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Profiling of repetitive RNA sequences in the 
blood plasma of patients with cancer

Roman E. Reggiardo    1, Sreelakshmi Velandi Maroli2, Vikas Peddu    1, 
Andrew E. Davidson1, Alexander Hill    1, Erin LaMontagne1, Yassmin Al Aaraj3, 
Miten Jain    1,8,9, Stephen Y. Chan3 & Daniel H. Kim    1,4,5,6,7 

Liquid biopsies provide a means for the profiling of cell-free RNAs 
secreted by cells throughout the body. Although well-annotated coding 
and non-coding transcripts in blood are readily detectable and can serve 
as biomarkers of disease, the overall diagnostic utility of the cell-free 
transcriptome remains unclear. Here we show that RNAs derived from 
transposable elements and other repeat elements are enriched in the 
cell-free transcriptome of patients with cancer, and that they serve 
as signatures for the accurate classification of the disease. We used 
repeat-element-aware liquid-biopsy technology and single-molecule 
nanopore sequencing to profile the cell-free transcriptome in plasma 
from patients with cancer and to examine millions of genomic features 
comprising all annotated genes and repeat elements throughout the 
genome. By aggregating individual repeat elements to the subfamily  
level, we found that samples with pancreatic cancer are enriched  
with specific Alu subfamilies, whereas other cancers have their own 
characteristic cell-free RNA profile. Our findings show that repetitive 
RNA sequences are abundant in blood and can be used as disease-specific 
diagnostic biomarkers.

Of the 3 billion base pairs in the human genome, approximately 75% 
are transcribed into RNA1. The vast majority of these RNAs are not 
translated into proteins and are thus considered non-coding RNAs. 
Although non-coding RNAs such as microRNAs2,3 and long non-coding 
RNAs4,5 (lncRNAs) are well annotated, many other non-coding RNAs 
are generated throughout the genome, including RNAs transcribed 
from repeat elements such as transposable elements (TEs)6. There 
are over 5 million repeat element insertions in the human genome, 
with repeat sequences comprising roughly half the genomic sequence 
content7. TE RNAs in particular are aberrantly expressed in diseases 

such as cancer8–13, highlighting their potential as abundant and specific 
biomarkers of disease14,15.

Cell-free RNAs16 are released from cells that comprise the various 
tissues and organ systems throughout the human body17,18. The diag-
nostic and prognostic potential of cell-free RNA is evidenced by the pre-
diction of pre-eclampsia in pregnancy19–21, and cell-free RNAs serve as 
biomarkers of diseases such as cancer22–26 and Alzheimer’s disease27–29. 
Cell-free RNAs have been profiled predominantly via whole-exome 
RNA sequencing (RNA-seq), which precludes the detection of 
repeat-derived and other non-coding RNA, or ribosomal-RNA-depleted 
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cell-free RNA-seq data from human plasma, we leveraged a highly 
sensitive RNA-seq protocol that robustly detects both coding and 
non-coding RNAs5. Given that the human genome contains millions 
of repeat element insertions that have not been examined in the context 
of cell-free RNA, we created a custom transcriptome annotation for 
cell-free RNA quantification that incorporates both well-annotated cod-
ing and non-coding RNAs (that is, GENCODE) and over 5 million repeat 
element insertions found in the human genome (that is, RepeatMasker). 
We then aggregated the RNA signal from individual repeat element 
insertions to the subfamily element level33, reducing the number of 
repeat features from over 5 million to approximately 15,000 repeat fea-
tures for disease classification and other downstream analyses (Fig. 1a).

Compared with using only well-annotated GENCODE coding and 
non-coding genes (repeat naive) for cell-free RNA quantification, the 
application of our COMPLETE-seq technology significantly enhanced 
the percentage of mapped reads in our cell-free RNA data from patients 
with pancreatic cancer (Fig. 1b and Extended Data Fig. 1). For healthy 
control cell-free RNA, however, the mapping rate difference between 
repeat-naive versus our repeat-aware approach was negligible (Fig. 1b). 
Notably, there were no significant differences between the total num-
ber of repeat subfamilies that were represented in the cell-free RNA 
of patients with pancreatic cancer and healthy individuals (Fig. 1c).

Both repeat-naive and repeat-aware quantification of the cell-free 
RNA transcriptomes of patients with pancreatic cancer and healthy 
individuals enabled robust, unsupervised disease identification in 
low-dimensional space via principal component analysis (Extended 
Data Fig. 1e,f). Compared with using only well-annotated GENCODE 
coding and non-coding genes for cell-free RNA quantification, 

total RNA-seq30. Studies using total RNA-seq for cell-free RNA have 
identified many well-annotated non-coding RNAs in human plasma, 
and a small fraction of repeat-derived cell-free RNAs (1–2%) in healthy 
individuals31. However, the diagnostic potential of the repeat-derived 
cell-free RNA transcriptome in the context of disease remains unknown.

Here we report that repeat-aware profiling of the cell-free RNA 
transcriptome (COMPLETE-seq) enables the in-depth characterization 
of disease-specific, repeat-derived cell-free RNAs, and the accurate clas-
sification of patients with cancer by leveraging the rich feature space 
of the repeat-derived cell-free RNA transcriptome. In marked contrast 
to the cell-free RNA transcriptomes of healthy individuals, patients 
with cancer show strong enrichment of TE- and other repeat-derived 
cell-free RNAs in their blood, with patients with pancreatic cancer show-
ing high levels of short interspersed nuclear element (SINE)-derived 
cell-free RNAs from various Alu subfamily elements. We further show 
the generalizability of COMPLETE-seq by showing that repeat-aware 
classification of liver, lung, oesophageal, colorectal and stomach 
cancer cell-free RNA data32 shows improved performance compared 
with repeat-naive classifiers. Taken together, our results show that 
repeat-aware COMPLETE-seq profiling of the cell-free RNA transcrip-
tome identifies a robust and dynamic repeat-element-derived RNA 
signature for the diagnosis of diseases such as cancer.

Results
COMPLETE-seq enables repeat-aware profiling of the cell-free 
RNA transcriptome
We developed the COMPLETE-seq technology to enable repeat-aware 
characterization of the cell-free RNA transcriptome. To generate 
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Fig. 1 | Cell-free RNA transcriptome profiling using repeat-aware COMPLETE-
seq. a, Diagram of COMPLETE-seq RNA liquid-biopsy technology, highlighting 
the use of repeat-derived cell-free RNAs aggregated into a tractable feature set 
to enable diagnostic modelling. Created with BioRender.com. b, Comparison 
of mapping rates between use of a repeat-naive (GENCODE v.39) reference 
annotation (**P = 0.0039) and repeat-aware reference annotation (Wilcoxon, 

paired, two-sided). c, Comparison of gene detection distributions for each 
cohort across coding genes (GENCODE_coding; *P = 0.043), lncRNAs (GENCODE_
lncRNA; *P = 0.035) and TE subfamilies (Wilcoxon, two-sided). For the box 
plots, the centre line represents the median, the box limits are upper and lower 
quartiles and whiskers represent 1.5× interquartile range. NS, not significant; 
panc., pancreatic cancer.
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however, the application of our repeat-aware technology increased 
the sample-to-sample correlation (Pearson) of cell-free RNA data from 
patients with pancreatic cancer (Extended Data Fig. 1c,d), indicating 
greater overall similarity when examining a more robust annotation 
of their cell-free RNA transcriptomes.

TE RNAs and other repeat element RNAs are enriched in 
pancreatic cancer cell-free RNA
To determine the repeat composition of cell-free RNA, we first exam-
ined repeat content at the superfamily level. In healthy individuals, less 
than 10% of the DESeq2-normalized cell-free RNA counts consistently 
corresponded to repeats. However, we found substantially larger frac-
tions of repeat-derived cell-free RNAs across almost all patients with 
pancreatic cancer, with most of these cell-free RNAs being derived 
from SINE elements (Fig. 2a). We also found significant differences 

in the information content, as quantified by Shannon entropy34,  
of protein-coding RNAs, lncRNAs, and long terminal repeat (LTR), SINE 
and simple repeat superfamilies (Fig. 2b). These differences in bio-
type or repeat superfamily transcriptome diversity suggest dynamic 
changes in both the abundance and identity of cell-free RNAs in the 
context of diseases such as cancer.

To further characterize the features of repeat-derived cell-free 
RNAs, we used full-length complementary DNA to perform 
single-molecule sequencing using nanopore technology35 on cell-free 
RNA samples from patients with pancreatic cancer that were also 
sequenced using Illumina technology. We examined the size distribu-
tions of protein-coding RNA, lncRNA, and long interspersed nuclear 
element (LINE)-, SINE- and LTR-derived cell-free RNAs from patients 
with pancreatic cancer, which revealed cell-free RNA transcripts up to 
1,337 nt in length for protein-coding RNA (median 456 nt), 970 nt for 
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lncRNA (median 303 nt), 1,002 nt for LINE (median 258 nt), 368 nt for 
SINE (median 185 nt) and 477 nt for LTR (median 167 nt) (Extended Data 
Fig. 2a). For SINE-derived cell-free RNA, we observed a bimodal length 
distribution, reflecting both full-length, ~300-nt-long Alu-derived RNA, 
along with a shorter species of Alu-derived RNA (Extended Data Fig. 2a). 
We then compared the expected length of SINE-derived RNA based on 
genomic alignment with the observed length of cell-free SINE RNA and 
found both full-length transcripts of expected size, and half-length 
cell-free SINE RNAs (Extended Data Fig. 2b,c). In addition, we compared 
the cell-free RNA abundances of all COMPLETE-seq-annotated genes 
and repeat subfamilies in matched nanopore and Illumina libraries, 
which revealed strong concordance between well-annotated coding 
and non-coding genes, with a bias towards Illumina for TE RNAs and 
towards nanopore for some simple repeat RNAs (Extended Data Fig. 3).

We next performed differential expression analysis and found that 
Alu subfamily elements were the most enriched TE signal in cell-free 
RNA from patients with pancreatic cancer, with AluY, AluSc, AluSg7, 

AluSc8, AluSx3 and AluSg subfamily elements among the most signifi-
cantly enriched (P < 0.01) in patients with pancreatic cancer compared 
with healthy individuals (Fig. 2c). Further analysis of the significantly 
enriched repeat subfamilies showed that the upregulated Alu elements 
in pancreatic cancer cell-free RNA were highly abundant (Extended 
Data Fig. 1g), despite the lack of increase in overall SINE complexity in 
the pancreatic cancer cell-free RNA transcriptome (Fig. 2b). Captur-
ing both the robust enrichment of Alu elements and the significant 
increase in simple repeat entropy in the pancreatic cancer cell-free 
RNA transcriptome, hierarchical clustering achieved perfect cluster-
ing of patients with pancreatic cancer (Fig. 2d). These repeat-aware 
analyses further contextualized the differences in the respective repeat 
superfamilies, where SINE-derived cell-free RNAs were uniform in their 
enrichment in our cohort of patients with pancreatic cancer, whereas 
simple repeat-derived cell-free RNAs were far more divergent, with 
some simple repeat-derived cell-free RNAs being enriched in healthy 
individuals (Fig. 2d).

0

10

20

30

40

–2.5 0 2.5 5.0 7.5 10.0

log2fold change

–l
og

10
(P

ad
j)

Liver cancera

0

5

10

15

log2fold change

–l
og

10
(P

ad
j)

Lung cancerb

0

2

4

6

3

log2fold change

–l
og

10
(P

ad
j)

Oesophagus cancerc

0

5

10

15

2

log2fold change

–l
og

10
(P

ad
j)

Colorectal cancerd

0

5

10

15

20

–4 –2 0 2

–1 0 1 2 –2 0

–4 –2 0 2

log2fold change

–l
og

10
(P

ad
j)

Stomach cancere

LINE Simple_repeatGENCODE_codingBiotype/clade GENCODE_lncRNA OtherSINE
LTR
DNA

6 2 1 1

80

10 5

25 24

3 17 1 4 2 1 12 1 2 21

24

0

25

50

75

Colorectal
Stomach

Oesophagus
Lung
Liver

Upregulated TEsf

6 1

89

38

38
1 1 3 2 12 2 4 1

23

2
0

25

50

75

Liver
Colorectal

Lung
Stomach

Downregulated TEsg

Fig. 3 | Disease-specific repeat-derived cell-free RNA signatures.  
a–e, Volcano plots of differentially expressed genes and repeat subfamilies 
derived from repeat-aware quantification of cell-free RNA-seq data for liver (a), 
lung (b), oesophagus (c), colorectal (d) and stomach (e) cancer. Horizontal and 

vertical lines drawn at −log10(0.01) and 0, respectively. f,g, UpSet plots showing 
the number of shared and unique upregulated (f) or downregulated (g) TE 
subfamilies across the different cancer types.

http://www.nature.com/natbiomedeng


Nature Biomedical Engineering | Volume 7 | December 2023 | 1627–1635 1631

Article https://doi.org/10.1038/s41551-023-01081-7

COMPLETE-seq reveals cancer-specific repeat element RNA 
signatures in cell-free RNA
To show the generalizability and applicability of COMPLETE-seq tech-
nology in enabling RNA liquid biopsy for cancer diagnosis, we used 
COMPLETE-seq quantification to analyse lung, liver, oesophageal, colo-
rectal and stomach cancer cell-free RNA-seq data, along with their corre-
sponding healthy controls32. We observed repeat superfamily variability 
in both healthy and cancer cell-free RNA transcriptomes (Extended Data 

Fig. 4 and Extended Data Fig. 5) and a significant (P < 0.05) increase in 
mapping rate by using our repeat-aware COMPLETE-seq annotation 
for analysing oesophageal, liver and stomach cancer cell-free RNA 
transcriptomes (Extended Data Fig. 4b).

Performing pairwise comparisons between five different cancers 
and healthy individuals captured robust and significant (P < 0.01) 
differential expression of repeat-derived cell-free RNAs that were 
characteristic to each cancer type (Fig. 3a–e). Additional analyses of 
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the significantly differentially expressed repeat subfamilies showed 
that these repeat-derived cell-free RNAs were also highly abundant 
(Extended Data Fig. 6), with significant changes to biotype or repeat 
superfamily entropy (P < 0.05) (Extended Data Fig. 6f). By comparing 
the significantly differentially expressed repeat RNA signal across can-
cer types, we identified cancer-specific TE- and other repeat-derived 
cell-free RNA enrichment or depletion across all repeat superfamilies 
(Fig. 3f,g).

COMPLETE-seq features improve classification performance 
of diagnostic models
To show proof of concept for diagnostic modelling using repeat-aware 
COMPLETE-seq analysis of cell-free RNA-seq data32, we trained logistic 
regression classifiers with tenfold cross-validation on training sets 
created for each cancer and healthy comparison (Fig. 4). To deter-
mine the utility of repeat-aware COMPLETE-seq features for disease 
classification, we trained models on repeat-naive and repeat-aware 
feature sets comprising DESeq2-normalized counts or biotype/repeat 
superfamily entropy for each cancer type. This resulted in eight fea-
ture sets comprising repeat-aware and repeat-naive counts, entropy 
and counts filtered by training set differential expression. Optimized 
repeat-aware models were compared with their repeat-naive coun-
terparts, revealing repeat-driven increases in both area under the 
curve (AUC) (Fig. 4a,e,i,m,q) and training sensitivity for liver cancer  
(86% sensitivity) (Fig. 4b,c), oesophageal cancer (56% sensitivity) 
(Fig. 4f,g), colorectal cancer (91% sensitivity) (Fig. 4j,k), stomach cancer 
(86% sensitivity) (Fig. 4n,o) and lung cancer (93% sensitivity) (Fig. 4r,s) 
at 90% specificity.

Liver cancer, which showed a large repeat fraction (Extended 
Data Fig. 2a), had a corresponding dependence on repeat-aware 
features for classification, which resulted in a significant (P < 0.05) 
improvement in training sensitivity (Fig. 4a). Classification perfor-
mance in the respective testing cohorts largely reflected the improve-
ments seen in training, suggesting that our models have the potential 
to generalize to unseen data (Fig. 4c,g,k,o,s). Notably, we observed 
cancer-specific differences in repeat-aware feature dependence 
for disease classification. Stomach (Fig. 4p) and colorectal (Fig. 4l) 
cancer models each used one repeat-aware feature, liver (Fig. 4d) and 
oesophageal (Fig. 4h) cancer models used five and ten repeat-aware 
features, respectively, and the lung (Fig. 4t) cancer model used many 
repeat-aware features and the most overall features. For all five can-
cer models, repeat-aware features enhanced disease classification, 
highlighting the potential of COMPLETE-seq for highly sensitive and 
specific disease diagnosis.

Discussion
Our study reveals the value and utility of broadly characterizing the 
cell-free RNA transcriptome using our repeat-aware COMPLETE-seq 
technology for RNA liquid biopsies. Although other studies have pro-
vided valuable insights into protein-coding cell-free RNA dynamics, 
we find that the vast non-coding and repeat-derived cell-free RNA 
transcriptome is a rich source of abundant and disease-specific RNA 
biomarkers. We show that repeat-derived cell-free RNAs, including 
simple repeat RNAs and TE RNAs transcribed from LINE, SINE and LTR 
elements, are cancer-specific RNAs that are normally present at low 
or undetectable levels in healthy individuals. By creating a custom, 
repeat-aware transcriptome annotation for cell-free RNA quantification 
that incorporates over 5 million repeat element insertions throughout 
the human genome, we show that repeat-derived cell-free RNAs are 
highly enriched in the plasma of patients with cancer, with each cancer 
type showing its own characteristic repeat-derived cell-free RNA signa-
ture. COMPLETE-seq also greatly reduces the number of features used 
for downstream analysis and disease classification from over 5 million 
repeat element insertions to ~15,000 aggregated repeat elements at the 
subfamily level. Notably, our repeat-aware approach achieves highly 

accurate disease classification by incorporating both protein-coding 
RNAs and non-coding RNAs, such as lncRNAs and repeat-derived RNAs.

Although cell-free RNA studies so far have focused on short-read 
RNA-seq technologies, we show that long-read RNA-seq technologies, 
such as single-molecule nanopore sequencing, provide additional 
information regarding the full length of cell-free RNAs. We see differ-
ences in cell-free RNA length (that is, bimodal SINE-derived cell-free 
RNAs) that may serve as additional disease-specific features to further 
improve disease classification via RNA liquid biopsy (that is, RNA 
fragmentomics). Moreover, we also show that COMPLETE-seq robustly 
characterizes repeat-derived cell-free RNAs in both poly(A)-selected 
and total RNA library preparation protocols. In both cell-free RNA-seq 
contexts, COMPLETE-seq analysis increases mapping rate significantly 
and provides a richer feature space that leverages highly abundant 
and disease-specific repeat-derived cell-free RNAs to improve clas-
sification performance.

COMPLETE-seq also provides systemic insights into disease 
pathogenesis, and opportunities to discover drug targets for dis-
eases such as cancer. In addition, our RNA liquid-biopsy technology 
enables non-invasive, systemic monitoring of protein-coding and 
repeat-derived cell-free RNA responses to targeted therapies, such as 
KRAS inhibitors36, which induce treated cancer cells to preferentially 
release TE-derived cell-free RNAs in extracellular vesicles9. Given the 
preferential upregulation and secretion of TE-derived cell-free RNAs 
in response to mutant KRAS8,9, companion diagnostic tests devel-
oped using repeat-aware RNA liquid biopsy would enable the robust 
detection of repeat-derived cell-free RNA signatures of oncogenic 
RAS signalling.

To move towards clinical implementation of COMPLETE-seq, 
future studies will require the generation of larger and more diverse 
cell-free RNA transcriptomic datasets across additional early-stage can-
cer types to further improve diagnostic performance and to accurately 
deconvolve the cell-free RNA transcriptome to determine cancer tissue 
of origin. Moreover, multi-cancer early detection using COMPLETE-seq 
will also require larger prospective studies to evaluate repeat-aware 
classification performance in an asymptomatic population. These 
studies may enable the application of repeat-aware RNA liquid-biopsy 
technology for the early detection of cancer and, more generally, for 
precision health.

Methods
Cell-free RNA isolation from blood plasma
The ExoRNeasy kit (Qiagen) was used to isolate cell-free RNA from 
blood plasma of de-identified healthy controls (blood collected in 
K2EDTA tubes; Discovery Life Sciences) and patients with pancreatic 
cancer (blood collected in K2EDTA tubes; BioIVT). Samples were ini-
tially filtered through a 0.8 µm filter to remove any contaminants, such 
as buffy coat. Filtered plasma was then processed using the ExoRNeasy 
kit to isolate cell-free RNA according to manufacturer instructions.

Library preparation for cell-free RNA-seq
Full-length cDNA was synthesized from cell-free RNA from pancreatic 
cancer and healthy control samples (Takara SMART-Seq HT kit). Size 
distribution of cell-free RNA and resulting cDNA were evaluated using 
an Agilent bioanalyser. Final libraries were made using the Illumina 
Nextera XT DNA Prep kit. These libraries were then sequenced (PE150) 
on an Illumina NextSeq 500.

Nanopore full-length cDNA libraries were prepared as described 
above, followed by manufacturer instructions for the Oxford Nanopore 
ligation kit LSK109. Sequencing for each library was performed on an 
Oxford Nanopore MinION device with R9.4 flow cells.

RNA-seq quality control, alignment and quantification
RNA-seq reads (FASTQ) were trimmed with Trimmomatic37 (v.0.39), 
quality assessed using FastQC38 (v.0.11.9) and visualized using  
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MultiQC39 (v.1.11). Quantification was performed using Salmon40 
(v.1.9.0) with two separate transcriptome annotations:

 (1) The GENCODE consortium Hg38 reference annotation (v.39): 
61,488 genes

 (2) A concatenation of the above reference and the Hg38 repeat  
element track available at the University of California  
Santa Cruz genome browser mySQL server genome-mysql.cse.
ucsc.edu: ~5 million insertions

The following optional arguments were used:
–validateMappings, –gcBias, –seqBias, –recoverOrphans, –range-

FactorizationBins 4
to enable selective alignment, reduce sequence biases, res-

cue reads with unmapped pairs and improved quantification, 
respectively.

The repeat-aware annotation aggregation was performed much 
as the transcript-to-gene aggregation is performed for alignment-free 
quantification approaches such as Salmon. Briefly, we assembled a ref-
erence transcriptome that includes all annotated repeats in Hg38 and 
associated each individual repeat instance ‘transcript’ (n ≈ 5 million) 
with its subfamily ‘gene’ (n ≈ 15,000). Repeat instances were summated 
to the subfamily level.

Nanopore signals were base-called with guppy (v.5.0.7) and  
alignments were quantified using StringTie2 (ref. 41) with the ‘-L’  
argument for long reads using the repeat-aware reference described 
above (number 2).

Differential expression analysis
Salmon quantifications were loaded into R using tximeta (v.1.12.4)42 
and converted to DESeq (v.1.34.0)43,44 objects where counts were aggre-
gated to the gene level from transcripts. Count normalization was 
performed with DESeq2 and pairwise comparisons were calculated 
with the following models:

Internal cohort: ~age + gender + input_volume + condition
External cohort: ~age + gender + condition
Significant differential expression was considered at adjusted  

P values (Padj) of <0.01.

Unsupervised analysis
Using the gene-level, variance-stabilized counts computed above, prin-
cipal component analysis was performed with the prcomp from the R 
stats (v.4.1.3) package on a count matrix filtered to include only genes 
with non-zero s.d. across the samples using the following optional 
arguments: centre = T scale. = T rank. = 50 to calculate the 50 principal 
components from centred, scaled counts.

Pearson correlation was calculated using the cor function from the 
R stats (v.4.1.3) package. K-means clustering was calculated and plot-
ted with the ComplexHeatmap package in R using, where appropriate, 
Pearson correlation values (described above) or expression Z scores 
calculated with the scale function in R with ‘centre = T’ to centre our 
scaled values at zero.

Cell-free RNA length analysis
lncRNA, protein-coding and TE reference sequences were retrieved 
as described above. Sequences were extracted from Hg38 to cre-
ate the biotype reference genomes used in the length analyses. 
Nanopore reads were aligned to Hg38 using Minimap2. To deter-
mine alignments in genomic regions with overlapping annota-
tions, the length of the aligned fragment was compared with the 
lengths of the overlapping repeats. The annotation with the clos-
est length to that of the fragment was chosen as the correct align-
ment. Fragment length was extracted using the PySam (v.0.15.4)  
template length.

Modelling and statistical analysis
Feature engineering. DESeq2-normalized counts of features with a 
non-zero s.d. were used directly in all cases except where they were 
used to calculate Shannon entropy. Entropy (H) was calculated on a 
per-sample basis for each biotype or subfamily as:

Hbiotype = −
n
∑
i
pilog2(pi)

where pi represents the fractional contribution of a given feature i 
(total of n) belonging to the biotype of interest to the total biotype 
abundance.

For classification as described below, eight feature sets belonging 
to three categories were used as input matrices for model training:

 (1) Total: repeat-naive, repeat-aware and repeat-alone features
 (2) Differential expression: repeat-naive, repeat-aware and 

repeat-alone differentially expressed features (calculated on 
training set, excluding test set)

 (3) Entropy: TE clade entropy and TE clade entropy plus 
repeat-naive features

Classification and performance evaluation. Each disease cohort was 
paired with healthy samples and split into stratified training (80%) and 
testing (20%) subsets. Training splits were used to optimize logistic 
regression models by performing tenfold cross-validated classification 
using elastic net penalty values (ɑ) from zero (lasso) to one (ridge) to 
optimize feature selection via the regularization parameter (λ), pro-
ducing a final model trained on the entire training split with selected 
features. Top-performing models were identified by training sensitivity 
at 90% specificity, which was determined by calculating the probability 
threshold that achieved ~90% specificity and AUC.

When feature sets including differentially expressed genes were 
used, differential expression was calculated using only the training 
split and excluding testing samples. Model performance was finally 
evaluated on held-out test data by generating prediction probabilities 
on the test split samples and classifying based on the 90% specific-
ity probability threshold defined in training. Features with non-zero 
coefficients (β) in the final models were identified to determine total 
feature size. Confidence intervals for sensitivity were estimated as 
binomial confidence intervals based on the successful observations 
and the total training/testing cohort. All modelling was performed 
with the cv.glmnet function from the glmnet package and custom 
code written in R.

Statistical analysis. Unless otherwise stated, comparison of means 
was performed with a two-sided, unpaired Wilcoxon rank-sum test. 
Where paired tests are used, lines are drawn to connect the dependent 
observations. When represented using symbolic ranks (*), statistical 
significance is defined as follows: non-significant P > 0.05, *P ≤ 0.05, 
**P ≤ 0.01, ***P ≤ 0.001 and ****P ≤ 0.0001.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The main data supporting the results in this study are available within 
the article and its Supplementary Information. RNA-seq data are avail-
able at the NCBI Gene Expression Omnibus repository, under accession 
number GSE136651. Publicly available data used in this study are avail-
able at the NCBI Gene Expression Omnibus repository, under accession 
number GSE174302. All data generated in this study, including source 
data for the figures, are available from the corresponding author on 
reasonable request.
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Code availability
Custom code used in this study is available on GitHub at https://github.
com/rreggiar/exRNA_disease_biomarkers.
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Extended Data Fig. 1 | Performance overview of COMPLETE-seq on the 
internal cohort. a, Comparison of age distributions between cohorts (Wilcoxon, 
two-sided, ns: p > 0.05) enter line, median; box limits, upper and lower quartiles; 
whiskers, 1.5x interquartile range. b, Number of samples, stratified by gender, in 
each cohort. c, Heatmap (K-means) of Pearson correlation between panc samples 
using Repeat-naïve quantification. d, Heatmap (K-means) of Pearson correlation 
between panc samples using Repeat-aware quantification. e, PCA dimensions 

1 & 2 calculated using variance-stabilized, Repeat-naive quantifications for 
normal and panc samples. f, PCA dimensions 1 & 2 calculated using variance-
stabilized, Repeat-aware quantifications for normal and panc samples. g, MA plot 
of log2FoldChange between panc and normal samples compared to log-scale 
baseMean derived from DESeq2. Significantly DE genes/subfamilies are full 
opacity and colour.
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Extended Data Fig. 2 | Nanopore sequencing of cell-free RNA reveals biotype-
specific fragment-size patterns. a, Distribution of cell-free RNA lengths in base 
pairs (bp) for GENCODE biotypes or - repeat superfamily elements in pancreatic 
(panc 6, panc 7) cancer patients. b, Density plots depicting the relationship 

between expected (genomic SINE locus length) and observed SINE cell-free RNA 
length in pancreatic (panc 6, panc 7) cancer patients. c, Cumulative distribution 
function plot of SINE cell-free RNA length empirically calculated in pancreatic 
(panc 6, panc 7) cancer patients.
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Extended Data Fig. 3 | Nanopore and Illumina show agreement in the 
quantification of most GENCODE-annotated genes. a, Scatter plot depicting 
transcripts-per-million abundance for transcripts detected in matched nanopore 

and Illumina libraries from sample panc 7. Linear fit described. b, Scatter plot 
depicting transcripts-per-million abundance for transcripts detected in matched 
nanopore and Illumina libraries from sample panc 6. Linear fit described.
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Extended Data Fig. 4 | Repeat-aware analysis of cell-free RNA from 5 different 
cancers. a, Distribution of biotype representation (by DESeq2 normalized count) 
in cell-free RNA-seq quantifications for each cancer type, coloured by GENCODE 
biotype or repeat subfamily, and facetted by stage. b, Comparison of mapping 

rates between use of a Repeat-naïve (GENCODE v39) reference annotation and 
Repeat-aware reference annotation (Wilcoxon, paired, two-sided). center line, 
median; box limits, upper and lower quartiles; whiskers, 1.5x interquartile range. 
ns: p > 0.05, *: p <= 0.05, **: p <= 0.01, ***: p <= 0.001.
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Extended Data Fig. 5 | Repeat-specific diversity across internal and external 
cohorts. a, Distribution of repeat representation (by DESeq2 normalized count) 
in cell-free RNA-seq quantifications for pancreatic cancer, coloured by repeat 

subfamily, and facetted by stage. b, Distribution of repeat representation (by 
DESeq2 normalized count) in cell-free RNA-seq quantifications for each cancer 
type, colored by repeat subfamily.
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Extended Data Fig. 6 | Differential expression and variability of repeat-
elements in 5 different cancers. a-e, MA plots of log2FoldChange between 
labeled cancer type and healthy donor samples compared to log-scale baseMean 
derived from DESeq2. Significantly DE genes/repeat subfamilies are full opacity 
and color. f, Comparison of significantly different (Wilcoxon, two-sided) 

Shannon Entropy distributions for GENCODE biotypes and repeat subfamilies. 
center line, median; box limits, upper and lower quartiles; whiskers, 1.5x 
interquartile range. ns: p > 0.05, *: p <= 0.05, **: p <= 0.01, ***: p <= 0.001,  
****: p <= 0.0001.

http://www.nature.com/natbiomedeng
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Data collection RNA-sequencing data were generated using an Illumina NextSeq 500, and base-called with up-to-date Illumina Real Time Analysis software.

Data analysis FastQC (0.39), MultiQC (1.11), Salmon (1.6.0) were used for QA/QC, alignment, and quantification of RNA-sequencing data, respectively.  
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The main data supporting the results in this study are available within the paper and its Supplementary Information. RNA-seq data are available at the NCBI Gene 
Expression Omnibus repository, under accession number GSE136651. Publicly available data used in this study are available at the NCBI Gene Expression Omnibus 
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Reporting on sex and gender Sex is reported as a covariate, where appropriate.

Population characteristics Diagnosis (healthy, pancreatic ductal adenocarcinoma), age, sex and stage of disease.

Recruitment Samples were purchased from the clinical research organizations BioIVT and Discovery.

Ethics oversight Because we purchased the de-identified samples, we received IRB exemption (the study is not considered to be research 
involving human participants).
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Sample size 32 total (N = 10 Pancreatic Cancer, N = 22 Normal healthy donors) blood-plasma samples were used for the study, to enable preliminary 
observations regarding the information available in the assay and the analytical approach. Publicly available (N = 295) data were used to 
perform diagnostic modelling.

Data exclusions No data were excluded.

Replication Each of the 32 samples was sequenced once.

Randomization All RNA-sequencing data prepared from human blood plasma were analysed equally.

Blinding All sample identities were known throughout the study.
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