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Macroscopic resting-state brain dynamics 
are best described by linear models

Erfan Nozari    1,2,3, Maxwell A. Bertolero4, Jennifer Stiso    4,5, Lorenzo Caciagli4, 
Eli J. Cornblath    4,5, Xiaosong He    4, Arun S. Mahadevan4, George J. Pappas    6 
& Dani S. Bassett    4,6,7,8,9,10 

It is typically assumed that large networks of neurons exhibit a large 
repertoire of nonlinear behaviours. Here we challenge this assumption  
by leveraging mathematical models derived from measurements of local 
field potentials via intracranial electroencephalography and of whole-brain 
blood-oxygen-level-dependent brain activity via functional magnetic 
resonance imaging. We used state-of-the-art linear and nonlinear  
families of models to describe spontaneous resting-state activity of  
700 participants in the Human Connectome Project and 122 participants in 
the Restoring Active Memory project. We found that linear autoregressive 
models provide the best fit across both data types and three performance 
metrics: predictive power, computational complexity and the extent of the 
residual dynamics unexplained by the model. To explain this observation, 
we show that microscopic nonlinear dynamics can be counteracted or 
masked by four factors associated with macroscopic dynamics: averaging 
over space and over time, which are inherent to aggregated macroscopic 
brain activity, and observation noise and limited data samples, which stem 
from technological limitations. We therefore argue that easier-to-interpret 
linear models can faithfully describe macroscopic brain dynamics during 
resting-state conditions.

Throughout the recent history of neuroscience, computational mod-
els have been developed and used ubiquitously to decompose the 
complex neural mechanisms underlying cognition and behaviour1–5. A 
dilemma that is inherent to computational modelling but particularly 
challenging in computational neuroscience is the trade-off between 
(cross-validated) accuracy and simplicity. Both finely detailed mod-
els6 and broadly simplified ones7,8 have their respective proponents. 
One of the many facets of this trade-off pertains to the use of linear vs 
nonlinear models. Nonlinearity of dynamics is inevitable at the micro-
scale of individual neurons9 and their components10, and has been 

demonstrated, although less comprehensively, at the mesoscale of 
neuronal populations11. Further supported by theoretical derivations12 
and motivated by the much larger repertoire of behaviours of nonlinear 
systems (including chaos, multistability and metastability), an assump-
tion has thus formed13–16 that accurate models of neurodynamics at 
the macroscale (i.e., of brain regions) must inevitably be nonlinear.

This assumption begs the question of whether nonlinear models 
will in fact perform better than linear ones in accounting for the dynam-
ics of neuroimaging and neurophysiological data. Specifically, can 
nonlinear models explain neuroimaging or neurophysiological data 
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external input u(t) is considered due to the resting-state condition of 
the experiments. Also, given that we can only sample y(t) in discrete 
time, we implement equation (1) by approximating the derivative  
̇x(t) as a first difference x(t) − x(t − 1) (see Methods).

The model in equation (1) is ‘linear’ if the functions f and h are 
linear functions, that is, matrix operations of the form f(x) = Ax and 
h(x) = Cx where Am×m and Cn×m are constant (or even time-varying, but 
state-independent) matrices. Throughout the field of computational 
neuroscience, numerous models of the form in equation (1) or its 
discretization (see Methods) are constructed and used, each with dif-
ferent functional forms and noise statistics6,7,9,12,15,22,24. The critical but 
fairly overlooked quest of system identification25 is then to find the 
‘best’ model, among all the available options, against experimental 
data. This comparison indeed depends on one’s measure of a model’s 
goodness of fit.

A natural choice, referred to as the prediction error (PE) approach, 
is based on how well a given model can predict the ‘future’ of the meas-
ured time series from its ‘current and past’ values (Fig. 1c). Note that 
this prediction is precisely what an ODE such as equation (1a) defines: 
it models the ‘change’ ̇x(t), and thus the immediate future, of the sys-
tem’s state (and therefore output) from its current state x(t). Since the 
state x(t) is not directly available, it should in turn be estimated from 
the current and past measurements of the output y(t). Therefore, the 
PE approach in its simplest form seeks to minimize, within any given 
parametric or non-parametric family of models, the magnitude of the 
one-step-ahead PE

εεε(t) = y(t) − ŷ(t|t − 1) (2)

where ŷ(t|t − 1) is the Bayes-optimal, minimum variance estimate of 
y(t) given all of the history {y(0),…,y(t − 1)} of y up to time t − 1 (ref. 25) 
(Fig. 1c). Notably, the PE approach focuses on the prediction accuracy 

more accurately than linear ones? This pragmatic modelling question, 
importantly, is different from the general question of whether any 
signs of ‘nonlinearity’ can be found in neuroimaging time series17–19 
(see Discussion).

Few investigations20–22 have indeed sought to answer the former 
question directly by comparing the ‘fit’ of linear and nonlinear models 
to neurophysiological (electroencephalography, EEG, and intracranial 
electroencephalography, iEEG) time series. However, even these few 
works are limited in that each provides a single comparison between 
a linear and a nonlinear family of models (linear autoregressive (AR) 
vs nonlinear manifold-based model in ref. 20, linear finite-impulse 
response vs nonlinear Volterra series model in ref. 21, and linear state 
space vs nonlinear AR with radial basis function nonlinearities in  
ref. 22), which need not be the best representatives of linear and nonlin-
ear models in general. While the compared linear and nonlinear models 
were found to be as predictive of EEG data in ref. 20 and iEEG data in  
ref. 22, the results were mixed in ref. 21. Using scalp EEG data from 
patients with epilepsy, this paper finds mostly linear dynamics well 
within and outside of seizures, and mostly nonlinear dynamics 
(although varying across patients) in the periods around seizure onsets 
and offsets. While limited in their scope, these works beg for a deep and 
rigorous data-driven investigation into the nonlinearity of macroscopic 
brain dynamics, as pursued herein.

In the second part of the paper, we seek to answer the question 
of why nonlinear models do not provide more accurate predictions 
than linear ones even though neurodynamics are inevitably nonlinear 
at the microscale. Specifically, we numerically demonstrate, using a 
simple sigmoidal nonlinearity, that four properties of macroscopic 
brain dynamics can fundamentally ‘counteract’ or seemingly ‘mask’ 
nonlinear dynamics present at the microscale: averaging over the 
activity of large populations of neurons to obtain a single macroscopic 
time series (averaging over space), natural low-pass-filtering proper-
ties of brain processes (averaging over time), observation noise and 
limited data samples. While the effects of observation noise and limited 
data samples are technology dependent but otherwise independent 
from the form of nonlinearity, the effects of spatiotemporal averaging 
are fundamental to macroscopic neural dynamics and may depend 
on the functional form of the microscale nonlinearity. We thus also 
verify and demonstrate the effects of spatiotemporal averaging using 
a data-driven and biophysically grounded spiking neuron model23. 
Together, our results provide (1) important evidence that linear models 
can be as descriptive as nonlinear ones at the macroscale and (2) a meth-
odology based on system identification theory to quantitatively define 
a ‘best’ model of whole-brain dynamics given a set of specified costs.

Results
System identification and data-driven computational 
modelling
Among the diverse categories of computational models used in neu-
roscience, we focus on ordinary differential equation (ODE) models 
of the general form

̇x(t) = f(x(t)) + e1(t), x(0) = x0 (1a)

y(t) = h(x(t)) + e2(t) (1b)

where y(t) is an n-dimensional time series of recorded brain activity, 
in this case via resting-state functional magnetic resonance imaging 
(fMRI) (rsfMRI) or iEEG (rsiEEG), x(t) is an m-dimensional time series 
of ‘internal’ brain states, f and h are generally nonlinear vector fields, 
and e1(t) and e2(t) are time series of process and measurement noise 
with arbitrary statistics (Fig. 1a,b). It is possible, although not necessary, 
that m = n. As with any differential equation, the description would not 
be complete without the initial condition x(0) = x0, determining the 
state of the brain at the initial recording time t = 0. Note that no 

a

b

c d

Fig. 1 | Prediction error method for system identification. a,b, The general 
category of computational models ℳ  studied in this work, represented by an ODE 
describing the resting-state evolution of internal states x(t) (a) and an output 
model that maps internal states to fMRI/iEEG time series y(t), as shown for fMRI 
(b). A total of nfMRI = 116 regions were used throughout (see Methods) for fMRI, 
while 13 ≤ niEEG ≤ 175 channels were used for each iEEG patient. c, A schematic 
representation of the prediction error system identification framework used in 
this work. At each time t, all of {y(0),…,y(t − 1)} was used to predict y(t) 
simultaneously across all channels, denoted for simplicity by ŷ(t|t− 1). ̄yi denotes 
the temporal average of yi(t) for each channel i. This estimate should not be 
confused with estimates of FC. d, FC measures the covariation between pairs of 
channels or, equivalently, how well each yi(t) (y1(t) in the figure) can be predicted 
from each other yj(t) (y2(t) in the figure), ‘at the same time’ t.
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Fig. 2 | Linear vs nonlinear models of rsfMRI activity. a, The distribution of 
cross-validated regional R2

i , combined across all 116 regions and 700 
participants, for linear (green) and nonlinear (yellow) models. The grey box 
corresponds to the zero model used as a baseline (see Methods for an 
explanation of each model). Negative values of R2 indicate that models have a 
worse prediction performance than a constant predictor that always predicts the 
next value of a signal to be equal to the signal’s mean. Note the higher accuracy of 
the best linear model (‘VAR-3 (sparse)’) compared with all nonlinear ones. b, The 
P value of one-sided Wilcoxon signed-rank test performed between all pairs of 
brain-wise distributions (left) and all pairs of pairwise distributions (right) of R2 in 
a. Warm (cold) colours indicate that the distribution labelled on the row has 
significantly larger (smaller) samples than the distribution labelled on the 
column. Grey hatches indicate non-significant differences at an α = 0.05 with 

Benjamini-Hochberg False Discovery Rate (BH-FDR) correction for multiple 
comparisons. c,d, Similar to a and b but for the statistic Q of the multivariate test 
of whiteness relative to its rejection threshold Qthr (cf. Methods). Smaller Q/Qthr 
indicates whiter (better) residuals, with Q/Qthr ≤ 1 required for the null hypothesis 
of whiteness not to be rejected. e,f, Similar to a and b but for the time that it took 
for the learning and out-of-sample prediction of each model to run, per 
participant per cross-validation (see Methods). In all boxplots, the centre line, 
box limits and whiskers represent the median, upper and lower quartiles, and the 
smallest and largest samples, respectively. VAR, vector autoregressive; HRF, 
haemodynamic response function; NMM, neural mass model; DNN, deep neural 
network; MLP, multilayer perceptron; CNN, convolutional neural network; LSTM, 
long short-term memory; IIR, infinite impulse response; FIR, finite-impulse 
response; MMSE, minimum mean squared error.
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of the time series itself, rather than the prediction accuracy of func-
tional connectivity (Fig. 1d) or other statistics of the time series  
(cf. Discussion and Supplementary Fig. 1). This approach can also be 
easily extended to multistep-ahead predictions (cf. ref. 25 and Sup-
plementary Figs. 20 and 21).

The task of system identification does not end once the parameters 
of a given family of models are fit to the (training) data. The critical 
next step is to assess the quality of the fit, particularly to data withheld 
during the training (cross-validation). In the PE approach, the two most 
widely used measures are the variance and the whiteness of the PE  
(ref. 25), where the former is often measured by

R2
i = 1 −

∑tεi(t)
2

∑t(yi(t) − ̄yi)
2 (3)

and the latter is often assessed via a χ2 test of whiteness (Methods), for 
each channel i = 1,…,n. In equation (3), ε(t) is the same one-step-ahead 
prediction error in equation (2) and ̄yi is the temporal average of yi(t) 
(often equal to zero due to mean centreing) and corresponds to a con-
stant predictor which always predicts y(t) equal to its average ̄y. There-
fore, it is clear that R2

i  is always ≤1 but ‘can be negative’. A value of  
R2
i = 1  indicates a perfect model (for channel/region i), R2

i = 0   
indicates a model as good as the constant predictor, and R2

i < 0   
indicates a model worse than the constant predictor.

Linear models provide maximum prediction accuracy with 
minimum computational complexity
In this work, we fit and compare several families of linear and nonlinear 
models, as described below (see Methods for details). We fit each fam-
ily of models to the data for each participant, thereby finding the opti-
mal model at the global or local level (if the corresponding optimization 
algorithm is convex or non-convex, respectively). We then compare 
the resulting best models in each family in terms of their cross-validated 
fit to held-out data of the same participant (see Methods). The most 
important ground for comparison is the accuracy of their fit, measured 
by R2

i  according to equation (3).
First, consider the results for the fMRI data (Fig. 2a,b). While we 

describe the results obtained using a relatively coarse parcellation here, 
similar results also hold for finely parcellated and unparcellated data 
(cf. Supplementary Figs. 12–14). Overall, linear models that directly fit 
the BOLD time series without (de)convolving with a haemodynamic 
response function (HRF), either with dense or sparse effective con-
nectivity, and with or without higher-order AR lags, achieve the highest 
R2. Among nonlinear models, the manifold-based locally linear model 
achieves a comparable R2. Yet, upon closer inspection of this model, we 
observe that its window size (which is chosen optimally, see Methods 
and Supplementary Fig. 7) is very large, effectively making it a glob-
ally linear model. The lack of nonlinearity becomes even clearer when 
examining the pairwise models. Here we see that a simple linear model 
performs as well as the minimum mean squared error (MMSE) model, 
or even slightly better (Fig. 2b right panel) due to the numerical errors 
of distribution estimation. We thus infer that the former achieves the 
highest prediction accuracy achievable by ‘any’ generally nonlinear 
model, albeit for pairwise prediction.

The second ground for comparison is the whiteness of model 
residuals, also in held-out data, which indicates that all the dynamics 
in the data are captured by the model and have not leaked into the 
residuals (Fig. 2c,d). Here, linear models also score higher than non-
linear models, with autoregressive (AR) models clearly outperforming 
others. However, it is noteworthy that the null hypothesis of whiteness 
is rejected for the residuals of all methods (Q/Qthr > 1), suggesting the 
presence of unexplained variance left by all models. Generally, the 
number of lags and sparsity patterns have little effect on the prediction 
accuracy of linear AR models for rsfMRI data, a positive but weak effect 

on the whiteness of the residual and a negative effect on the computa-
tional complexity (Supplementary Fig. 2). Similar to the comparison 
of R2 values, the only nonlinear model whose whiteness of residuals 
is comparable to the linear ones is the manifold-based locally linear 
model which, as explained above, is effectively linear at the global scale. 
Also as before, the pairwise linear models achieve a degree of whiteness 
that is almost identical to the pairwise MMSE estimator, ensuring their 
optimality among all linear and nonlinear pairwise predictors.

Third and finally, we can compare the models by considering the 
total time that it takes for their learning and prediction (Fig. 2e). When 
comparing the most efficient linear and nonlinear models, we find that 
linear models take at least one order of magnitude less time to fit than 
nonlinear models, as expected. However, linear methods can also be 
extremely complex to learn; linear models with states at the neural 
level (‘Linear with HRF’) require the most time to learn due to their high 
flexibility. Notably, this additional complexity of the ‘Linear with HRF’ 
or nonlinear methods is not counterbalanced by any benefits in their 
accuracy or whiteness of residuals, making the simplest linear models 
the preferred choice across all measures.

Next, we perform the same comparisons between linear and non-
linear models, but now on the basis of their fit to resting-state iEEG field 
potential dynamics (Fig. 3). Similar to rsfMRI data, linear AR models 
provide the best fit to the data in terms of both the magnitude and 
whiteness of their cross-validated prediction error. These models also 
have lower computational complexity than nonlinear ones, with about 
an order of magnitude (or higher) advantage in computation time.

Alongside these similarities between the rsfMRI and rsiEEG data, 
two major distinctions are notable. First, the R2 values are generally 
much higher for iEEG, as evidenced by the R2 distributions of the zero 
model between the two cases. This difference is due to the fact that 
the iEEG time series has a much higher sampling rate and is therefore 
smoother. As a result, even predicting each sample equal to its previous 
sample (that is, the zero model) has a median accuracy of more than 
97% (see Supplementary Figs. 17–19 for a more detailed assessment 
of the effects of sampling rate on models’ R2). This fact only highlights 
the importance of the zero model; without it, the R2 of all models might 
have seemed satisfactorily high. In comparison to the zero model, 
however, it becomes clear that a simple 1-lag linear model, for example, 
has in fact a very low predictive power.

The second major distinction between the two modalities is the 
amount of history and temporal dependency within them. fMRI data are 
almost Markovian, so that y(t − 1) contains almost all the information 
available for the prediction of y(t). Little information is also contained 
in y(t − 2), but almost no information is contained in timepoints further 
in the past (Fig. 2a). When considering iEEG data, in contrast, increas-
ing the number of autoregressive lags up to ∼100 still improves the 
R2, although the exact optimal number of lags varies between data 
segments. In this comparison, it is also important to take into account 
the vast difference in the sampling frequencies between the modalities, 
where 2 lags in the fMRI dataset amount to 1.44 s, while 100 lags of the 
iEEG data sum to only 0.2 s. This greater ‘richness’ of iEEG dynamics 
from a modelling perspective is also responsible, at least in part, for 
the markedly lower whiteness of residuals of all model families with 
respect to fMRI (see Fig. 3c vs Fig. 2c). This greater richness of iEEG is 
also consistent with, although not necessarily a direct consequence of, 
the fact that iEEG data reflect neural signals more directly than fMRI.

The linearizing effects of macroscopic neurodynamics and 
neuroimaging explain the observed linearity
The above results pose the natural question of why nonlinear models 
were not able to capture the dynamics in rsfMRI/rsiEEG data beyond 
linear ones, even though microscopic neuronal dynamics are funda-
mentally nonlinear. Here we focus on four properties of macroscopic 
neurodynamics and neuroimaging, and show that, in principle, they 
either fundamentally counteract or apparently mask nonlinearities. 

http://www.nature.com/natbiomedeng


Nature Biomedical Engineering | Volume 8 | January 2024 | 68–84 72

Article https://doi.org/10.1038/s41551-023-01117-y

a

c

1.00

0.99
100

10–4

10–8

10–12

10–16

<10–20

p

0.98

0.97

0.96

R2
W

hi
te

ne
ss

 s
ta

tis
tic

 (Q
/Q

th
r)

To
ta

l r
un

 ti
m

e 
(s

)

0.95

0.94

0.93

0.92

0.91

0.90

101

10–1

100

104

102

100

10–2

Ze
ro

Li
ne

ar
(d

en
se

)

Li
ne

ar
(s

pa
rs

e)

AR
­1

00
(s

pa
rs

e)

AR
­1

00
(s

ca
la

r)

Su
bs

pa
ce

N
M

M

M
an

ifo
ld

D
N

N
(M

LP
)

D
N

N
(C

N
N

)

LS
TM

(II
R)

LS
TM

(F
IR

)

M
M

SE
(s

ca
la

r)

Linear
(dense)
Linear

(sparse)
AR­100
(sparse)
AR­100
(scalar)

Subspace
NMM

Manifold
DNN
(MLP)
DNN

(CNN)
LSTM
(IIR)

MMSE
(scalar)

LSTM
(FIR)

Linear
(dense)
Linear

(sparse)
AR­100
(sparse)
AR­100
(scalar)

Subspace
NMM

Manifold
DNN
(MLP)
DNN

(CNN)
LSTM
(IIR)

MMSE
(scalar)

LSTM
(FIR)

Linear
(dense)
Linear

(sparse)
AR­100
(sparse)
AR­100
(scalar)

Subspace
NMM

Manifold
DNN
(MLP)
DNN

(CNN)
LSTM
(IIR)

MMSE
(scalar)

LSTM
(FIR)

b

Wilcoxon signed­rank test:

Row > column

Row < column

Not signi�cant

d

e f

100

10–4

10–8

10–12

10–16

<10–20

p
p

100

10–4

10–8

10–12

10–16

<10–20

Ze
ro

LS
TM

(F
IR

)

Ze
ro

Li
ne

ar
(d

en
se

)

Li
ne

ar
(s

pa
rs

e)

AR
­1

00
(s

pa
rs

e)

AR
­1

00
(s

ca
la

r)

Su
bs

pa
ce

N
M

M

M
an

ifo
ld

D
N

N
(M

LP
)

D
N

N
(C

N
N

)

LS
TM

(II
R)

LS
TM

(F
IR

)

M
M

SE
(s

ca
la

r)

Ze
ro

Li
ne

ar
(d

en
se

)

Li
ne

ar
(d

en
se

)

Li
ne

ar
(s

pa
rs

e)

Li
ne

ar
(s

pa
rs

e)

AR
­1

00
(s

pa
rs

e)

AR
­1

00
(s

pa
rs

e)

AR
­1

00
(s

ca
la

r)

AR
­1

00
(s

ca
la

r)

Su
bs

pa
ce

Su
bs

pa
ce

N
M

M

N
M

M

M
an

ifo
ld

M
an

ifo
ld

D
N

N
(M

LP
)

D
N

N
(C

N
N

)

LS
TM

(II
R)

D
N

N
(M

LP
)

D
N

N
(C

N
N

)
LS

TM
(II

R)

LS
TM

(F
IR

)

M
M

SE
(s

ca
la

r)

Ze
ro

LS
TM

(F
IR

)

Li
ne

ar
(d

en
se

)
Li

ne
ar

(s
pa

rs
e)

AR
­1

00
(s

pa
rs

e)
AR

­1
00

(s
ca

la
r)

Su
bs

pa
ce

N
M

M
M

an
ifo

ld
D

N
N

(M
LP

)
D

N
N

(C
N

N
)

LS
TM

(II
R)

Ze
ro

LS
TM

(F
IR

)

Li
ne

ar
(d

en
se

)
Li

ne
ar

(s
pa

rs
e)

AR
­1

00
(s

pa
rs

e)
AR

­1
00

(s
ca

la
r)

Su
bs

pa
ce

N
M

M
M

an
ifo

ld
D

N
N

(M
LP

)
D

N
N

(C
N

N
)

LS
TM

(II
R)

Fig. 3 | Linear vs nonlinear models of rsiEEG activity. Panels and acronyms 
parallel those in Fig. 2. a, The distribution of cross-validated regional R2

i , 
combined across all electrodes (the number of which varies among participants) 
and all the recording sessions of the 122 participants (sample size = 776,484). 
Linear and nonlinear methods are depicted by green and yellow boxes, 
respectively (see Methods for an explanation of each model). Unlike data 
presented in Fig. 2, pairwise linear or pairwise MMSE models are not included 
due to the observation that between-electrode connections decrease the 
cross-validated accuracy of the top model (cf. the 4th and 5th boxplots). In 
contrast, including scalar autoregressive lags is highly beneficial in iEEG, 
whereas it is not so in rsfMRI. Therefore, the MMSE model here is scalar, 
conditioning on the past lags of each region itself. The lower whisker of the 
boxplots are trimmed to allow for better illustration of the interquartile ranges. 

b, The P value of the one-sided Wilcoxon signed-rank test performed between all 
pairs of distributions of R2 in a. Warm (cold) colours indicate that the 
distribution labelled on the row is significantly larger (smaller) than the 
distribution labelled on the column. Grey hatches indicate non-significant 
differences evaluated at α = 0.05 with BH-FDR correction for multiple 
comparisons. c,d, Similar to a and b but for the statistic Q of the multivariate test 
of whiteness relative to its rejection threshold Qthr (cf. Methods). Smaller Q/Qthr 
indicates whiter (better) residuals, with Q/Qthr ≤ 1 required for the null 
hypothesis of whiteness not to be rejected. e,f, Similar to a and b but for the time 
that it took for the learning and out-of-sample prediction of each model. In all 
boxplots, the centre line, box limits and whiskers represent the median, upper 
and lower quartiles, and the smallest and largest samples, respectively.
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Due to its unique position in neural modelling11,12, we will use the sig-
moidal nonlinearity to illustrate these effects; we note, however, that 
the effects are otherwise applicable to other forms of nonlinearity.

The first property that can fundamentally ‘counteract’ micro-
scopic nonlinearities is spatial averaging. Imaging tools that are capable 
of measuring macroscopic brain dynamics detect a signal that reflects 
an average over the activity of hundreds, thousands or even millions 
of neurons. This spatial averaging can weaken, rather quickly, the 
nonlinear relationships in the dynamics of individual units (neurons or 
small-scale neuronal populations) as long as the units are not perfectly 
correlated, and can completely nullify nonlinearities when correlations 
decay with distance (Fig. 4a–c). Note that this distance can be the physi-
cal distance between the units, as assumed here, or in any relevant space 
such as that of neural codes and stimulus preference. The key factor in 
the linearizing effect of spatial averaging is the decay of pairwise cor-
relations between neurons so that not all pairs of neurons in a region 
are highly correlated (a state of blanket global synchrony).

This linearizing effect of spatial averaging is similar to, but differ-
ent from, stochastic linearization (also known as quasi-linearization)26. 
While the latter ‘approximates’ the relationship y = σ(x) using its 
expected slope E[∂y/∂x], spatial averaging as discussed here can 
result in a relationship that is truly linear. Also, the same effect can be 
observed when averaging other forms of nonlinearity than the sigmoid. 
Extended Data Fig. 2 shows the effect of spatial averaging on spiking 
neurons evolving according to the Izhikevic model23. This model has 
completely different nonlinearities than the sigmoid (polynomial 
and discontinuous) and shows a robust nonlinear phenomenon (limit 
cycle). Although more than a few (but still no more than 100–104) neu-
rons are required, spatial averaging still dissolves the nonlinear aspects 
of the dynamics while mostly sparing the linear ones.

The second property capable of completely counteracting 
microscale nonlinearities is temporal averaging. Macroscopic neural 
dynamics are often observed, or even defined, through signals that 
are low-pass-filtered versions of micro- and mesoscale variables. The 
most notable of these is perhaps the BOLD signal captured by fMRI, 
which can be seen as an observation of neural activity passed through 
the low-pass filter of the HRF. Similarly, although to a lesser extent, 
the local field potentials captured by iEEG most strongly reflect the 
aggregate pyramidal post-synaptic currents27, which are themselves 
low-pass-filtered observations of spiking activity through synaptic 
transmission and neuronal membranes’ resistive-capacitive circuit28. 
The effect of low-pass filtering, in essence, is temporal averaging, which 
impacts nonlinearities in a manner that is similar to that of spatial 
averaging (Fig. 4e–f). The parallel of spatial correlations here is the 
autocorrelation function or its frequency-domain representation, 
the power spectral density (PSD). Autocorrelation represents how 
the correlation between adjacent samples of a signal decay with the 
temporal distance between those samples. As expected, the smaller 
the bandwidth of the signal (that is, the faster their PSD decays with 
frequency before low-pass filtering), the weaker the linearizing effect 
of low-pass filtering. As a result, stronger low-pass filtering would also 
be required to completely nullify nonlinear relationships in signals 
with narrower bandwidth (Fig. 4d). The linearizing effect of tempo-
ral averaging also holds for deterministic dynamics, albeit with the 
resulting linear dynamics (post averaging) also being deterministic 
(Extended Data Fig. 3).

A third property that can counteract or mask nonlinearities is 
noise. Although both process noise and observation (scanner or elec-
trode) noise may have linearizing effects, here we focus only on the 
latter. As with any neuroimaging time series, various sources of obser-
vation noise can affect the fMRI/iEEG time series29,30 and, in turn, ‘blur’ 
nonlinear relationships, even if they exist between the underlying 
noise-free BOLD/LFP time series (Fig. 4g,h). In fact, when the power of 
noise reaches the power of the signal (signal to noise ratio (SNR) ≈ 1), 
it can completely mask a nonlinear relationship in the absence of any 

spatial or temporal averaging. In reality, however, the linearizing effect 
of observation noise can combine with spatiotemporal averaging, 
making the 2 ≲ SNR ≲ 14 that we have in rsfMRI data (Supplementary  
Fig. 4) potentially more than enough to mask any remaining nonlineari-
ties post-spatiotemporal averaging. Ironically, the use of linear filtering 
to ‘clean the data’ is more likely to further linearize the dynamics of the 
time series due to temporal averaging effects discussed above, instead 
of recovering nonlinearities lost due to noise (Supplementary Note 1). 
Nonlinear post-processing steps, on the other hand, may leave their 
own potentially nonlinear signatures in the data, but such signatures 
should not be confused with true nonlinear relationships in the origi-
nal BOLD/LFP signal. Further, although we let the noise in Fig. 4g,h be 
independent of the signal, as is typically the case for measurement 
noise, this linearizing effect would still hold if the noise is linearly 
dependent on the signal.

The fourth and final property that we discuss is the number of sam-
ples required for detecting nonlinear relationships in large dimensions. 
Let us assume, despite our discussion so far, that a perfect noise-free 
nonlinear relationship exists between n-dimensional fMRI or iEEG 
time series and a noise-free sensor can capture it perfectly. When only 
N ≈ 1,000 data points are available, we find that the manifold-based 
predictor, which was our most predictive nonlinear method both for 
fMRI and iEEG, is still unable to predict the nonlinear relationship bet-
ter than a linear model in n ≈ 40 dimensions or higher (Fig. 4i,j). This 
loss in the predictive power of this nonlinear predictor with increas-
ing dimensionality can be easily seen from the fact that the smallest 
mesh, having two points per dimension, requires an exponentially 
large N = 2n data points. Indeed, incorporating structural bias into the 
learning algorithm can arbitrarily reduce this sample complexity ‘if’ the 
incorporated bias is consistent with the underlying data31 (for example, 
if one looks for relationships of the form y = σ(x1 + ⋯ + xn) in Fig. 4i,j). 
However, using predictors with structural bias can also be arbitrarily 
misleading if their form of nonlinearity is not consistent with the given 
data32, which is one potential reason for the lower performance of most 
nonlinear methods in Figs. 2 and 3. This discussion also makes it clear 
that the inability of our nonlinear system identification methods to out-
perform linear ones in Figs. 2 and 3 over the entire brain is not a proof 
that no nonlinear method can possibly do so. We can, nevertheless, be 
certain about this for pairwise or scalar AR models (for fMRI and iEEG, 
respectively) where the optimal MMSE predictor was computable and 
performed as well as a linear one.

In conclusion, the process of averaging over space, the process of 
averaging over time, the existence of observation noise and the acquisi-
tion of limited data are each characteristic of macroscale brain dynam-
ics or neuroimaging measurements and can transform microscopically 
nonlinear dynamics into macroscopically linear ones. In reality, their 
effects are probably all combined, rendering the optimality of linear 
models in our comparisons not as unexpected as it might originally 
seem. This linearity has major implications for computational neuro-
science, as we discuss next.

Discussion
Summary
In this work, we set out to test the hypothesis that macroscopic neu-
ral dynamics are nonlinear, and using linear models for them results 
in an inevitable loss of accuracy in exchange for simplicity. We thus 
compared linear and nonlinear models in terms of how well they can 
predict rsfMRI and rsiEEG data in a cross-validated PE system identifi-
cation framework, where the quality of each model’s fit was assessed 
by the variance and whiteness of its PE (residual). We found that linear 
models, and AR models in particular, achieve the lowest PE variance 
and highest PE whiteness, outperforming neural mass models (NMMs), 
deep neural networks (DNNs), manifold-based models and the optimal 
MMSE predictors. In the case of fMRI data, we further verified that the 
higher predictive power of AR models holds not only in aggregate but 
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also in a strong majority of individual regions across the brain (Extended 
Data Fig. 4a). Interestingly, the spatial (regional) distribution of the 
R2 of the best model also shows significant differences across estab-
lished cortical functional networks, a remarkably lower predictability 

of subcortical regions relative to cortical ones and a close alignment 
between most methods (all except for ‘Linear with HRF’) (Extended 
Data Fig. 4b–d). This distinction in predictability highlights significant 
differences in how spatio-temporally correlated the fMRI time series 
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Fig. 4 | The linearizing properties of macroscopic brain dynamics and of 
neuroimaging measurements. a, The effect of spatial averaging. For each panel, 
Nave pairs of signals xi(t), t = 1,…,2,000 were randomly and independently 
generated, yi(t) = tanh(xi(t)) was calculated, and their averages 〈xi〉 and 〈yi〉 were 
computed. The quantities 〈xi〉 and 〈yi〉 possess a linear relationship as Nave ≈ 5 or 
higher. b, The cross-validated R2 of the optimal nonlinear (MMSE) and linear 
predictors for the 〈xi〉–〈yi〉 relationships in a. c, The effect of spatial correlation on 
spatial averaging. Here we assign (xi(t),yi(t)) pairs to spatial locations in a unit 
sphere (left) and make each xi(t) and xj(t) correlated in a manner that depends on 
their spatial distance (middle). The difference between nonlinear and linear R2 
always decays with Nave and vanishes if the correlation decays, even slowly, with 
distance (right). d, The effect of temporal averaging. One pair of 
x(t), y(t) = tanh(x(t)) was generated, independently over time and passed 
through a Gaussian low-pass filter (LPF) with a cut-off frequency fcut-off that is 
normalized to the Nyquist frequency; thus, fcut-off = 1 means no LPF. e, Same as b 
but for the LPF{x}–LPF{y} relationships in d. f, Similar to c but for temporal 
averaging. We varied the PSD decay rate of x(t) (left) and then low-pass filtered 
x(t) and y(t) = tanh(x(t)) as in d. The difference between the optimal linear and 

nonlinear R2 eventually vanishes as fcut-off decreases, but it happens at smaller fcut-off 
for larger decay rates p (right). g, The effect of observation SNR. The quantities 
x(t) and and y(t) = tanh(x(t)) are as in d and their additive noises were generated 
independently. h, Same as e but for the (x + noise) − (y + noise) relationships 
shown in g. i, The effect of dimensionality. The values x1(t),…,xn(t) were generated 
as in a but here y(t) = tanh(x1(t)…+xn(t)) generates a one-dimensional nonlinearity 
in n + 1 dimensions. No noise is included; no spatial or temporal averaging is 
applied. j, Right: similar to b, e and h except that a manifold-based (locally linear) 
nonlinear predictor was used since the conditional density estimation required 
for MMSE loses accuracy in high dimensions with a fixed number of data points 
(see Methods). Left: the optimal window size of the manifold-based predictor as a 
function of dimension n. As n increases, the locally linear predictor automatically 
chooses larger windows to be able to make reliable predictions, thereby 
effectively degrading to a globally linear predictor (see also Supplementary  
Fig. 1). In all boxplots, the centre point, box limits and whiskers represent the 
median, upper and lower quartiles, and the smallest and largest samples, 
respectively. Error bars in c, f and j represent 1 s.e.m.
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of different regions are, while the mechanistic physiological and tech-
nological reasons behind this distinction remain a warranted avenue 
for future research.

To further understand the possible causes of the optimality of 
linear models, we analysed the effects of common elements of mac-
roscopic neural dynamics: averaging over space and time, observa-
tion noise and limited data samples. We showed that they can each 
counteract or mask the nonlinearities present at smaller scales. These 
linearizing effects add up when combined, suggesting that linear mod-
els provide a useful choice for macroscopic neural dynamics at rest; of 
course, in certain experimental conditions, rigorous system identifica-
tion methods might still uncover nonlinear dynamics in future studies.

The observed optimality of linear models for the resting state is 
accompanied by both challenges and opportunities. Having a linear 
model for neuroscience investigations is computationally ideal, given 
the extent to which the behaviour of linear systems and their response 
to stimuli are mapped out. Nevertheless, to what extent these linearly 
interacting macroscopic signals are informative of and have a causal 
influence on the underlying microscopic activity remains unclear and 
represents an invaluable area for future investigation. Our observa-
tions also warrant the exploration and development of both linear 
and nonlinear models of macroscopic neural dynamics beyond those 
tested here and available in the literature.

Connections to previous literature
It is important to distinguish the pragmatic modelling question that 
drove our analysis from the rather philosophical question of whether 
any signs of ‘nonlinearity’ can be found in neuroimaging time series. 
The latter question has been extensively investigated17–19,33 and often 
uses determinism or chaos as a proxy for nonlinearity. To answer our 
distinct modelling question, we used a system identification approach 
that allows for a direct, side-by-side comparison of linear and nonlinear 
models. In contrast, the aforementioned studies often resorted to indi-
rect, surrogate-based comparisons that rely on strong (and debated) 
assumptions about the constructed surrogates34. Also related to, but 
different from, our work are studies that seek to determine whether the 
end-to-end input–output mapping between stimuli and neuroimaging 
signals (EEG or BOLD) (refs. 35,36) or between functional connectivity 
and individual phenotypes37,38 is (highly) nonlinear. Our focus here, 
however, is on the nonlinearity of the internal network dynamics of 
the brain. Finally, past studies have also examined the performance of 
linear models per se in fitting neuroimaging time series (for example, 
ref. 39) but without a comparison to nonlinear models.

Our analysis of the linearizing effect of spatial correlation is also 
related to the large body of work investigating the effect of spatial 
correlations on the information content and decoding accuracy of 
neural population codes (see for example, ref. 40). As expected, the 
stronger the correlation between neurons, the weaker the linearizing 
effects of spatial averaging. However, nonlinearities can in principle 
have two opposing effects on the neural code. On the one hand, nonlin-
earities can substantially increase the computational complexity and 
expressivity of a neural network, making correlations beneficial for the 
neuronal encoding. On the other hand, if the expressivity is too high, 
the decodability of one neural population by another may decrease, 
potentially making the linearizing effects of low correlations favour-
able. Determining which effect dominates and whether an optimal 
point exists at the levels of neural correlation observed remain areas 
of future research in vivo.

Results and implications
The implications of the linearity of brain dynamics are far-reaching. Lin-
ear systems fundamentally have a more limited repertoire of dynamic 
behaviours than nonlinear ones, excluding the possibility of multista-
bility, chaos, limit cycles or cross-frequency coupling, to name a few41. 
When driven by noise, linear systems act as linear filters that shape 

the power spectrum of their output (here, fMRI or iEEG time series) 
through their frequency response, essentially amplifying the frequency 
content near their resonance frequencies and dampening it elsewhere. 
Importantly, this effect of shaping the power spectrum of linear systems 
acts independently over different frequencies; in contrast, nonlinear 
systems can drive arbitrarily complex cross-frequency interactions42.

The linearity of brain dynamics has even greater implications 
for network control43,44. The design and analysis of optimal, robust, 
adaptive and many other forms of control are much better understood 
in the context of linear systems than nonlinear ones. This contrast in 
tractability only grows for large-scale systems such as the brain, thus 
motivating the recent surge of interest and advancements in using lin-
ear control theory in neuroscience45–47. Nonlinear models also present 
additional challenges beyond network control, including analytical and 
mechanistic understanding of their functionality, obtaining provable 
guarantees on their performance and even hardware requirements for 
their use in chronic implantable devices. In this context, the present 
work shows that the favourable tractability and simplicity of linear 
models do not necessarily come at the often-presumed cost of model 
inaccuracy and also provide the necessary tools for identifying the 
most accurate models for any datasets of interest.

In the analysis of fMRI data, we found that incorporating an HRF 
component in the model, instead of modelling the dynamics directly 
at the BOLD level, results in a loss of accuracy in linear models (see 
‘Linear (sparse)’ vs ‘Linear with HRF’), and is almost ineffective in non-
linear models (see ‘NMM’ vs ‘NMM with HRF’). It was also in light of this 
observation that we did not include an HRF component in the majority 
of our models, such as the DNN or the manifold-based models. This lack 
of advantage of an explicit HRF component (within the specific context 
of modelling resting-state fMRI dynamics using ODEs) is understand-
able on a number of grounds. First, to include an HRF component in 
the model, one should either learn the HRF from the data, such as in 
our ‘linear with HRF’ model, which creates marked model flexibility and 
therefore increases the likelihood of overfitting, or use a typical HRF, 
such as in our ‘NMM with HRF’ model, which is a source of additional 
error. Second, by including the HRF in the model, we ultimately seek 
to recover neural information that is lost through the HRF. This task is 
difficult, if not impossible, without a high signal-to-noise ratio as well 
as more accurate HRF models than those currently available. Finally, a 
linear autoregressive model can automatically capture a linear approxi-
mation of the HRF dynamics48, precisely as present in the observed time 
series. Ultimately, our results encourage a side-by-side comparison of 
models with and without the inclusion of an HRF component to assess 
the costs and benefits of such inclusion for any datasets of interest.

A very similar argument also applies to including coloured noise 
in the model, both for fMRI and iEEG. Even though the so-called ‘noise 
floor’ in neural signals over which neural oscillations are detected49 
has a clear power-law (1/f) PSD, its decay can be well modelled by white 
noise passing through a linear filter. This property of the 1/f noise is 
in fact why the AR models, which assume a white noise signal e(t), 
have prediction errors that are maximally white. This latter fact can 
be directly seen from Figs. 2c and 3c, when noting that any model’s 
prediction errors are, by construction, the model’s estimate of the 
noise e(t) (ref. 25).

In addition to considering linear and nonlinear models, we under-
score the importance of the zero model. It is not uncommon in the mod-
elling literature to assess the quality of a fitted model per se, without 
any grounds for comparison. For instance, our DNN multilayer percep-
tron ‘DNN (MLP)’ model for fMRI had a median R2 of ∼14% and for some 
participants it had a median R2 (among all regions) of over 50%. Even 
more notably, the ‘DNN (MLP)’ model for iEEG had a median R2 of over 
97%. Without any comparisons, these numbers may suggest that the 
‘DNN (MLP)’ models are quite accurate; yet, as seen in Figs. 2b and 3b,  
the predictive accuracy of these models is in fact lower than that of the 
zero model in fMRI and indistinguishable from that of the zero model in 
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iEEG. The act of comparing to a baseline model is therefore an essential 
step in the assessment of any model’s goodness of fit.

We restricted our analyses here in the main text to certain spati-
otemporal resolutions for both fMRI (a coarse parcellation) and iEEG 
(a high sampling rate), naturally raising the question of how robust our 
findings are to our choices of resolutions. As shown in Supplementary 
Figs. 12–19, our main finding (higher predictive power of linear autore-
gressive models over all other model families) holds across all resolu-
tions tested. We do, however, observe certain differences between 
resolutions. In iEEG data, we observe that using lower sampling rates 
(and therefore longer time intervals) increases the benefit of model-
ling network interactions, even while lowering the R2 values across all 
models. In fMRI data, we interestingly see that as we move towards more 
fine-grained parcellations and ultimately unparcellated data, (1) the 
simpler ‘Linear (sparse)’ model with less parameters gains advantage 
over the more populated ‘VAR-3 (sparse)’ model and (2) the overall R2 
values of all models are reduced, potentially due to the improvement in 
signal-to-noise ratio resulting from averaging in coarser parcellations.

Methodological considerations
Despite the solid theoretical foundations of the PE method for system 
identification, our results may still beg a practical question: would the 
same system identification and side-by-side comparison procedure 
be able to identify nonlinear dynamics, should they actually exist in 
the time series? A direct answer to this question can be given, for exam-
ple, by applying the same procedure to simulated time series generated 
from a nonlinear model whose ground-truth functional form we know. 
The result of such an analysis is provided directly in Extended Data 
Figs. 2 and 3 but also indirectly in Fig. 4. Note that in the latter, we com-
pared the cross-validated predictive power of linear and nonlinear 
(MMSE or manifold-based) models in identifying the sigmoidal rela-
tionship y = σ(x) and its variants after averaging or noise addition. This 
relationship can be equally viewed as a nonlinear dynamical system 
̇x = σ(x), the nonlinearity of which was only identified until counter-

acted or masked by the four macroscopic effects we discussed therein.
In Supplementary Fig. 9, we take this validation one step further 

and compare the ‘DNN (MLP)’ model with linear autoregressive and sub-
space models while also tuning their respective hyperparameters using 
simulated data from the Izhikevic model and the same stochastic gra-
dient descent (SGD) algorithm used for hyperparameter tuning in the 
main results. The resulting higher predictive performance of the ‘DNN 
(MLP)’ model is another testament to the validity of the end-to-end 
process we used for model training and comparison. Note also that 
the amount of improvement that nonlinear models can offer over 
linear ones can vary widely on the basis of the true underlying dynam-
ics and the ability of either model to capture them. In Supplementary  
Fig. 10, for example, we show a similar side-by-side comparison 
between the ‘DNN (MLP)’ and ‘Linear (dense)’ models on one of the 
simplest nonlinear systems exhibiting a nonlinear behaviour (chaos in 
this case). Despite the extreme simplicity of the true underlying model, 
the neural network can achieve near-perfect accuracy with only one 
hidden layer and 10 hidden units, while the linear model can achieve 
∼50% R2. Finally, we also trained both the parameters and hyperpa-
rameters of the ‘DNN (MLP)’ model on fMRI data while replacing its 
rectified linear unit (ReLU) activation functions with linear ones using 
the same codes and routines used for the actual ‘DNN (MLP)’ model. As 
seen from Supplementary Fig. 11, the resulting model achieves indistin-
guishable R2 distributions from the (theoretically equivalent) ‘Linear 
(dense)’ model, except for implementation differences between our 
hard-coded linear regression solver and that provided by MATLAB’s 
‘trainNetwork’ function.

As for the comparison of linear and nonlinear models, one might 
expect nonlinear models to perform at least as well as linear ones, but 
not worse, given that the space of nonlinear models includes all linear 
models as a special case. In our comparison, however, we saw that 

most of our nonlinear methods actually have a worse prediction per-
formance than linear ones. This behaviour can be understood in light 
of at least two facts. First, many nonlinear models, such as NMMs, do 
not include linear models as a special case and have structural biases 
that can be a source of error if not consistent with the data32. Second, 
even nonlinear models that do not have structural biases and/or contain 
linear models as a special case, such as DNN, MMSE or manifold-based 
models, still have a marked flexibility relative to a linear model. This 
immense flexibility makes the training of these models and finding 
their global optimum challenging. As a result, training algorithms are 
quite likely to return suboptimal models which, in this case, show worse 
accuracy and generalization than their linear special cases.

A further noteworthy aspect of our study specifically, and the 
prediction error framework more generally, is the focus on fitting 
the time series rather than its derivative statistics, such as the func-
tional connectivity (FC) (refs. 50–52) or power spectral density53. 
While the choice of one approach over the other ultimately depends 
upon the anticipated use of the learned model, it is important to 
note that the mapping from dynamical systems to FC (or any other 
such statistic) is not a one-to-one mapping54. In fact, linear systems 
of the form y(t) − y(t − 1) = Wy(t − 1) + e(t) with completely differ-
ent W matrices can give rise to almost identical FC matrices (see 
Extended Data Fig. 1). Therefore, when considering the accuracy of 
a general-purpose model of the brain, the time series contains the 
maximum amount of information and thus provides the best target  
for model fitting.

One modelling approach that we did not employ in this study is 
dynamic causal modelling (DCM, ref. 55). The reason is that none of 
the current variants of DCM are feasible due to their computational 
complexity at the scale of our analysis: whole-brain fMRI with n = 116 
parcellations or large-scale iEEG with up to 175 and a median of 98 
electrodes. The most efficient variant, spectral DCM for fMRI, for 
instance, is applicable to ∼30–40 nodes, whereas stochastic DCM  
(the most relevant to our study) is only applicable to much smaller 
systems. However, in light of our results thus far, the great compu-
tational complexity of the DCM approach and thus its potential for 
overfitting, we would not expect its cross-validated R2 to reach that of 
a linear model, although this comparison remains unknown at present.

In this work, we demonstrated four properties of macroscopic 
neurodynamics that can counteract or mask microscopic nonlinearity. 
In doing so, we purposefully kept the discussion at a conceptual level 
and generally abstained from tying it to specific micro- or mesoscopic 
neural models, as doing so would require building on assumptions that 
our study explicitly seeks to avoid. For instance, it is currently unclear 
whether and to what extent the dynamics of the ‘mesoscopic’ local field 
potentials or population firing rates that seem to be the main neural 
drivers of fMRI or iEEG are nonlinear and, if so, what the precise form 
of their nonlinearity is at each brain region. A warranted avenue for 
future research would be the re-analysis of the effects of spatial and 
temporal averaging, observation noise and limited data samples on 
precise, data-driven models of mesoscopic brain dynamics, should 
they possess nonlinear interactions.

Limitations
Finally, we highlight some of the limitations of the present study. First, 
it is important to note that the space of all nonlinear models in tens 
to hundreds of dimensions is intractably large, and the fact that our 
tested nonlinear models did not outperform linear ones is not a proof 
that no nonlinear model may ever do so.

In particular, some nonlinear models (for example, ‘DNN (MLP)’) 
have the capacity to implement the ‘Zero’ or even linear AR models 
as a special case (for example, by setting the output weights of the 
‘DNN (MLP)’ model to zero to replicate the ‘Zero’ model or to adjust its 
weights and biases so that all ReLU activation functions operate in their 
linear range to replicate the ‘Linear (dense)’ model). Therefore, despite 
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our best efforts in training these models and validating our train-
ing algorithms in alternative simulated settings (cf. Supplementary  
Figs. 7–9), the fact that their predictive power does not reach the perfor-
mance of the zero/linear models in some datasets suggests suboptimal 
parameter and/or hyperparameter fitting due, for example, to local 
minima or a lack of enough training data. Therefore, we should high-
light that our achieved predictive power for those nonlinear methods 
does not necessarily reflect their best performance and it is possible 
that future work with more training data and/or alternative optimiza-
tion approaches may get better results from these nonlinear models 
that match or outperform linear models in iEEG/fMRI.

Our work thus seeks to provide rigorous evidence and methodol-
ogy towards resolving the linear vs nonlinear modelling dilemma in 
computational neuroscience, rather than a final resolution thereof. 
Hybrid models consisting of various combinations of different non-
linear structures (LSTMs and CNNs, for example) may have substantial 
potential for obtaining more accurate nonlinear models and warrant 
future research. We can be confident, nevertheless, about the optimal-
ity of linear models at the pairwise level for fMRI or scalar AR level for 
iEEG given the equal or higher prediction power of linear regression 
relative to the optimal MMSE predictor. Moreover, our modelling 
framework is currently only applicable to resting-state dynamics with 
no inputs and has been tested on the two modalities of fMRI and iEEG. 
Inclusion of input signals for system identification of task fMRI/iEEG 
data requires accurate data-driven ‘input models’ of how experimental 
stimuli, as well as participants’ voluntary responses, influence the BOLD 
or LFP signals in each brain region and is a highly warranted avenue 
for future research56,57. Under intensive task conditions, moreover, it 
is more likely, or perhaps certain, to observe nonlinearities at least in 
the form of saturation effects in the BOLD/LFP signal. However, the 
precise form and extent of this nonlinearity need to be determined 
using rigorous system identification routines.

In conclusion, our work sought to ask the often-unasked ques-
tion of whether the brain is macroscopically linear. Our findings show 
that simple linear models explain the rsfMRI and rsiEEG data as well 
as, or even better than, an array of nonlinear ones, thus challenging 
the commonly held yet untested assumption of higher accuracy of 
nonlinear models. However, the costs and benefits of nonlinear models 
are ultimately case-specific. Therefore, instead of offering a universal 
recommendation on the preferable choices for the modelling of neural 
dynamics, we rather provide the groundwork for rigorous investiga-
tion and informed decision-making in the context of rsfMRI/rsiEEG. 
When feasible, following a similar system identification routine is 
always recommended for computational modelling of any datasets 
of interest to ensure the optimal fit of the models used for subsequent 
analysis or design.

Methods
Data and preprocessing
For the fMRI analysis, we used ICA-FIX resting-state data from the S1200 
Human Connectome Project (HCP) release58,59. The HCP experiments 
were carried out by the WU-Minn consortium and its adherence to 
ethical standards was approved by the Internal Review Board of the 
respective institutions. Explicit informed consent was acquired from 
all participants involved in the study. rsfMRI images were collected 
with the following parameters: TR = 20 ms, TE = 33.1 ms, flip angle = 52°, 
FOV = 208 × 108 mm, matrix = 104 × 90, slice thickness = 2.0 mm, num-
ber of slices = 72 (2.0 mm isotropic), multifactor band = 8 and echo 
spacing = 0.58 ms. Brains were normalized to fslr32k via the MSM-AII 
registration and global signal was removed. No bandpass filtering was 
performed (see Supplementary Note 1). Finally, we removed partici-
pants from further analysis if any of their four resting-state scans had 
excessively large head motion, defined by having frames with >0.2 mm 
frame-wise displacement or a derivative root mean square above 75. 
Also, participants listed in ref. 60 under ‘3T Functional Preprocessing 

Error of all 3T RL fMRI runs in 25 Subjects’ or ‘Subjects without Field 
Maps for Structural scans’ were removed, leaving a total of 700 partici-
pants that were used for all the analyses. We parcellated the brain into 
100 cortical regions (Schaefer 100 × 7 atlas61) and 16 subcortical ones 
(Melbourne Scale I atlas62).

For iEEG preprocessing, raw data from the Restoring Active Mem-
ory (RAM) dataset we have previously published63–65 were segmented 
into task-free epochs from either before or after task completion that 
were at least 5 min in length. This process resulted in a total of 283 
recordings from 122 participants. Data were then downsampled to 
the lowest sampling rate used across recording sites (500 Hz). Elec-
tric line noise and its harmonics at 60, 120 and 180 Hz were filtered 
out using a zero-phase distortion 4th order stop-band Butterworth 
filter with a 1 Hz width. This procedure was implemented using the 
‘butter()’ and ‘filtfilt()’ functions in MATLAB. We then rejected noisy 
channels that were either (1) marked as noisy in the RAM dataset notes,  
(2) had a line length greater than three times the mean, (3) had z-scored 
kurtosis >1.5 or (4) had a z-scored power spectral density dissimilarity 
measure >1.5. The dissimilarity measure used was the average of one 
minus the Spearman’s rank correlation with all channels. Data were 
then demeaned and detrended. Channels were grouped according to 
whether they were grid or depth electrodes and then common aver-
age referenced within each group. Following the common average 
referencing step, plots of raw data and power spectral densities were 
visually inspected by an expert researcher with 6 yr of experience 
working with electrocorticography data to ensure that data were 
relatively clean.

Finally, while the aforementioned channel removal criteria are 
consistent with the standard practice in iEEG preprocessing (where 
we remove channels with exceptional line length, kurtosis and power 
spectral densities to target high-frequency noise and ictal activity66,67, 
electrode drift and ictal spikes68–70, or line noise and flat power spectral 
densities65,71, respectively) and they are essential from a data quality 
perspective, see also Supplementary Fig. 22. Here we reproduced our 
main finding of the higher predictive power of linear models on data 
without channel removal as a validation that channel removal had 
not confounded our finding by potentially providing an edge for the 
linear models.

Computing and run-time calculations
All the computations whose run times were measured and reported in 
Figs. 2e and 3e were performed on the CUBIC cluster at the University 
of Pennsylvania, using a 1 CPU core and 16 or 64 GB of memory per 
fMRI or iEEG computing jobs, respectively. For each method, fMRI 
participant/iEEG segment and cross-validation fold, one training time, 
one test time and one total time were computed, where the latter is 
simply the sum of the former two. Note that for the ‘Zero’, ‘Manifold’ 
and ‘MMSE’ models, no training time could be defined. This should 
be clear for the ‘Zero’ model, but it was also the case for the ‘Manifold’ 
and the ‘MMSE’ models due to their ‘model on demand’ nature, that is, 
that all training data were directly used in computing the prediction 
of each test point, instead of the usual process of learning one model 
from the training data and then using that model for test predictions. 
Therefore, the training time was set to zero for these models. For the 
remaining models, the training time equalled the CPU time taken for 
all the computations, from the point when data had been broken into 
training and test sets until the point when the model was learned. The 
test time, well-defined and non-zero for all the methods, started imme-
diately after the end of the training period and ran until the point when 
the output time series (one-step-ahead predictions) were computed. 
Note that computations of the R2 and whiteness statistics were optional 
post-hoc analyses and were done in the same way for all methods, hence 
were not included in any of these run-time calculations. A breakdown 
of the run time into separate training and test times is also shown in 
Supplementary Figs. 5 and 6.
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Linear and nonlinear families of models
A complete list of the models used in this study are provided in Sup-
plementary Table 1. For all models, the continuous-time dynamics in 
equation (1) was first discretized. With a slight abuse of notation, we 
also represent the discretized dynamics as

x(t) − x(t − 1) = f(x(t − 1)) + e1(t), (4a)

x(0) = x0, t = 1,… ,N

y(t) = h(x(t)) + e2(t), t = 0,… ,N
(4b)

where the time index t is now an integer, for simplicity of notation, but 
the discretization step size is always equal to 720 ms for the HCP data 
(equivalent to 1 TR) and 2 ms for the RAM data. This choice means that, 
for example, the map f in equation (4a) equals 1 time step multiplied by 
the map f in equation (1a), and T = 864 s in equation (1a) corresponds 
to N = 1,200 in equation (4a) for the fMRI data. Recall that in this gen-
eral form, the noise signals e1(t) and e2(t) can have arbitrary statistics, 
including white or coloured PSD. We then learned the dynamics in equa-
tion (4) using the following families of models. The hyperparameters 
used for each model are listed in Supplementary Table 1 (see ‘Hyperpa-
rameter selection’ below and Supplementary Figs. 7 and 8 for details).

Linear models with states at the BOLD/LFP level (‘Linear (dense)’, 
‘Linear (sparse)’). This model is our simplest. In it, we let y(t) = x(t), 
modelling the dynamics directly at the BOLD/LFP level. This also allows 
for combining the noise signals e1(t) and e2(t) into a single noise signal 
e(t), which was then taken to be white. These simplify equation (4) to

y(t) − y(t − 1) = f(y(t − 1)) + e(t). (5)

If we further let f(y(t)) = Wy(t) be linear, then we get

y(t) − y(t − 1) = Wy(t − 1) + e(t) (6)

where W is an n-by-n matrix of effective connectivity between brain 
regions. We fit and compared this model both when W is dense and 
when it is sparse. The latter was motivated by the facts that (1) from 
a mechanistic perspective, an important property of brain networks 
and other large-scale complex networks is their sparsity; and (2) from 
a machine learning perspective, regularization and reducing the num-
ber of free parameters in a model can prevent overfitting and improve 
generalization. To promote sparsity, we used standard 1-norm (LASSO) 
regularization with a λ hyperparameter that is tuned separately for 
fMRI and iEEG.

Linear AR models (‘AR-2 (sparse)’, ‘VAR-2 (sparse)’, ‘AR-3 (sparse)’, 
‘VAR-3 (sparse)’, ‘AR-100 (sparse)’, ‘AR-100 (scalar)’). Motivated by 
the long history of AR models in neuroscience24,72,73, here we extend 
equation (6) to

y(t) − y(t − 1) = Wy(t − 1) + D2y(t − 2)

+D3y(t − 3) +⋯

+Ddy(t − d) + e(t)

(7)

for an ‘AR-d’ model. The number of lags d was tuned separately for 
fMRI and iEEG, and the matrix W is either made sparse using LASSO 
or enforced to be diagonal. Note that the latter results in n scalar AR 
models at each node, which are completely decoupled from each other. 
We restricted the matrices D2, D3,… to be diagonal in ‘AR’ models but not 
so in full vector autoregressive (‘VAR’) models. In both cases, we used 
LASSO regularization to promote sparsity in the regressors, signified 
by the ‘(sparse)’ suffix in method identifiers, with the regularization 
hyperparameter λ chosen optimally and separately for each model 

(cf. ‘Hyperparameter selection’ below). In general, we found that λ is a 
moderately sensitive parameter, more so for the whiteness of residuals 
than for R2 (see Supplementary Fig. 3 for an example).

Linear models with states at the neural level (‘Linear with HRF’, 
only applicable to fMRI data). A standard step in the computational 
modelling of fMRI dynamics is to incorporate a model of the HRF and 
to separate the underlying neuronal variables from the observed BOLD 
signals. In this family of models, we thus separated the states x from 
the outputs y while keeping a one-to-one relationship between the two 
(m = n). We then let the latter be a filtered version of the former through 
the HRF. For generality and given the natural and important variability 
of HRF across the brain74,75, we allowed the HRF to vary regionally and 
learned it from the data for all regions in addition to the effective con-
nectivity matrix W. Furthermore, for the sake of generality, we allowed 
both e1(t) and e2(t) to be coloured, with power spectral densities that 
could also be different between regions and were learned from data. 
Note that this choice included, as a special case, white e1(t) and e2(t). 
The result was a highly flexible linear model given by

x(t) − x(t − 1) = Wx(t − 1) + 𝒢𝒢1(q)ê1(t) (8a)

y(t) = ℋ(q)x(t) + 𝒢𝒢2(q)ê2(t)

ℋ(q) =
nh
∑
p=1

diag(H∶,p)q−p
(8b)

ℱ1(q) = I − 𝒢𝒢−11 (q) =
nϕ

∑
p=1

diag(Φ∶,p)q−p (8c)

ℱ2(q) = I − 𝒢𝒢−12 (q) =
nψ

∑
p=1

diag(Ψ∶,p)q−p (8d)

Since LASSO regression produced the best results in our BOLD-level 
linear models, we used LASSO (with the regularization weight λ) to 
promote sparsity in here. ℋ(q) is a diagonal matrix whose (i, i) entry is 
a linear finite-impulse response (FIR) approximation of the HRF in 
region i, parameterized as in equation (8b) (q−1 is the standard delay 
operator, such that q−1x(t) = x(t − 1), see ref. 25). Similarly, 𝒢𝒢1 and 𝒢𝒢2 are 
diagonal filters, parameterized by the inverse FIR forms in  
equations (8c) and (8d). The matrices Hn×nh, Φn×nϕ and Ψn×nψ  included 
learnable FIR parameters of ℋ(q), 𝒢𝒢−11 (q)  and 𝒢𝒢−12 (q) , respectively.  
Since the state vector x(t) was not measured, we learned this model by 
iterating between state estimation and parameter estimation in an 
expectation-maximization (EM)-like manner. Note that the presence 
of filters increases the effective state dimension of the system to 
nmax{nϕ + 1,nh + nψ}, considerably increasing the computational com-
plexity of the state estimation step. The final model was taken from the 
EM iteration with the highest (training) R2.

Linear models with abstract data-driven states (‘Subspace’). The 
previous model, despite and because of its extreme generality and 
flexibility, has a very large state dimension and is extremely difficult 
to fit. If we forgo the physiological interpretability of the states, then 
simpler and lower-dimensional models of the form

x(t) − x(t − 1) = Wx(t − 1) + e1(t)

y(t) = Cx(t) + e2(t)

Cov ([
e1(t)

e2(t)
]) = [

Q M

MT R
]

can be learned via subspace identification method25. Unlike the model 
above, states represent abstract low-dimensional regularities within 
the data, with a dimension nx that was chosen optimally for each data 
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type. The hyperparameters r and s represent the amount of output and 
input–output history used, respectively, in the output Hankel matrix 
construction and subspace projection steps of the algorithm, respec-
tively (see ref. 25 Ch. 10 for details). The noise sequences e1(t) and e2(t) 
were assumed to be white but could be correlated, and the covariance 
matrices Q, M and R were also learned from data. Note that this white-
ness assumption on noise sequences is without loss of generality in 
this case due to the subspace method’s ability to learn any non-white 
dynamics (that is, colour) of noise as part of the abstract state dynamics.

Nonlinear NMMs (‘NMM’, ‘NMM with HRF’). Learning of the models 
above, except for the ‘Linear with HRF’, involves a convex optimization 
that can be efficiently solved to find its unique global optimum. In con-
trast, the learning of nonlinear models is less straightforward. Recently, 
ref. 76 developed an algorithm called MINDy that uses state-of-the-art 
optimization techniques for learning an NMM of the form

x(t) − x(t − 1) = (Wψααα(x(t − 1)) − Dx(t − 1))ΔT
+e1(t)

y(t) = ℋ(q)x(t) + e2(t)

using rsfMRI data. In this model, x(t) has the same dimension as y(t) 
(one neural mass per brain region), ΔT is the sampling time, W is a sparse 
connectivity matrix, D is a diagonal self-decay matrix, ψα(⋅) is an 
element-wise sigmoidal nonlinearity whose steepness is determined 
by each element of the vector α (which is also the same size as x), and 
ℋ(q) is a scalar linear HRF that is the same and fixed a priori for all 
regions. The associated toolbox that we used allows the user to either 
deconvolve y(t) using a canonical HRF to obtain the state x(t) (‘NMM 
with HRF’), or set ℋ(q) = 1 and directly fit the model to y(t) (‘NMM’). We 
used both methods for fMRI data but only the latter for iEEG. Since the 
MINDy algorithm was originally tuned for fMRI, we re-tuned its regu-
larization hyperparameters λ1,…,λ4 for use with iEEG data (see ‘Hyper-
parameter selection’ below).

Nonlinear models via MLP DNNs (‘DNN (MLP)’). Here we used a 
model of the form in equation (5) for fMRI and trained a ReLU MLP DNN 
to approximate the function f( ⋅ ). The structure of the DNN consists 
of an input layer, D ReLU layers, each preceded by fully connected and 
batch normalization layers and succeeded by a 50% dropout layer, a 
final fully connected layer and the output layer. Given the importance 
of AR lags in the modelling of iEEG, for this modality we generalized 
equation (5) as

y(t) − y(t − 1) = f(y(t − 1),… ,y(t − d)) + e(t) (9)

and similarly approximate f(⋅) using an MLP DNN. We used MATLAB’s 
Deep Learning Toolbox for the training and evaluation of the DNN and 
tuned the depth D and width W of the DNN separately for fMRI and iEEG 
(see ‘Hyperparameter selection’ below).

Nonlinear models via convolutional DNNs (‘DNN (CNN)’). Given the 
recent success of CNNs in complex learning problems, we also included 
a model similar to ‘DNN (MLP)’ but with a CNN to approximate the 
function f(⋅). The network consists of an input layer, D one-dimensional 
convolutional layers (convolving over time using nfilt filters of size lfilt) 
each succeeded by a batch normalization layer, a ReLU layer and an 
average pooling layer with a pool size of npool, a final dropout layer 
with probability pdrop, a fully connected layer and the output layer. 
Spatial convolution was not included in the model, as is the standard 
in modelling dynamical systems with CNNs, due to the arbitrary nature 
of channel numbering. Temporal convolution is nevertheless the basis 
of this model and we thus considered d > 1 autoregressive lags for both 
fMRI and iEEG.

Nonlinear models via long short-term memory neural networks 
(‘LSTM (IIR)’, ‘LSTM (FIR)’). The above DNN models are inherently 
static (that is, feedforward), whereas various recurrent neural net-
work architectures have also been proposed for directly modelling 
dynamical systems. One of the most successful of such architectures 
are LSTMs which we implemented here in two forms: infinite impulse 
response (IIR) and finite-impulse response (FIR). These two forms 
respectively correspond to the two common sequence-to-sequence 
and sequence-to-one forms of modelling time series using LSTMs. In 
both cases, the network consists of an input layer, a layer of W LSTM 
units, a fully connected layer and an output layer. The difference is 
that in the IIR model, the network is initialized once at time 0 and 
run forward, continuously receiving y(t − 1) as input and generating 
y(t) − y(t − 1) as output. Each output, therefore, depends on the entire 
history of the inputs. In the FIR model, on the other hand, the model is 
initialized and run forward once for each timepoint t, receiving only 
y(t − d),…,y(t − 1) as input and predicting y(t) − y(t − 1) as output.

Nonlinear manifold-based models (‘Manifold’). Consider  
equations (5) or (9) and assume, for simplicity, that f is differentiable. 
Each of these systems of equations consists of n scalar equations, each 
of which defines a manifold (surface) in n + 1 (for equation (5)) or nd + 1 
(for equation (9)) dimensional space. Various methods have been devel-
oped in the machine learning and system identification literature77,78 
and used in computational neuroscience20,79 to capitalize on the fact 
that in the small vicinity of a point, the manifold can be approximated 
by a linear hyperplane tangential to it at that point. Here we used the 
simple method of local polynomial modelling of order 1 (ref. 77). To 
explain this method, first consider the simpler model in equation (5). 
For each test time tℓ, we approximate the function f(⋅) as a linear func-
tion in the vicinity of y(tℓ − 1), that is,

f(z) ≃ cℓ +Wℓ [z − y(tℓ − 1)] (10)

The constant vector cℓ and matrix Wℓ were learned from training data 
(separately for each test point), as follows. Each training point y(tm − 1) 
was weighted according to its distance to y(tℓ − 1), that is,

kℓ,m = exp (−∥ y(tm − 1) − y(tℓ − 1)∥2

2h2
) (11)

where the hyperparameter h controls how local or global the model is. 
These weights were then used in a weighted least squares estimation,

[ cℓ Wℓ ] ≃ (∑
tm
[y(tm) − y(tm − 1)]kℓ,mφφφℓ,mT)

⋅(∑
tm
φφφℓ,mkℓ,mφφφℓ,mT)

†

where † denotes pseudo-inverse and

φφφℓ,m = [
1

y(tm − 1) − y(tℓ − 1)
] . (12)

Note that only the computed cℓ was ultimately used, since substituting 
z = y(tℓ − 1) in equation (10) gives

f(y(tℓ − 1)) ≃ cℓ

which was used for computing the one-step-ahead prediction at  
time tℓ. All the details remain the same when applying this method 
to equation (9) for iEEG data, except that y(tℓ − 1) and y(tm − 1) in  
equations (10), (11) and (12) are replaced with [y(tℓ − 1)T⋯y(tℓ − d)T] T  
and [y(tm − 1)T⋯y(tm − d)T] T , respectively. We tuned h separately for 
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fMRI and iEEG (see ‘Hyperparameter selection’ below), giving rise to 
values that are so large that they essentially result in a globally linear 
model (Supplementary Fig. 1). The value of h was independently opti-
mized for the computations reported in Fig. 4i,j, as described below.

Nonlinear MMSE models (optimal) (‘MMSE (pairwise)’, ‘MMSE 
(scalar)’). The models in equation (5) (for fMRI) or equation (9) (for 
iEEG) ultimately define a stochastic mapping from y(t − 1) or 
(y(t − 1),…,y(t − d)) to y(t) − y(t − 1) such that observing the values of 
the former provides information to predict the latter. It is not hard to 
show that for two random variables U and V, the optimal (that is, mini-
mum variance) prediction of U given V = v is given by its conditional 
expectation ̂u = E[U|V = v] known as the MMSE prediction80. Therefore, 
the optimal prediction of y(t) − y(t − 1) given y(t − 1) or (y(t − 1),…, 
y(t − d)) is given by E[y(t) − y(t − 1)∣y(t − 1)] and E[y(t) − y(t − 1)∣y(t − 1),
…,y(t − d)], respectively. Due to its optimality, it provides a theoretical 
upper bound on the achievable accuracy of ‘any’ nonlinear model. The 
difficulty in calculating this estimate, however, is the estimation of the 
conditional distribution of y(t) − y(t − 1) given an observation of y(t − 1) 
or (y(t − 1),…,y(t − d)). Without imposing additional assumptions  
(for example, linearity or Gaussianity), this task is not feasible in  
n ≈ 100 dimensions with our limited data points per recording segment. 
However, this distribution is indeed feasible (1) on a pairwise basis, 
giving us the optimal predictions E[yi(t) − yi(t − 1)∣yj(t − 1)] for all pairs 
i, j = 1,…,n, or (2) on a scalar AR basis, yielding the optimal predictions 
E[yi(t) − yi(t − 1)∣yi(t − 1),…,yi(t − d)] separately for each i = 1,…,n. We used 
the former for fMRI and the latter for iEEG. To estimate this conditional 
distribution for fMRI, we used a Gaussian window with a standard 
deviation equal to β times the range of yj(t) in the training data to detect 
the training points close to each test yj(t − 1) and then used an N-point 
weighted histogram to estimate the (conditional) distribution. More 
precisely, for any pair of i and j and any given test time tℓ, we first com-
puted the Gaussian weight

wℓ,m
j = exp (− [ yj(tm−1)−yj(tℓ−1)]

2

2σ2
)

σ = β (max
j,tm

yj(tm) −min
j,tm

yj(tm))

for all ‘training’ times tm. Note that σ was obtained using only training 
data. Then, we divided the interval

[min
i,tm

yi(tm) − yi(tm − 1), max
i,tm

yi(tm) − yi(tm − 1)]

into N equal bins and constructed a weighted histogram of all the train-
ing yi(tm) − yi(tm − 1) where we counted each yi(tm) − yi(tm − 1) as much as 
wℓ,m
j . We then normalized this histogram by dividing all bin values by 

their sum so that we obtained a well-defined (conditional) probability 
distribution pℓi, j(Δy

k
i ) and estimated the expected value of this probabil-

ity distribution as

E[ yi(t) − yi(t − 1)| yj(t − 1)] ≃
N

∑
k=1

Δyki p
ℓ
i, j(Δy

k
i )

where Δyki  denotes the centre of the kth histogram bin. The case for 
iEEG is similar, except that the Gaussian weights were computed on the 
basis of d-dimensional Euclidean distances given that we conditioned 
on d-dimensional vectors. In both cases, β and N are hyperparameters 
that were tuned separately for fMRI and iEEG (see ‘Hyperparameter 
selection’ below).

Zero model (‘Zero’). So far, we have discussed several families of mod-
els. Comparisons among them will provide a clear picture of which 
family provides the best fit to the data ‘relative to’ the others.  

Note however that this process does not necessarily imply that the best 
model is good in any absolute sense. In other words, all models may be 
estimating ŷ(t|t − 1) at chance level or lower. Therefore, we also consid-
ered the zero model (also known as the zero-order hold, naive model 
or random walk)

y(t) − y(t − 1) = e(t)

with the trivial estimate ŷ(t|t − 1) = y(t − 1). Note that this expression 
corresponds to equation (5) with f(y(t − 1)) = 0 and is only meant to 
provide a baseline for comparison, not to act as a formal model itself. 
Also note that this model is different from and often performs better 
than the constant predictor ŷ(t|t − 1) = ̄y which constitutes the denomi-
nator of R2.

Hyperparameter selection
For all models that involve the choice of a design hyperparameter, we 
simultaneously optimized over all the hyperparameters using SGD 
with minibatch, separately for fMRI and iEEG. Let Nparam denote the 
number of hyperparameters in any of the models. Starting from an 
initial estimate of the hyperparameter vector, in each iteration, 3Nparam 
hyperparameter vectors were generated, constituting a hypercubic 
mesh around the current hyperparameter estimate. For integer-valued 
hyperparameters, we moved 1 point in each direction, while for 
real-valued hyperparameters, we moved 10−6 units. Using a minibatch 
of randomly selected data segments, the mean-over-minibatch of the 
median-over-regions of the model R2 was computed and maximized 
over the mesh. The random minibatch selection was independent 
between mesh points and between iterations. For integer-valued 
hyperparameters, their value was updated to that of the maximizing 
mesh point. For real-value hyperparameters, a gradient-ascent step 
was taken in the direction of the largest R2. The process was repeated 
until the hyperparameters stopped having a consistent decrease/
increase and hovered around a steady-state value (which always hap-
pens due to the stochastic nature of SGD) and/or the R2 stopped having 
a consistent increase.

For the ‘DNN (CNN)’ and ‘Subspace’ methods (the latter only in 
iEEG data), the aforementioned procedure was infeasibly slow. This 
was the case due to a high number of hyperparameters for the CNN 
model and due to cluster jobs becoming frequently hung and needing 
to be killed and restarted for the subspace method. As such, we slightly 
modified the above procedure as follows. In each iteration of the SGD, 
instead of generating 3Nparam search directions at all the points of a hyper-
cubic mesh, we generated 2Nparam + 1 search directions, one at the  
current optimum estimate and 2 at the current estimate ±1ek  
(for integer-valued) or ±10−6ek (for real-valued) for each kth hyperpa-
rameter, where ek is the kth canonical unit vector (all zeros except one 
1 at the kth location). The remaining details were similar to the general 
case above. Finally, in all cases, we used 100 participants for fMRI (out 
of the total of 700) and 1,500 segments for iEEG (out of the total of 
8,490) for hyperparameter tuning and then removed them from the 
subsequent model fitting and validation experiments to ensure a lack 
of overfitting to hyperparameters.

The hyperparameter and R2 values throughout the process are 
shown in Supplementary Figs. 7 and 8 for fMRI and iEEG data, respec-
tively, and the final values of the hyperparameters selected for each 
model are reported in Supplementary Table 1. Note that the initial 
hyperparameter estimates were chosen on the basis of previous expe-
rience, not randomly, which is why they are often very close to or the 
same as the final values.

Cross-validation
For the comparisons of HCP data in Fig. 2, we performed the 
cross-validation as follows, with slightly different procedures for 
brain-wide and regional methods. For the brain-wide methods, for 

http://www.nature.com/natbiomedeng


Nature Biomedical Engineering | Volume 8 | January 2024 | 68–84 81

Article https://doi.org/10.1038/s41551-023-01117-y

each of the 700 participants, we split each of the 4 resting scans of that 
participant into 2 halves, giving a total of 8 segments, each of length 
600 samples. All of our methods were then applied using an 8-fold 
cross-validation where each time, 1 of the 8 segments was used for test-
ing and the remaining 7 were used for training. For pairwise methods, 
we were forced to lower the sample size due to the extremely high 
computational complexity of the MMSE predictor. Therefore, instead 
of each of the above 8 segments (per participant), we used the second 
quarter of that segment, giving us still an 8-fold cross-validation but 
on segments of length 150 samples each.

For the comparisons of RAM data in Fig. 3, we first split each of the 
283, 5 min recordings into 8,490, 10 s segments. Even though having 
longer segments would in principle benefit model fitting, 10 s segments 
ensured that all of our methods could run using the 64 GB available 
memory per node on the CUBIC cluster. From the 8,490 segments, 
those that contained any not-a-number (NaN) entries (316 segments) 
or for which the subspace method produced NaN predictions (30 
segments, due to the bad conditioning of the Φ matrix therein) were 
removed from further analysis. Since each recording was already split 
into 30 segments, and due to the large number of segments, we per-
formed only a single-fold cross-validation on each segment, with the 
first 8 s used for training and the final 2 s used for cross-validation.

Multivariate test of whiteness
A standard measure of the goodness of fit in the prediction error 
method is the whiteness of residuals, measuring the extent to which all 
temporal structure (that is, dynamics) in the data has been captured by 
the model. Note that a multivariate time series e(t) is ‘white’ if it has no 
statistical dependence across time (that is, e(s) and e(t) are independ-
ent if s ≠ t) even though it can have arbitrary statistical dependence 
across channels (that is, ei(t) and ej(t) can be dependent at the same  
time t). Parametric (χ2) statistical tests have been devised for multivari-
ate whiteness, such as the classical Box–Pierce portmanteau test81 and 
its modifications82,83. Under strong assumptions, all of these tests have 
a statistic Q (defined slightly differently between them) that is asymp-
totically (at infinite samples) χ2 distributed. In our datasets, however, 
we found that Q was not χ2 distributed, and therefore we used randomi-
zation to generate the true null distribution of Q by shuffling the time 
indices of e(t) 100 times, computing Q for each of them and computing 
the 95th percentile of the randomized Q values as the threshold Qthr for 
significance. We used the original definition of Q (ref. 81),

Q = (N −M )
M

∑
i=1

tr ( ̂Re(i)
T ̂Re(0)

−1 ̂Re(i) ̂Re(0)
−1)

where N is the number of (test) samples, M is the number of 
cross-correlation lags, and

̂Re(i) =
1

N −M

N−M−1
∑
t=0

e(t + i)e(t)T, i = 0, 1,… ,M

is a finite-sample estimate of the cross-correlation matrix between 
channels of e(t) at lag i. Since in practice ̂Re(0)  may be singular or 
near-singular, we used the pseudo-inverse of ̂Re(0) instead of its inverse 
in computing Q. Finally, only in the case of ‘pairwise’ fMRI models where 
the residuals are inherently univariate did we use the simpler χ2 test of 
whiteness for univariate time series (ref. 25 sec. 16.6).

Nonlinear predictors used for the analysis of the linearizing 
effects of macroscopic dynamics
Our discussions of linear and nonlinear models and their hyperparam-
eters so far applies to the comparisons shown in Figs. 2 and 3 on neuro-
imaging time series. In our numerical analysis of the linearizing effects 
of macroscopic brain dynamics in Fig. 4, we also constructed linear and 
nonlinear predictors and computed their R2. The linear predictor was 

always a simple linear regression model, while the nonlinear predictor 
was the MMSE predictor for two-dimensional predictions (Fig. 4a–h) 
and the manifold-based predictor for higher-dimensional predictions 
(Fig. 4i,j). The MMSE predictor was as described above, except that β 
was adjusted as 0.02 + 0.02/SNR for Fig. 4g,h. For the manifold-based 
predictor, we used a Gaussian window and swept logarithmically over 
its hyperparameter h from 0.1 to 10 in every iteration and chose the 
value of h that gave the largest R2. Fig. 4j (left panel) shows the average 
of the resulting optimal h for 100 iterations.

Simulations involving the Izhikevic model
To show the linearizing effects spatiotemporal averaging on a model 
whose ground truth is known to be nonlinear, we generated simulated 
time series from the Izhikevic model23

̇v(t) = 0.04v(t)2 + 5v(t) + 140 − u(t) + I

̇u(t) = a(bv(t) − u(t))

(v(t),u(t)) ← (c,u(t) + d) if v(t) ≥ 30

with a = 0.02, b = 0.2, c = −65 and d = 2, I = 7. We discretized the model 
using Euler discretization with 0.1 ms sampling.

Estimation of rsfMRI SNR
Here we describe our method for the estimation of rsfMRI time series 
scanner noise and the resulting SNR reported in Supplementary  
Fig. 4. From the 700 participants used for the study, 50 were selected 
uniformly at random, and for each selected participant, 1 of their 4 rest 
scans was selected also uniformly at random. The following was then 
performed for each of the 50 participant-scans. The rest scan was 
motion corrected using intramodal linear registration with 6 degrees 
of freedom (in general, we kept the amount of preprocessing as minimal 
as possible throughout the SNR estimation algorithm since each pre-
processing step often involved averaging and/or interpolation steps 
that could bias SNR estimates). The first volume of the motion-corrected 
rest scan was visually inspected and 10 voxels outside of the head were 
selected. Due to the unavailability of phantom scans, we used these 
voxels to estimate the scanner noise, while the two (phantom scans 
and outside voxels) have been shown to yield consistent noise esti-
mates84. For each of the 10 voxels, we calculated the temporal variance 
of the corresponding time series and averaged the results, providing 
an estimate of scanner noise variance σ2N. To estimate the signal power, 
a grey matter mask was extracted using each participant’s T1 scan and 
linearly registered back to the participant’s motion-corrected rest scan. 
We then computed the temporal variance of each grey matter voxel 
and averaged the results, yielding an estimate of the combined signal 
and noise variance. Assuming statistical independence between scan-
ner noise and the participants’ BOLD activity, this combined variance 
is precisely the sum σ2S + σ

2
N  of signal variance and noise variance. The 

SNR was then calculated as σS/σN. Note that this process is inherently 
conservative and provides an upper bound on the SNR, as it, for 
instance, does not include any physiological signals into ‘noise’. There-
fore, the ratio between the power of signals of neural origin over all 
other signals contributing to rsfMRI time series may be much lower 
than 6.5. An SNR of ∼6.5, however, is still low enough to yield a notable 
linearizing effect, highlighting the importance of measurement noise 
in downstream computational modelling.

Citation diversity statement
Recent work in several fields of science has identified a bias in citation 
practices such that papers from women and other minority scholars are 
undercited relative to the number of such papers in the field85–89. Here 
we sought to proactively consider choosing references that reflect the 
diversity of the field in thought, form of contribution, gender, race, eth-
nicity and other factors. First, we obtained the predicted gender of the 
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first and last author of each reference by using databases that store the 
probability of a first name being carried by a woman89,90. By this measure 
(and excluding self-citations to the first and last authors of our current 
paper), our references contained 8.73% woman(first)/woman(last), 
18.87% man/woman, 18.34% woman/man and 54.06% man/man. This 
method is limited in that (1) names, pronouns and social media profiles 
used to construct the databases may not, in every case, be indicative 
of gender identity and (2) it cannot account for intersex, non-binary or 
transgender people. Second, we obtained predicted racial/ethnic cat-
egory of the first and last author of each reference using databases that 
store the probability of a first and last name being carried by an author 
of colour91,92. By this measure (and excluding self-citations), our refer-
ences contained 14.39% author of colour (first)/author of colour(last), 
15.47% white author/author of colour, 23.76% author of colour/white 
author and 46.37% white author/white author. This method is limited in 
that (1) names and Florida Voter Data used to make the predictions may 
not be indicative of racial/ethnic identity and (2) it cannot account for 
Indigenous and mixed-race authors, or those who may face differential 
biases due to the ambiguous racialization or ethnicization of their 
names. We look forward to future work that could help us to better 
understand how to support equitable practices in science.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The fMRI and iEEG data supporting the findings of this study are 
publicly available from the HCP S1200 Release at https://www.
humanconnectome.org/study/hcp-young-adult/document/12
00-subjects-data-release and the RAM Public Data Release at http://
memory.psych.upenn.edu/RAM, respectively.

Code availability
All the computations of this study (after data preprocessing) were per-
formed in MATLAB, and the corresponding codes are publicly available 
at https://github.com/enozari/rest-system-id.
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Extended Data Fig. 1 | Different systems can produce almost identical 
functional connectivity (FC). Ten different systems of the form 
y(t) = Ay(t − 1) + e(t) are shown with completely different A matrices and spectra 
(eigenvalues of A), but almost identical FC matrices. The Pearson correlation 
coefficient between all pairs of FCs is 1.0000 while the absolute value of the 

Pearson correlation coefficients between the A matrices range from a minimum 
of 0.0023 to a maximum of 0.36. All systems were driven by independent and 
randomly generated noise sequences e(t). In the figures, the diagonal entries 
of the FC matrices (which are by definition equal to 1) are set 0 to increase color 
resolution.
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Extended Data Fig. 2 | The linearizing effect of spatial averaging on the 
Izhikevic spiking model. (a) The Izhikevic model23 was simulated for Nave 
neurons and their vi and ui variables were averaged before being ‘observed’. The 
neurons had the same parameters (and hence the same spiking frequency) but 
were initialized at random phases of their limit cycles. The average of dvi/dt is 
plotted against the average of vi and ui, showing the loss of nonlinearity at about 
Nave ~ 103 − 104. dvi/dt is chosen since it has a more nonlinear dependence on vi 
and ui than dui/dt for one neuron, but the same (even stronger) linearizing effect 
holds for (〈vi〉, 〈ui〉, 〈dui/dt〉). (b) The R2 distributions of a linear (simple linear 
regression) and nonlinear (manifold-based locally linear regression) model for 
the relationships in panel (a) and 100 random repetitions. The manifold-based 
model was chosen over the MMSE model as it consistently gave significantly 
higher R2 values (due to the high sample complexity of the MMSE model). Note 
that the R2 distribution of the linear model is mostly flat (less affected by spatial 

averaging), while that of the nonlinear model decays rapidly with Nave until it 
reaches the linear level. (c) Nonlinear R2 as a function of the manifold method’s 
window sizes h for varying Nave values. The circles and error bars show median 
and inter-quartile ranges, respectively. While an optimal, mid-range h exists for 
small values of Nave, the curve plateaus for large h as Nave increases, showing the 
loss of nonlinearity with increasing Nave. (d-f) Same as panels (a-c) but for a model 
where process noise is added to the dvi/dt equations. The noise has a very low 
power (SNR = 100) and is only meant to destroy the artificial micro-nonlinear 
relationships that are visible in panel (a) and can inflate the power of nonlinear 
regression for Nave ~ 10 − 103. Note that this is different from the addition of 
observation noise discussed in the main text, even though adding observation 
noise could serve this purpose as well. In all box plots, the center point, box 
limits, and whiskers represent the median, upper and lower quartiles, and the 
smallest and largest samples, respectively.
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Extended Data Fig. 3 | The linearizing effect of temporal averaging on the 
Izhikevic spiking model. Panels parallel those in Extended Data Fig. 2. (a)  
One Izhikevic model23 was simulated, starting from a random initial condition 
on its limit cycle, and its v and u variables were low-pass filtered before being 
‘observed’. d/dt LPF{v} is plotted against LPF{v} and LPF{u}, showing the loss of 
nonlinearity at about fcutoff ~ 10−4. (b,c) Similar to panels (b,c) in Extended Data  
Fig. 2, except that here the R2 of the linear model reaches that of the nonlinear  
one as temporal averaging is intensified. The nonlinear model always has a  

near-perfect prediction power given the fully deterministic nature of this 
simulation (that is, a sufficiently small h was always sufficient to perfectly match a 
locally-linear model to the curves in panel (a). Note that addition of process noise 
here does not have the same ‘blurring’ effect of Extended Data Fig. 2(d–f) since it 
lies before the low-pass filter. Observation noise can nevertheless be added with 
the same effect (not shown here). In all box plots, the center point, box limits, and 
whiskers represent the median, upper and lower quartiles, and the smallest and 
largest samples, respectively.
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Extended Data Fig. 4 | The spatial distribution of predictability in fMRI data. 
(a) Regionwise comparisons between all pairs of models. The color and number 
in each cell indicates the percentage of brain regions where the median of the R2 
values of the model on the row is statistically significantly greater that the median 
of the R2 values of the model on the column (α = 0.05, Wilcoxon signed rank 
test, and Bonferroni correction for multiple comparisons). (b) The correlation 
coefficient between the R2 values of all the (brain-wise) methods. All methods 
produce almost the same cortical distributions of R2 (albeit with different 
absolute values of R2, cf. Fig. 2a in the main text), except for ‘Linear w/ HRF’ which 
has an un-correlated R2 distribution relative to the rest of the methods. (c) The 
cortical distribution of the R2 of our best model (‘VAR-3 (sparse)’), averaged over 

the 700 subjects. (d) Violin plots of the distribution of R2, averaged over all the 
regions of each resting state network, for all subjects. Note that each distribution 
in panel (b) is thus composed of 700 samples. All pairs of distributions have 
significantly different medians in the order plotted (one-sided Mann-Whitney 
U-test at α = 0.05 with BH-FDR correction for multiple comparisons). The most 
striking difference is between the cortical and subcortical regions, where the 
dynamics of the latter are remarkably less predictable than the former. This lower 
predictability can be viewed as having ‘more noisy’ dynamics or, more precisely, 
less spatially and temporally correlated (that is, more white) fMRI time series in 
these regions.
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Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection No software was used.

Data analysis Custom MATLAB software, executed in MATLAB R2018a, was used for data pre-processing and for all analyses in the manuscript. All the 
MATLAB code used for pre-processing and data analysis are publicly available on Github at https://github.com/enozari/rest-system-id. A few 
publicly available MATLAB packages were also used within this custom code, as described in the README file in the Github repository.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A description of any restrictions on data availability 

- For clinical datasets or third party data, please ensure that the statement adheres to our policy 
 

The fMRI and iEEG data supporting the findings of this study are publicly available, respectively, from the HCP S1200 Release at https://
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www.humanconnectome.org/study/hcp-young-adult/ document/1200-subjects-data-release, and the RAM Public Data Release at http://memory.psych.upenn.edu/
RAM.

Research involving human participants, their data, or biological material
Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation), 
and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender Data from all available participants in the HCP and RAM datasets were used regardless of sex and gender. The sex and gender 
of the participants were not used in any of the analyses, as sex and gender differences were not within the scope of this 
project; however, sex and gender information can be extracted from the respective public datasets. This study analysed the 
degree to which macroscopic brain dynamics are linear across both sexes and genders.

Reporting on race, ethnicity, or 
other socially relevant 
groupings

No socially constructed or socially relevant categorization variables were used. Same analysis routines were applied to all 
available participants regardless of their race, ethnicity, or other socially relevant groupings.

Population characteristics No covariate analysis was performed. 

Recruitment We only used data from publicly available and well-cited datasets (HCP and RAM). Participants were recruited as described in 
the respective dataset descriptions.

Ethics oversight The HCP experiments were carried out by the WU-Minn consortium and its adherence to ethical standards was approved by 
the Internal Review Board of the respective institutions. Explicit informed consent was acquired from all participants involved 
in the study.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size 700 participants in the fMRI analysis, 122 participants in the iEEG analysis. These sample sizes were the maximum available from either 
dataset, and were far more than statistically needed (as indicated in the comparison p-value tables in Figs. 2,3, where almost all p-values fall 
below 1e-20 for iEEG and 1e-40 for fMRI).

Data exclusions fMRI data: we removed participants from further analysis if any of their four resting scans had excessively large head motion, defined by 
having frames with greater than 0.2 mm frame-wise displacement or a derivative root mean square (DVARS) above 75. Also, participants 
listed in [Elam, "Hcp data release updates: Known issues and planned fixes", 2020] under ``3T Functional Preprocessing Error of all 3T RL fMRI 
runs in 25 Subjects" or ``Subjects without Field Maps for Structural scans" were removed. 
 
iEEG data: For all participants, we rejected noisy channels that were either (i) marked as noisy in the RAM dataset notes, (ii) had a line length 
greater then three times the mean, (iii) had z-scored kurtosis greater than 1.5, or (iv) had a z-scored power-spectral density dissimilarity 
measure greater than 1.5. The dissimilarity measure used was the average of one minus the Spearman’s rank correlation with all channels. 
 
All exclusion criteria are minimal and were pre-established.

Replication Cross-validation was used so that the performance of all included models was tested on data not seen during training.

Randomization No group allocation was performed or was applicable. All models were applied to all the data segments given the computational nature of the 
study, so no randomization was performed.

Blinding No group allocation was performed or was applicable. Blinding was therefore not applicable.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 
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Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Clinical data

Dual use research of concern

Plants

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Magnetic resonance imaging

Experimental design

Design type Resting state

Design specifications Four resting-state scans, of length 14.4 minutes each, were acquired from each participant (2 RL and 2 LR).

Behavioral performance measures No behavioural performance measures were used.

Acquisition
Imaging type(s) Functional

Field strength 3

Sequence & imaging parameters TR = 720 ms, TE = 33.1 ms, flip angle = 52 deg, FOV = 208x108 mm, matrix = 104x90, slice thickness = 2.0 mm, number 
of slices = 72 (2.0 mm isotropic), multi factor band = 8, and echo spacing = 0.58 ms.

Area of acquisition Whole brain

Diffusion MRI Used Not used

Preprocessing

Preprocessing software Freesurfer, FSL, Connectome Workbench

Normalization Brains were normalized to fslr32k via the MSM-AII registration 

Normalization template FSLR32K

Noise and artifact removal CompCor, with five principal components from the ventricles and white matter masks, was used to regress out nuisance 
signals from the time series. In addition, the 12 detrended motion estimates provided by the Human Connectome Project 
were regressed out from the regional time series and the mean global signal was removed. No bandpass filtering was 
performed (see Supplementary Note 1). Also, participants listed in [53] under “3T Func- tional Preprocessing Error of all 3T RL 
fMRI runs in 25 Sub jects” or “Sub jects without Field Maps for Structural scans” were removed, leaving a total of 700 
participants that were used for all the analyses. We parcellated the brain into 100 cortical [54] and 16 subcortical [55] 
regions.

Volume censoring We removed participants from further analysis if any of their four resting scans had excessively large head motion, defined by 
having frames with greater than 0.2 mm frame-wise displacement or a derivative root mean square (DVARS) above 75.

Statistical modeling & inference

Model type and settings All models used in this study were predictive dynamical system models. Different linear and nonlinear families of models 
were used. Details of each model family are provided in Methods.

Effect(s) tested The nonlinearity of brain dynamics was tested using model comparisons between linear and nonlinear families of models. No 
ANOVA or factorial designs were used.

Specify type of analysis: Whole brain ROI-based Both

Statistic type for inference

(See Eklund et al. 2016)

fMRI data were primarily used at the parcel-level, using 100 cortical regions (Schaefer 100x7 atlas [61]) and 16 subcortical 
ones (Melbourne Scale I atlas [62]). Limited voxel-level analysis was also performed, as shown in Supplementary Figs. 12–14.
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Correction Multiple comparisons between pairs of models were corrected for using false discovery rate.

Models & analysis

n/a Involved in the study
Functional and/or effective connectivity

Graph analysis

Multivariate modeling or predictive analysis

Functional and/or effective connectivity Dynamical system modelling, including autoregressive models.

Multivariate modeling and predictive analysis Dynamical system modelling using the prediction-error framework.
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