional neuronal culture technique that controls the direction of neurite elongation and the position of soma to mimic the layered structure of the brain. RSC Adv. 3, 23620–23630 (2013).

    Article  CAS  Google Scholar 

  20. Song, J. W. et al. Computer-controlled microcirculatory support system for endothelial cell culture and shearing. Anal. Chem. 77, 3993–3999 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Arora, S., Lam, A. J. Y., Cheung, C., Yim, E. K. F. & Toh, Y. C. Determination of critical shear stress for maturation of human pluripotent stem cell-derived endothelial cells towards an arterial subtype. Biotechnol. Bioeng. 116, 1164–1175 (2019).

    Article  CAS  PubMed  Google Scholar 

  22. Chen, H. et al. Cardiac-like flow generator for long-term imaging of endothelial cell responses to circulatory pulsatile flow at microscale. Lab Chip 13, 2999–3007 (2013).

    Article  CAS  PubMed  Google Scholar 

  23. Satoh, T. et al. A pneumatic pressure-driven multi-throughput microfluidic circulation culture system. Lab Chip 16, 2339–2348 (2016).

    Article  CAS  PubMed  Google Scholar 

  24. Kim, H., Huh, D., Hamilton, G. & Ingber, D. Human gut-on-a-chip inhabited by microbial flora that experiences intestinal peristalsis-like motions and flow. Lab Chip 12, 2165–2174 (2012).

    Article  CAS  PubMed  Google Scholar 

  25. Wasson, E. M., Dubbin, K. & Moya, M. L. Go with the flow: modeling unique biological flows in engineered in vitro platforms. Lab Chip 21, 2095–2120 (2021).

    Article  CAS  PubMed  Google Scholar 

  26. Shin, Y. C. et al. Three-dimensional regeneration of patient-derived intestinal organoid epithelium in a physiodynamic mucosal interface-on-a-chip. Micromachines 11, 663 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Dessalles, C. A., Ramón-Lozano, C., Babataheri, A. & Barakat, A. I. Luminal flow actuation generates coupled shear and strain in a microvessel-on-chip. Biofabrication 14, 015003 (2021).

    Article  Google Scholar 

  28. Parsa, H., Wang, B. Z. & Vunjak-Novakovic, G. A microfluidic platform for the high-throughput study of pathological cardiac hypertrophy. Lab Chip 17, 3264–3271 (2017).

    Article  CAS  PubMed  Google Scholar 

  29. Rodriguez, M. L., Werner, T. R., Becker, B., Eschenhagen, T. & Hirt, M. N. Magnetics-based approach for fine-tuning afterload in engineered heart tissues. ACS Biomater. Sci. Eng. 5, 3663–3675 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gordon, E., Schimmel, L. & Frye, M. The importance of mechanical forces for in vitro endothelial cell biology. Front. Physiol. 11, 684 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Schroer, A., Pardon, G., Castillo, E., Blair, C. & Pruitt, B. Engineering hiPSC cardiomyocyte in vitro model systems for functional and structural assessment. Prog. Biophys. Mol. Biol. 144, 3–15 (2019).

    Article  CAS  PubMed  Google Scholar 

  32. Onfroy-Roy, L., Hamel, D., Foncy, J., Malaquin, L. & Ferrand, A. Extracellular matrix mechanical properties and regulation of the intestinal stem cells: when mechanics control fate. Cells 9, 2629 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Barnes, J. M., Przybyla, L. & Weaver, V. M. Tissue mechanics regulate brain development, homeostasis and disease. J. Cell Sci. 130, 71–82 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Mason, B. N., Starchenko, A., Williams, R. M., Bonassar, L. J. & Reinhart-King, C. A. Tuning three-dimensional collagen matrix stiffness independently of collagen concentration modulates endothelial cell behavior. Acta Biomater. 9, 4635–4644 (2013).

    Article  CAS  PubMed  Google Scholar 

  35. Soofi, S. S., Last, J. A., Lliensiek, S. J., Nealey, P. F. & Murphy, C. J. Elastic modulus of Matrigel as determined by AFM. J. Struct. Biol. 167, 216–219 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Fuard, D., Tzvetkova-Chevolleau, T., Decossas, S., Tracqui, P. & Schiavone, P. Optimization of poly-di-methyl-siloxane (PDMS) substrates for studying cellular adhesion and motility. Microelectron. Eng. 85, 1289–1293 (2008).

    Article  CAS  Google Scholar 

  37. Cho, A. N. et al. Microfluidic device with brain extracellular matrix promotes structural and functional maturation of human brain organoids. Nat. Commun. 12, 4730 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wang, Y. et al. A microengineered collagen scaffold for generating a polarized crypt–villus architecture of human small intestinal epithelium. Biomaterials 128, 44–55 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Pasqualini, F. S. et al. Traction force microscopy of engineered cardiac tissues. PLoS ONE 13, e0194706 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Trappmann, B. et al. Matrix degradability controls multicellularity of 3D cell migration. Nat. Commun. 8, 371 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Roy, E., Galas, J.-C. & Veres, T. Thermoplastic elastomers for microfluidics: towards a high-throughput fabrication method of multilayered microfluidic devices. Lab Chip 11, 3193 (2011).

    Article  CAS  PubMed  Google Scholar 

  42. Carlborg, C. F., Haraldsson, T., Öberg, K., Malkoch, M. & van der Wijngaart, W. Beyond PDMS: off-stoichiometry thiol–ene (OSTE) based soft lithography for rapid prototyping of microfluidic devices. Lab Chip 11, 3136 (2011).

    Article  CAS  PubMed  Google Scholar 

  43. Radisic, M. & Loskill, P. Beyond PDMS and membranes: new materials for organ-on-a-chip devices. ACS Biomater. Sci. Eng. 7, 2861–2863 (2021).

    Article  CAS  PubMed  Google Scholar 

  44. Buguin, A., Li, M. H., Silberzan, P., Ladoux, B. & Keller, P. Micro-actuators: when artificial muscles made of nematic liquid crystal elastomers meet soft lithography. J. Am. Chem. Soc. 128, 1088–1089 (2006).

    Article  CAS  PubMed  Google Scholar 

  45. Guin, T. et al. Layered liquid crystal elastomer actuators. Nat. Commun. 9, 2531 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Park, T. E. et al. Hypoxia-enhanced Blood-Brain Barrier Chip recapitulates human barrier function and shuttling of drugs and antibodies. Nat. Commun. 10, 2621 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Veldhuizen, J. et al. Cardiac ischemia on-a-chip to investigate cellular and molecular response of myocardial tissue under hypoxia. Biomaterials 281, 121336 (2022).

    Article  CAS  PubMed  Google Scholar 

  48. Jalili-firoozinezhad, S. et al. A complex human gut microbiome cultured in an anaerobic intestine-on-a-chip. Nat. Biomed. Eng. 3, 520–531 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lam, S. F., Shirure, V. S., Chu, Y. E., Soetikno, A. G. & George, S. C. Microfluidic device to attain high spatial and temporal control of oxygen. PLoS ONE 13, e0209574 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Moerkens, R. et al. An iPSC-derived small intestine-on-chip with self-organizing epithelial, mesenchymal, and neural cells. Cell Rep. 43, 114247 (2024).

    Article  CAS  PubMed  Google Scholar 

  51. Rifes, P. et al. Modeling neural tube development by differentiation of human embryonic stem cells in a microfluidic WNT gradient. Nat. Biotechnol. 38, 1265–1273 (2020).

    Article  CAS  PubMed  Google Scholar 

  52. Chen, L. J. et al. Single-cell RNA sequencing unveils unique transcriptomic signatures of endothelial cells and role of ENO1 in response to disturbed flow. Proc. Natl Acad. Sci. USA 121, e2318904121 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lee, S. et al. Angiogenesis-on-a-chip coupled with single-cell RNA sequencing reveals spatially differential activations of autophagy along angiogenic sprouts. Nat. Commun. 15, 230 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Chen, M. B., Srigunapalan, S., Wheeler, A. R. & Simmons, C. A. A 3D microfluidic platform incorporating methacrylated gelatin hydrogels to study physiological cardiovascular cell–cell interactions. Lab Chip 13, 2591–2598 (2013).

    Article  CAS  PubMed  Google Scholar 

  55. Hinman, S. S., Wang, Y. & Allbritton, N. L. Photopatterned membranes and chemical gradients enable scalable phenotypic organization of primary human colon epithelial models. Anal. Chem. 91, 15240–15247 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Elmentaite, R. et al. Single-cell sequencing of developing human gut reveals transcriptional links to childhood Crohn’s disease. Dev. Cell 55, 771–783 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Xue, X. et al. A patterned human neural tube model using microfluidic gradients. Nature 628, 391–399 (2024).

    Article  CAS  PubMed  Google Scholar 

  58. Winkelman, M. A. et al. Interstitial flow enhances the formation, connectivity, and function of 3D brain microvascular networks generated within a microfluidic device. Lab Chip 22, 170–192 (2022).

    Article  CAS  Google Scholar 

  59. Iannielli, A. et al. Reconstitution of the human nigro-striatal pathway on-a-chip reveals OPA1-dependent mitochondrial defects and loss of dopaminergic synapses. Cell Rep. 29, 4646–4656 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Yu, Y. et al. A microfluidic platform for continuous monitoring of dopamine homeostasis in dopaminergic cells. Microsyst. Nanoeng. 5, 10 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Ford, C. P., Phillips, P. E. M. & Williams, J. T. The time course of dopamine transmission in the ventral tegmental area. J. Neurosci. 29, 13344–13352 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Vickovic, S. et al. High-definition spatial transcriptomics for in situ tissue profiling. Nat. Methods 16, 987–990 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Srivatsan, S. R. et al. Embryo-scale, single-cell spatial transcriptomics. Science 373, 111–117 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Fajgenbaum, D. C. & June, C. H. Cytokine storm. N. Engl. J. Med. 383, 2255–2273 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Hajal, C. et al. Engineered human blood–brain barrier microfluidic model for vascular permeability analyses. Nat. Protoc. 17, 95–128 (2022).

    Article  CAS  PubMed  Google Scholar 

  66. Herland, A. et al. Distinct contributions of astrocytes and pericytes to neuroinflammation identified in a 3D human blood–brain barrier on a chip. PLoS ONE 11, e0150360 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Beaurivage, C. et al. Development of a human primary gut-on-a-chip to model inflammatory processes. Sci. Rep. 10, 21475 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Park, J. et al. A 3D human triculture system modeling neurodegeneration and neuroinflammation in Alzheimer’s disease. Nat. Neurosci. 21, 941–951 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Hajal, C., Roi, B., Le, Kamm, R. D. & Maoz, B. M. Biology and models of the blood–brain barrier. Annu. Rev. Biomed. Eng. 23, 359–384 (2021).

    Article  CAS  PubMed  Google Scholar 

  70. Qiu, Y. et al. Microvasculature-on-a-chip for the long-term study of endothelial barrier dysfunction and microvascular obstruction in disease. Nat. Biomed. Eng. 2, 453–463 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Naumovska, E. et al. Direct on-chip differentiation of intestinal tubules from induced pluripotent stem cells. Int. J. Mol. Sci. 21, 4964 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Van Duinen, V. et al. 96 perfusable blood vessels to study vascular permeability in vitro. Sci. Rep. 7, 18071 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Tan, H. Y. et al. A multi-chamber microfluidic intestinal barrier model using Caco-2 cells for drug transport studies. PLoS ONE 13, e0197101 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Shim, K. Y. et al. Microfluidic gut-on-a-chip with three-dimensional villi structure. Biomed. Microdevices 19, 37 (2017).

    Article  PubMed  Google Scholar 

  75. Pocock, K. et al. Intestine-on-a-chip microfluidic model for efficient in vitro screening of oral chemotherapeutic uptake. ACS Biomater. Sci. Eng. 3, 951–959 (2017).

    Article  CAS  PubMed  Google Scholar 

  76. Yang, X., Pabon, L. & Murry, C. E. Engineering adolescence: maturation of human pluripotent stem cell-derived cardiomyocytes. Circ. Res. 114, 511–523 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Thavandiran, N. et al. Design and formulation of functional pluripotent stem cell-derived cardiac microtissues. Proc. Natl Acad. Sci. USA 110, E4698–E4707 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Zwi, L. et al. Cardiomyocyte differentiation of human induced pluripotent stem cells. Circulation 120, 1513–1523 (2009).

    Article  CAS  PubMed  Google Scholar 

  79. Van Meer, B. J., Tertoolen, L. G. J. & Mummery, C. L. Measuring physiological responses of human pluripotent stem cell derived cardiomyocytes to drugs and disease. Stem Cells 34, 2008–2015 (2016).

    Article  PubMed  Google Scholar 

  80. Brandao, K. O., Tabel, V. A., Atsma, D. E., Mummery, C. L. & Davis, R. P. Human pluripotent stem cell models of cardiac disease: from mechanisms to therapies. Dis. Model. Mech. 10, 1039–1059 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Tiburcy, M. et al. Defined engineered human myocardium with advanced maturation for applications in heart failure modeling and repair. Circulation 135, 1832–1847 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Gaio, N. et al. Cytostretch, an organ-on-chip platform. Micromachines 7, 120 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Shin, H. et al. 3D high-density microelectrode array with optical stimulation and drug delivery for investigating neural circuit dynamics. Nat. Commun. 12, 492 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Trujillo, C. A. et al. Complex oscillatory waves emerging from cortical organoids model early human brain network development. Cell Stem Cell 25, 558–569 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Blau, A. et al. Flexible, all-polymer microelectrode arrays for the capture of cardiac and neuronal signals. Biomaterials 32, 1778–1786 (2011).

    Article  CAS  PubMed  Google Scholar 

  86. Soscia, D. A. et al. A flexible 3-dimensional microelectrode array for in vitro brain models. Lab Chip 20, 901–911 (2020).

    Article  CAS  PubMed  Google Scholar 

  87. Sender, R. & Milo, R. The distribution of cellular turnover in the human body. Nat. Med. 27, 45–48 (2021).

    Article  CAS  PubMed  Google Scholar 

  88. Kim, S., Chung, M. & Jeon, N. L. Three-dimensional biomimetic model to reconstitute sprouting lymphangiogenesis in vitro. Biomaterials 78, 115–128 (2016).

    Article  CAS  PubMed  Google Scholar 

  89. Osaki, T., Serrano, J. C. & Kamm, R. D. Cooperative effects of vascular angiogenesis and lymphangiogenesis. Regen. Eng. Transl. Med. 4, 120–132 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Eddington, D. T., Puccinelli, J. P. & Beebe, D. J. Thermal aging and reduced hydrophobic recovery of polydimethylsiloxane. Sens. Actuators B Chem. 114, 170–172 (2006).

    Article  CAS  Google Scholar 

  91. Van Meer, B. J. et al. Small molecule absorption by PDMS in the context of drug response bioassays. Biochem. Biophys. Res. Commun. 482, 323–328 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Lamberti, A., Marasso, S. L. & Cocuzza, M. PDMS membranes with tunable gas permeability for microfluidic applications. RSC Adv. 4, 61415–61419 (2014).

    Article  CAS  Google Scholar 

  93. Firpo, G., Angeli, E., Repetto, L. & Valbusa, U. Permeability thickness dependence of polydimethylsiloxane (PDMS) membranes. J. Memb. Sci. 481, 1–8 (2015).

    Article  CAS  Google Scholar 

  94. O’Brien, D. J. et al. Systematic characterization of hydrophilized polydimethylsiloxane. J. Microelectromech. Syst. 29, 1216–1224 (2020).

    Article  Google Scholar 

  95. Nakano, H., Kakinoki, S. & Iwasaki, Y. Long-lasting hydrophilic surface generated on poly(dimethyl siloxane) with photoreactive zwitterionic polymers. Colloids Surf. B Biointerfaces 205, 111900 (2021).

    Article  CAS  PubMed  Google Scholar 

  96. Holczer, E. & Fürjes, P. Effects of embedded surfactants on the surface properties of PDMS; applicability for autonomous microfluidic systems. Microfluid. Nanofluidics 21, 81 (2017).

    Article  Google Scholar 

  97. Schneider, S., Brás, E. J. S., Schneider, O., Schlünder, K. & Loskill, P. Facile patterning of thermoplastic elastomers and robust bonding to glass and thermoplastics for microfluidic cell culture and organ-on-chip. Micromachines 12, 575 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  98. McMillan, A. H. et al. Rapid fabrication of membrane-integrated thermoplastic elastomer microfluidic devices. Micromachines 11, 731 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Lachaux, J. et al. Thermoplastic elastomer with advanced hydrophilization and bonding performances for rapid (30 s) and easy molding of microfluidic devices. Lab Chip 17, 2581–2594 (2017).

    Article  CAS  PubMed  Google Scholar 

  100. Busek, M. et al. Thermoplastic elastomer (TPE)–poly(methyl methacrylate) (PMMA) hybrid devices for active pumping PDMS-free organ-on-a-chip systems. Biosensors 11, 162 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Kim, D. S., Jeong, Y. J., Lee, B. K., Shanmugasundaram, A. & Lee, D. W. Piezoresistive sensor-integrated PDMS cantilever: a new class of device for measuring the drug-induced changes in the mechanical activity of cardiomyocytes. Sens. Actuators B Chem. 240, 566–572 (2017).

    Article  CAS  Google Scholar 

  102. Lind, J. U. et al. Instrumented cardiac microphysiological devices via multimaterial three-dimensional printing. Nat. Mater. 16, 303–308 (2017).

    Article  CAS  PubMed  Google Scholar 

  103. Coln, E. A. et al. Piezoelectric bioMEMS cantilever for measurement of muscle contraction and for actuation of mechanosensitive cells. MRS Commun. 9, 1186–1192 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Wang, Y. & Sugino, T. in Actuators 39–56 (InTech, 2018).

  105. He, Q. et al. Review on improvement, modeling, and application of ionic polymer metal composite artificial muscle. J. Bionic Eng. 19, 279–298 (2022).

    Article  Google Scholar 

  106. Mastrangeli, M. et al. Microelectromechanical Organs-on-Chip. Proc. 21st International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers) 102–107 (IEEE, 2021).

  107. Mirfakhrai, T., Madden, J. D. W. & Baughman, R. H. Polymer artificial muscles. Mater. Today 10, 30–38 (2007).

    Article  CAS  Google Scholar 

  108. Annabestani, M. & Fardmanesh, M. Ionic electro active polymer-based soft actuators and their applications in microfluidic micropumps, microvalves, and micromixers: a review. Preprint at https://doi.org/10.48550/arXiv.1904.07149 (2019).

  109. Emiliani, V. et al. Optogenetics for light control of biological systems. Nat. Rev. Methods Primers 2, 55 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Osaki, T., Uzel, S. G. M. & Kamm, R. D. Microphysiological 3D model of amyotrophic lateral sclerosis (ALS) from human iPS-derived muscle cells and optogenetic motor neurons. Sci. Adv. 4, eaat5847 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Gerasimenko, T. et al. Impedance spectroscopy as a tool for monitoring performance in 3D models of epithelial tissues. Front. Bioeng. Biotechnol. 7, 474 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Van der Helm, M. W. et al. Non-invasive sensing of transepithelial barrier function and tissue differentiation in organs-on-chips using impedance spectroscopy. Lab Chip 19, 452–463 (2019).

    Article  PubMed  Google Scholar 

  113. Groeber, F. et al. Impedance spectroscopy for the non-destructive evaluation of in vitro epidermal models. Pharm. Res. 32, 1845–1854 (2015).

    Article  CAS  PubMed  Google Scholar 

  114. Holzreuter, M. A. & Segerink, L. I. Innovative electrode and chip designs for transendothelial electrical resistance measurements in organs-on-chips. Lab Chip 24, 1121–1134 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Yeste, J. et al. Geometric correction factor for transepithelial electrical resistance measurements in transwell and microfluidic cell cultures. J. Phys. D Appl. Phys. 49, 375401 (2016).

    Article  Google Scholar 

  116. Blume, L. F., Denker, M., Gieseler, F. & Kunze, T. Temperature corrected transepithelial electrical resistance (TEER) measurement to quantify rapid changes in paracellular permeability. Pharmazie 65, 19–24 (2010).

    CAS  PubMed  Google Scholar 

  117. Grimnes, S. & Martinsen, Ø. G. Sources of error in tetrapolar impedance measurements on biomaterials and other ionic conductors. J. Phys. D Appl. Phys. 40, 9 (2007).

    Article  CAS  Google Scholar 

  118. Bossink, E. G. B. M., Zakharova, M., De Bruijn, D. S., Odijk, M. & Segerink, L. I. Measuring barrier function in organ-on-chips with cleanroom-free integration of multiplexable electrodes. Lab Chip 21, 2040–2049 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Matthiesen, I., Voulgaris, D., Nikolakopoulou, P., Winkler, T. E. & Herland, A. Continuous monitoring reveals protective effects of N-acetylcysteine amide on an isogenic microphysiological model of the neurovascular unit. Small 17, e2101785 (2021).

    Article  PubMed  Google Scholar 

  120. Maoz, B. M. et al. Organs-on-chips with combined multi-electrode array and transepithelial electrical resistance measurement capabilities. Lab Chip 17, 2294–2302 (2017).

    Article  CAS  PubMed  Google Scholar 

  121. Liu, F., Ni, L. & Zhe, J. Lab-on-a-chip electrical multiplexing techniques for cellular and molecular biomarker detection. Biomicrofluidics 12, 021501 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  122. De León, S. E., Pupovac, A. & McArthur, S. L. Three-dimensional (3D) cell culture monitoring: opportunities and challenges for impedance spectroscopy. Biotechnol. Bioeng. 117, 1230–1240 (2020).

    Article  PubMed  Google Scholar 

  123. Curto, V. F., Ferro, M. P., Mariani, F., Scavetta, E. & Owens, R. M. A planar impedance sensor for 3D spheroids. Lab Chip 18, 933–943 (2018).

    Article  CAS  PubMed  Google Scholar 

  124. Schmid, Y. R. F., Bürgel, S. C., Misun, P. M., Hierlemann, A. & Frey, O. Electrical impedance spectroscopy for microtissue spheroid analysis in hanging-drop networks. ACS Sens. 1, 1028–1035 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Alexander, F., Eggert, S. & Price, D. Label-free monitoring of 3D tissue models via electrical impedance spectroscopy. Bioanal. Rev. 2, 111–134 (2019).

    Article  Google Scholar 

  126. Moysidou, C. M. et al. 3D bioelectronic model of the human intestine. Adv. Biol. 5, 2000306 (2021).

    Article  CAS  Google Scholar 

  127. Zhu, Y. et al. State of the art in integrated biosensors for organ-on-a-chip applications. Curr. Opin. Biomed. Eng. 19, 100309 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Kieninger, J., Weltin, A., Flamm, H. & Urban, G. A. Microsensor systems for cell metabolism—from 2D culture to organ-on-chip. Lab Chip 18, 1274–1291 (2018).

    Article  CAS  PubMed  Google Scholar 

  129. Oliveira, M., Conceição, P., Kant, K., Ainla, A. & Diéguez, L. Electrochemical sensing in 3D cell culture models: new tools for developing better cancer diagnostics and treatments. Cancers (Basel) 13, 1381 (2021).

    Article  CAS  PubMed  Google Scholar 

  130. Aleman, J., Kilic, T., Mille, L. S., Shin, S. R. & Zhang, Y. S. Microfluidic integration of regeneratable electrochemical affinity-based biosensors for continual monitoring of organ-on-a-chip devices. Nat. Protoc. 16, 2564–2593 (2021).

    Article  CAS  PubMed  Google Scholar 

  131. Zhang, Y. S. et al. Multisensor-integrated organs-on-chips platform for automated and continual in situ monitoring of organoid behaviors. Proc. Natl Acad. Sci. USA 114, E2293–E2302 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Kaisti, M. Detection principles of biological and chemical FET sensors. Biosens. Bioelectron. 98, 437–448 (2017).

    Article  CAS  PubMed  Google Scholar 

  133. Shaegh, S. A. M. et al. A microfluidic optical platform for real-time monitoring of pH and oxygen in microfluidic bioreactors and organ-on-chip devices. Biomicrofluidics 10, 044111 (2016).

    Article  Google Scholar 

  134. Usuba, R. et al. Photonic lab-on-a-chip for rapid cytokine detection. ACS Sens. 1, 979–986 (2016).

    Article  CAS  Google Scholar 

  135. Luchansky, M. S. & Bailey, R. C. Rapid, multiparameter profiling of cellular secretion using silicon photonic microring resonator arrays. J. Am. Chem. Soc. 133, 20500–20506 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Podoleanu, A. G. Optical coherence tomography. J. Microsc. 247, 209–219 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Braaf, B. et al. in High Resolution Imaging in Microscopy and Ophthalmology: New Frontiers in Biomedical Optics Ch. 7 (Springer, 2019).

  138. Arik, Y. B. et al. Microfluidic organ-on-a-chip model of the outer blood–retinal barrier with clinically relevant read-outs for tissue permeability and vascular structure. Lab Chip 21, 272–283 (2021).

    Article  PubMed  Google Scholar 

  139. Pauty, J. et al. A vascular endothelial growth factor-dependent sprouting angiogenesis assay based on an in vitro human blood vessel model for the study of anti-angiogenic drugs. EBioMedicine 27, 225–236 (2018).

    Article  PubMed  Google Scholar 

  140. Dalmay, C. et al. Ultra sensitive biosensor based on impedance spectroscopy at microwave frequencies for cell scale analysis. Sens. Actuators A Phys. 162, 189–197 (2010).

    Article  CAS  Google Scholar 

  141. Artis, F. et al. Microwaving biological cells: intracellular analysis with microwave dielectric spectroscopy. IEEE Microw. Mag. 16, 87–96 (2015).

    Article  Google Scholar 

  142. Grenier, K. et al. Recent advances in microwave-based dielectric spectroscopy at the cellular level for cancer investigations. IEEE Trans. Microw. Theory Tech. 61, 2023–2030 (2013).

    Article  Google Scholar 

  143. Kelleci, M., Aydogmus, H., Aslanbas, L., Erbil, S. O. & Selim Hanay, M. Towards microwave imaging of cells. Lab Chip 18, 463–472 (2018).

    Article  CAS  PubMed  Google Scholar 

  144. Jang, C., Park, J.-K., Lee, H.-J., Yun, G.-H. & Yook, J.-G. Sensitivity-enhanced fluidic glucose sensor based on a microwave resonator coupled with an interferometric system for noninvasive and continuous detection. IEEE Trans. Biomed. Circuits Syst. 15, 1017–1026 (2021).

    Article  PubMed  Google Scholar 

  145. Zarifi, M. H., Sadabadi, H., Hejazi, S. H., Daneshmand, M. & Sanati-Nezhad, A. Noncontact and nonintrusive microwave-microfluidic flow sensor for energy and biomedical engineering. Sci. Rep. 8, 139 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Peytral-Rieu, O., Dubuc, D. & Grenier, K. Microwave-based sensor for the noninvasive and real-time analysis of 3-D biological microtissues: microfluidic improvement and sensitivity study. IEEE Trans. Microw. Theory Tech. 71, 4996–5003 (2023).

    Article  Google Scholar 

  147. Wikswo, J. P. et al. Scaling and systems biology for integrating multiple organs-on-a-chip. Lab Chip 13, 3496–3511 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Herland, A. et al. Quantitative prediction of human pharmacokinetic responses to drugs via fluidically coupled vascularized organ chips. Nat. Biomed. Eng. 4, 421–436 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Pollet, A. M. A. O. & den Toonder, J. M. J. Recapitulating the vasculature using organ-on-chip technology. Bioengineering 7, 17 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Gao, W. et al. One-step formation of protein-based tubular structures for functional devices and tissues. Adv. Healthc. Mater. 10, e2001746 (2021).

    Article  PubMed  Google Scholar 

  151. Helander, H. F. & Fändriks, L. Surface area of the digestive tract—revisited. Scand. J. Gastroenterol. 49, 681–689 (2014).

    Article  PubMed  Google Scholar 

  152. Hasan, M. & Ferguson, A. Measurements of intestinal villi in non-specific and ulcer-associated duodenitis—correlation between area of microdissected villus and villus epithelial cell count. J. Clin. Pathol. 34, 1181–1186 (1981).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Marsh, M. N. & Swift, J. A. A study of the small intestinal mucosa using the scanning electron microscope. Gut 10, 940–949 (1969).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Trbojević-Stanković, J. B. et al. Morphometric study of healthy jejunal and ileal mucosa in adult and aged subjects. Histol. Histopathol. 25, 153–158 (2010).

    PubMed  Google Scholar 

  155. Lin, F. Y. et al. Cardiac chamber volumes, function, and mass as determined by 64-multidetector row computed tomography. JACC Cardiovasc. Imaging 1, 782–786 (2008).

    Article  PubMed  Google Scholar 

  156. Adler, D. H. et al. Characterizing the human hippocampus in aging and Alzheimer’s disease using a computational atlas derived from ex vivo MRI and histology. Proc. Natl Acad. Sci. USA 115, 4252–4257 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Nowakowski, T. J., Pollen, A. A., Sandoval-Espinosa, C. & Kriegstein, A. R. Transformation of the radial glia scaffold demarcates two stages of human cerebral cortex development. Neuron 91, 1219–1227 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Popel, A. S. & Johnson, P. C. Microcirculation and hemorheology. Annu. Rev. Fluid Mech. 37, 43–69 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  159. Callaghan, F. M. & Grieve, S. M. Normal patterns of thoracic aortic wall shear stress measured using four-dimensional flow MRI in a large population. Am. J. Physiol. Heart Circ. Physiol. 315, H1174–H1181 (2018).

    Article  PubMed  Google Scholar 

  160. Dobrin, P. B.Mechanical properties of arteries. Physiol. Rev. 58, 397–460 (1978).

    Article  CAS  PubMed  Google Scholar 

  161. Morrison, T. M., Choi, G., Zarins, C. K. & Taylor, C. A. Circumferential and longitudinal cyclic strain of the human thoracic aorta: age-related changes. J. Vasc. Surg. 49, 1029–1036 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  162. Dutton, J. S., Hinman, S. S., Kim, R., Wang, Y. & Allbritton, N. L. Primary cell-derived intestinal models: recapitulating physiology. Trends Biotechnol. 37, 744–760 (2019).

    Article  CAS  PubMed  Google Scholar 

  163. Park, J. et al. Three-dimensional brain-on-a-chip with an interstitial level of flow and its application as an in vitro model of Alzheimer’s disease. Lab Chip 15, 141–150 (2015).

    Article  CAS  PubMed  Google Scholar 

  164. Lindstrøm, E. K., Ringstad, G., Mardal, K. A. & Eide, P. K. Cerebrospinal fluid volumetric net flow rate and direction in idiopathic normal pressure hydrocephalus. NeuroImage Clin. 20, 731–741 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  165. Basson, M. D. Paradigms for mechanical signal transduction in the intestinal epithelium. Digestion 68, 217–225 (2003).

    Article  PubMed  Google Scholar 

  166. McCain, M. L., Yuan, H., Pasqualini, F. S., Campbell, P. H. & Parker, K. K. Matrix elasticity regulates the optimal cardiac myocyte shape for contractility. Am. J. Physiol. Heart Circ. Physiol. 306, 1525–1539 (2014).

    Article  Google Scholar 

  167. Carreau, A., Hafny-Rahbi, B. E. L., Matejuk, A., Grillon, C. & Kieda, C. Why is the partial oxygen pressure of human tissues a crucial parameter? Small molecules and hypoxia. J. Cell. Mol. Med. 15, 1239–1253 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Ast, T. & Mootha, V. K. Oxygen and mammalian cell culture: are we repeating the experiment of Dr. Ox? Nat. Metab. 1, 858–860 (2019).

    Article  CAS  PubMed  Google Scholar 

  169. Winegrad, S., Henrion, D., Rappaport, L. & Samuel, J. L. Self-protection by cardiac myocytes against hypoxia and hyperoxia. Circ. Res. 85, 690–698 (1999).

    Article  CAS  PubMed  Google Scholar 

  170. Erecińska, M. & Silver, I. A. Tissue oxygen tension and brain sensitivity to hypoxia. Respir. Physiol. 128, 263–276 (2001).

    Article  PubMed  Google Scholar 

  171. Winkler, E. A. et al. A single-cell atlas of the normal and malformed human brain vasculature. Science 375, eabi7377 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Wang, Y. et al. Single-cell transcriptome analysis reveals differential nutrient absorption functions in human intestine. J. Exp. Med. 217, e20191130 (2019).

    Article  PubMed Central  Google Scholar 

  173. Tucker, N. R. et al. Transcriptional and cellular diversity of the human heart. Circulation 142, 466–482 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Litviňuková, M. et al. Cells of the adult human heart. Nature 588, 466–472 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  175. Miterko, L. N., Lackey, E. P., Heck, D. H. & Sillitoe, R. V. Shaping diversity into the brain’s form and function. Front. Neural Circuits 12, 83 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Bhaduri, A. et al. An atlas of cortical arealization identifies dynamic molecular signatures. Nature 598, 200–204 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Siletti, K. et al. Transcriptomic diversity of cell types across the adult human brain. Science 382, eadd7046 (2024).

    Article  Google Scholar 

  178. Velmeshev, D. et al. Single-cell analysis of prenatal and postnatal human cortical development. Science 382, eadf0834 (2024).

    Article  Google Scholar 

  179. Mathiisen, T. M., Lehre, K. P., Danbolt, N. C. & Ottersen, O. P. The perivascular astroglial sheath provides a complete covering of the brain microvessels: an electron microscopic 3D reconstruction. Glia 58, 1094–1103 (2010).

    Article  PubMed  Google Scholar 

  180. Armulik, A., Genové, G. & Betsholtz, C. Pericytes: developmental, physiological, and pathological perspectives, problems, and promises. Dev. Cell 21, 193–215 (2011).

    Article  CAS  PubMed  Google Scholar 

  181. Wang, Y. F., Liu, C. & Xu, P. F. Deciphering and reconstitution of positional information in the human brain development. Cell Regen. 10, 29 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Alonso-Nanclares, L., Gonzalez-Soriano, J., Rodriguez, J. R. & DeFelipe, J. Gender differences in human cortical synaptic density. Proc. Natl Acad. Sci. USA 105, 14615–14619 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Gonon, F. Prolonged and extrasynaptic excitatory action of dopamine mediated by D1 receptors in the rat striatum in vivo. J. Neurosci. 17, 5972–5978 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Calandra, T., Gerain, J., Heumann, D., Baumgartner, J. D. & Glauser, M. P. High circulating levels of interleukin-6 in patients with septic shock: evolution during sepsis, prognostic value, and interplay with other cytokines. Am. J. Med. 91, 23–29 (1991).

    Article  CAS  PubMed  Google Scholar 

  185. Leng, F. & Edison, P. Neuroinflammation and microglial activation in Alzheimer disease: where do we go from here? Nat. Rev. Neurol. 17, 157–172 (2021).

    Article  PubMed  Google Scholar 

  186. Yuan, W., Lv, Y., Zeng, M. & Fu, B. M. Non-invasive measurement of solute permeability in cerebral microvessels of the rat. Microvasc. Res. 77, 166–173 (2009).

    Article  CAS  PubMed  Google Scholar 

  187. Nejdfors, P., Ekelund, M., Jeppsson, B. & Weström, B. R. Mucosal in vitro permeability in the intestinal tract of the pig, the rat, and man: species- and region-related differences. Scand. J. Gastroenterol. 35, 501–507 (2000).

    Article  CAS  PubMed  Google Scholar 

  188. Nunes, S. S. et al. Biowire: a platform for maturation of human pluripotent stem cell-derived cardiomyocytes. Nat. Methods 10, 781–787 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Zhao, Y. et al. Towards chamber specific heart-on-a-chip for drug testing applications. Adv. Drug Deliv. Rev. 165–166, 60–76 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  190. Gyorgy, B. & Andreas, D. Neuronal oscillations in cortical networks. Science 304, 1926–1929 (2004).

    Article  Google Scholar 

  191. Darwich, A. S., Aslam, U., Ashcroft, D. M. & Rostami-Hodjegan, A. Meta-analysis of the turnover of intestinal epithelia in preclinical animal species and humans. Drug Metab. Dispos. 42, 2016–2022 (2014).

    Article  PubMed  Google Scholar 

  192. Moutairou, K. et al. Epithelial cell migration on small intestinal villi in the neonatal rat. Comparison between [3H] thymidine and cytoplasmic labelling after Pu-citrate ingestion. Biol. Cell 65, 265–269 (1989).

    CAS  PubMed  Google Scholar 

  193. Parker, A. et al. Cell proliferation within small intestinal crypts is the principal driving force for cell migration on villi. FASEB J. 31, 636–649 (2017).

    Article  CAS  PubMed  Google Scholar 

  194. Zhao, Y. et al. A platform for generation of chamber-specific cardiac tissues and disease modeling. Cell 176, 913–927 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Mathur, A. et al. Human iPSC-based cardiac microphysiological system for drug screening applications. Sci. Rep. 5, 8883 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Narang, R. et al. Sensitive, real-time and non-intrusive detection of concentration and growth of pathogenic bacteria using microfluidic-microwave ring resonator biosensor. Sci. Rep. 8, 15807 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Netherlands Organ-on-Chip Initiative (an NWO Gravitation project (024.003.001) funded by the Ministry of Education, Culture and Science of the Government of the Netherlands) and a Novo Nordisk Foundation grant (NNF21CC0073729; reNEW) (the latter to C.L.M.). We thank A. van den Berg, H. Clevers, P. M. Sarro, M. D. Ferrari, C. Wijmenga, S. A. Kushner, A. M. J. M. van den Maagdenberg and J. Gribnau for leadership in the Netherlands Organ-on-Chip Initiative, constructive discussions and creating the collaborative environment that led to this article. We thank M. Zuurmond for the graphical design of Figs. 17.

Author information

Authors and Affiliations

Authors

Contributions

D.M.N., R.M. and C.L.M. coordinated the project. D.M.N., R.M., C.L.M., A.D.v.d.M. and B.J.v.M. conceptualized the manuscript. D.M.N., R.M., H.A., B.L., J.M.S. and M.M. wrote the manuscript. D.M.N., R.M., B.J.v.M., V.V.O., F.M.S.d.V., S.W., M.M., A.D.v.d.M. and C.L.M. reviewed and edited the manuscript. D.M.N., R.M., H.A., B.L., J.M.S. and A.M.-S. conceptualized the figures. A.M.-S. designed the figures. D.M.N., R.M., H.A., B.L., A.M.-S., J.M.S., M.D., J.-P.F., C.G., M.N.S.d.G., M.H., D.G.K., L.S.K., K.T.T.L., S.L., H.H.T.M., J.M., P.M.-R., E.N., C.P.-M., J.P., N.R., J.M.R.-A., J.S., L.M.W., M.Z. and B.J.v.M. performed the literature research and participated in the process of selecting which literature to include.

Corresponding author

Correspondence to Christine L. Mummery.

Ethics declarations

Competing interests

C.L.M. is a co-founder of Ncardia and an advisor to HeartBeat.bio and Sartorius. The other authors declare no competing interests.

Peer review

Peer review information

Nature Biomedical Engineering thanks Wilbur Lam, Milica Radisic, Gordana Vunjak-Novakovic and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Fig. 1, Table 1, discussion and references.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nahon, D.M., Moerkens, R., Aydogmus, H. et al. Standardizing designed and emergent quantitative features in microphysiological systems. Nat. Biomed. Eng 8, 941–962 (2024). https://doi.org/10.1038/s41551-024-01236-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41551-024-01236-0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing