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Sensing the DNA-mismatch tolerance of 
catalytically inactive Cas9 via barcoded DNA 
nanostructures in solid-state nanopores

Sarah E. Sandler    1, Nicole E. Weckman    1,4, Sarah Yorke    1,5, 
Akashaditya Das2,6, Kaikai Chen    1, Richard Gutierrez3 & Ulrich F. Keyser1 

Single-molecule quantification of the strength and sequence specificity of 
interactions between proteins and nucleic acids would facilitate the probing 
of protein–DNA binding. Here we show that binding events between the 
catalytically inactive Cas9 ribonucleoprotein and any pre-defined short 
sequence of double-stranded DNA can be identified by sensing changes 
in ionic current as suitably designed barcoded linear DNA nanostructures 
with Cas9-binding double-stranded DNA overhangs translocate through 
solid-state nanopores. We designed barcoded DNA nanostructures to 
study the relationships between DNA sequence and the DNA-binding 
specificity, DNA-binding efficiency and DNA-mismatch tolerance of Cas9 
at the single-nucleotide level. Nanopore-based sensing of DNA-barcoded 
nanostructures may help to improve the design of efficient and s pe ci fic r ib-
onucleoproteins for biomedical applications, and could be developed into 
sensitive protein-sensing assays.

The recognition of nucleic acid sequences by proteins is fundamental to 
biology. Owing to the specificity of protein–DNA binding, interactions 
between these biomolecules form the basis of many biosensing tools, 
biomolecular engineering techniques and new therapies1,2. In particular, 
clustered regularly interspaced short palindromic repeats (CRISPR)/
dCas9 systems have emerged as powerful tools for targeted gene expres-
sion as well as diagnostics, and substantial work is currently being under-
taken to improve the efficiency and specificity of CRISPR/Cas3,4. It is 
therefore essential to develop simple and sensitive assays that analyse 
the interactions between nucleic acids and proteins in their folded and 
functional states, to capture their native behaviour. Furthermore, it is 
imperative that these methodologies be sensitive to single-nucleotide 
differences in sequence, which can dramatically impact binding.

Resistive pulse sensing with solid-state nanopores is an appealing 
method to assess binding events. The technique offers the flexibility to 
study DNA, RNA and proteins in their native states with a single sensing 

system. Nanopore sensing relies on measuring changes in ionic current 
as molecules are driven through a nanometric pore using an applied 
electric field. The ionic-current change owing to a translocation event 
reflects the size, shape and charge of the molecule5. There are two types 
of nanopore: biological and solid-state. Although biologically derived 
protein nanopores are ideally suited for DNA sequencing6, solid-state 
nanopores offer control over pore size during the fabrication process, 
allowing for the detection of a wide range of analytes.

Although this versatility permits the analysis of a variety of biomole-
cules, the lack of specificity in sensing also presents a challenge for 
multiplexed detection, wherein the targets of interest should be easily 
differentiated. To overcome this barrier, we capitalize on DNA nano-
technology, which enables the design and assembly of custom nano-
structures that contain specific binding sites for proteins of interest7.

In this Article, we fabricate solid-state nanopores by pulling 
quartz capillaries, also known as nanopipettes, to be used as a general 
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sequence for the dCas9 (ref. 7). We expanded the utility by adding 
designed dsDNA overhangs, which allowed us to rapidly assess the 
sequence-specific gRNA binding specificity of dCas9 probes to any 
short DNA sequence of interest. In addition to measuring dCas9 binding 
to the matching target sequence, the dsDNA overhang can be designed 
with mutations to test the sensitivity of the crRNA to these modifica-
tions. We show that these methods are quantitative, and that they can 
differentiate varying concentrations of DNA with and without intro-
duced mutations in the same sample. This approach of testing gRNAs 
may facilitate the design of dCas9 RNPs used for gene-expression and 
diagnostic applications to be more efficient and specific.

Results
Evaluating sequence-specific dCas9 binding in nanopores
DNA nanostructures have previously been shown to be useful tools 
for the multiplexed measurement of biomolecule binding using the 
nanopore sensing system7. Figure 1 introduces the design of the DNA 
nanostructure and nanopore sensing system and demonstrates its use 
for detecting the binding of a dCas9 RNP to a particular target dsDNA 
overhang sequence.

In Fig. 1a we show a schematic of the DNA nanostructure. As 
described in detail in Methods, the DNA nanostructures are created 
from a single-stranded DNA (ssDNA) backbone, with staple oligos 
complementary to the backbone that bind along its length. The sec-
tions of the nanostructure that are fully complementary to the ssDNA 
backbone strand appear in a translocation event as a current drop 
corresponding to dsDNA. A section of the staple oligos is replaced, and 
a portion of the DNA nanostructure is patterned into a DNA barcode 
consisting of five spikes which can be set to either ‘0’ or ‘1’. The barcode 
design is based on previous work that was optimized to create clearly 
distinguishable spikes in nanopores with diameters around 15 nm 
(ref. 7). While this barcode design leaves us with only 25 (32) sequences 
that can be tested, we have already explored the maximum limits of 
barcodes. We can increase the density of the nanostructures and the 
signal-to-noise ratio using smaller nanopores with 56 bits on a single 
DNA carrier, allowing for a library of 256 (>1016) molecules25. The number 
of multiplexed protein–DNA interactions is limited only by the number 
of nanopores and our ability to assemble these DNA nanostructures. In 
the sensing region of the nanostructure, two oligos were designed to 
create a dsDNA overhang that is 50 bp in length. This dsDNA overhang 
can present any DNA sequence of interest including target sequences 
for dCas9 binding.

The different nanostructures depicted in Fig. 1b can be combined 
in solution and translocate through the nanopore one by one. Two 
different barcoded nanostructures 11111 and 11001 are shown in this 
schematic with bound dCas9 and unbound dCas9 along with the signals 
generated by the structures during nanopore translocation (Fig. 1c). 
A raw current trace both with and without DNA/protein can be seen 
in Supplementary Fig. 1. Translocation can be in either direction as 
seen in Supplementary Fig. 2. When dCas9 does not bind to the target 
dsDNA in the overhang region, there is the absence of the additional 
spike. The overhang region contains only 50 bp of dsDNA below the 
detection limit of our nanopores and hence generates no clear spike 
in the signal. Thus, the presence or absence of dCas9 binding to the 
nanostructure can be clearly distinguished by a simple thresholding 
algorithm around the expected spike location.

Quantifying DNA nanostructures using dCas9 binding
The single base specificity of dCas9 gives it an advantage as a diagnostic 
tool to probe point mutations in clinically relevant sequences. The single  
point mutation in the katG315 gene in Mycobacterium tuberculosis  
is responsible for antibiotic resistance to isoniazid for 64.2% of resistant 
cases26. The target DNA region that contains this mutation was selected 
as seen in Fig. 2a. Before using dCas9 RNPs as a diagnostic tool, creating 
a method to test the specificity of the probe is essential. This was tested 

detection tool. Double-stranded DNA (dsDNA) creates an ionic current 
drop in the nanopore signal. When binding an analyte such as a protein 
to the dsDNA, secondary current spikes are created. By designing 
specific binding sites or sequences along a DNA strand, an identifi-
able pattern is produced. This fingerprint is observable as a unique 
signature of spikes in the ionic current. The labelling and mapping 
of targeted native DNA sequences in nanopores has previously been 
accomplished using a variety of methods, including peptide nucleic 
acid probes8,9, biochemical ligation10, transcription factors11 and chemi-
cal modification with methyltransferase and biotinylation12. Recently, 
the use of nanopore analysis to measure the binding of a variant of 
catalytically inactive or dead Cas9 (dCas9) to dsDNA has been dem-
onstrated2,13 Our system builds upon these initial proof-of-concept 
works by introducing designed DNA nanostructures for user-defined 
DNA target testing, thus expanding the application space of nanopore 
sensing, DNA nanotechnology and screening of protein–DNA interac-
tions. Here we demonstrate that, when carefully designed and tested, 
dCas9 complexes could act as a label allowing highly specific mapping 
of the DNA to determine single base-pair changes, which is particularly 
important for diagnostics4,14.

The dCas9 protein is a catalytically inactivated form of the CRISPR- 
associated protein, Cas9, that will bind, but not cut, a 20-base-pair (bp)  
target dsDNA sequence. The dCas9 ribonucleoprotein (RNP) is a 
complex assembled with a dCas9 protein and guide RNA (gRNA). The 
gRNA consists of two RNA strands including the CRISPR RNA (crRNA) 
which is complementary to the target dsDNA sequence, as well as a 
trans-activating crRNA (tracrRNA). The binding site of the dCas9 to 
the dsDNA is programmed by changing the sequence of the crRNA. 
The RNP binds in the presence of an NGG protospacer adjacent motif 
(PAM) and will then hybridize to 8–12 target nucleotides upstream 
of the PAM, also known as the ‘seed’ region. Mismatches in the seed 
region will prevent the RNP forming a complex with the target, whereas 
mismatches downstream in the ‘distal’ region primarily act to reduce 
the lifetime of the complexes15.

By targeting the dCas9 to different dsDNA sequences, unique and 
sequence specific patterns or ‘barcodes’ of bound dCas9 can be created 
and used for multiplexed identification of DNA using a nanopore2. To 
capture the full potential of these dCas9-based systems, however, they 
must be quantitative, scalable and specific, demanding the screening 
of dCas9 to select for high binding efficiency and specificity. Binding 
is highly dependent on the gRNA sequence; while in some cases this 
interaction is incredibly specific, other sequences may possess hun-
dreds of off-target sites, limiting the utility of these systems16. Current 
methods for assessing the binding of dCas9 to DNA are primarily based 
on sequencing and computational modelling17–20.

Computational methods are very useful to guide experimental 
design, but are limited due to their sensitivity to data fluctuation and 
insufficient training data21. Moreover, although mismatches are known 
to impact the probability and stability of binding events for dCas9, it is 
difficult to create a single set of general rules for assessing mismatch 
tolerance for a number of reasons21. Firstly, almost all computational 
tools available are based on large-scale experimental datasets geared 
towards predicting cleavage, not binding, and it has been shown for 
Cas9 the relationship between binding and cleavage is complex18,22. 
An additional layer of complexity arises from evidence that cleavage 
efficiency is largely dependent on gRNA sequence, with each probe 
having unique guide-intrinsic mismatch tolerance (GMT)23,24. GMT 
makes it difficult to predict the specificity of a probe without testing 
it, highlighting the need for a tool to rapidly screen assay probes.

By pairing single-molecule nanopore measurements with DNA 
nanotechnology, we have created a system that can uniquely and accu-
rately assess the specific binding interactions of dCas9 probes and 
target dsDNA. Through the design of DNA nanostructures patterned 
with engineered dumbbell barcodes at one end of the nanostructure, 
we created a unique spike pattern that corresponds to a specific target 
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by creating two different nanostructures with different barcodes and 
different overhangs with DNA target regions identical to the wild-type 
genome and the resistant genome with the mutation.

We added one of the dCas9 probes at a time to equimolar con-
centrations of the two DNA nanostructures as seen in Fig. 2a. This was 
done to test the binding efficiency and specificity of each probe in the 
presence of the single base-pair change as seen in Fig. 2b. We found 
that both of the dCas9 probes had high specificity to their perfectly 
matched target overhang with over 94.7% and 94.0%, respectively, of 
the DNA nanostructures events with clear barcodes being correctly 
labelled. The nanostructures with a mutation that mismatched to 
the probe being tested were found to have binding of 5.3% and 6% 
respectively. Similarly, a control done with no PAM sequence and the 
purple probe was found to have a binding of 4.2% (N = 169). These false 
positives are most likely due to knots in the DNA during translocation 
which may produce similar signals to a bound dCas9 protein in the 
event trace. The equations used to calculate these values can be seen in 
Methods. The number of events differs between experiments because 
of the percentage of clearly labelled unfolded events that are used in 
data analysis after measurement. Our results show that, with probes 

that are carefully designed and tested, we can differentiate binding to 
dsDNA targets with single nucleotide specificity.

Another crucial capability for biosensing tools, is the ability to 
quantify relative abundance of target sequences. We tested the quan-
titative nature of the binding of dCas9 probes to their target DNA by 
mixing equimolar amounts of two crRNA probes and varying the ratio 
of the two different target DNA nanostructures identifiable by their 
respective barcodes, as seen in Fig. 2c. Using relative concentrations 
of DNA nanostructures with each barcode in ratios 0:100, 25:75, 50:50, 
75:25 and 100:0, the ratio of events with the barcode and signature 
dCas9 spike was found to be consistent with the relative concentration 
added as can be seen in Fig. 2c. For example, in these experiments, 
before dilution for nanopore experiments, a total of 3 nM of DNA is 
mixed with 50 nM of each formed RNP. Thus, if one adds 0.75 nM of 
10011 barcode nanostructure and 2.25 nM of 11111 barcode nanostruc-
ture, upon adding equimolar concentrations of the RNPs one will still 
find the percentage of nanostructure events with the 10011 barcode 
and a dCas9 spike will be close to 25% and the number of nanostruc-
ture events with a 11111 barcode and a dCas9 spike will be close to 75%. 
If one knows the concentration of 10011 added was 0.75 nM, they can 
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Fig. 1 | DNA nanostructures for assessing the specific binding dCas9 to 
target sequences. a, Schematic of DNA structure with DNA barcode region 
and dCas9 overhang. Both the sequences used for the dumbbell region that 
creates the barcode (blue) and the schematic of the target DNA region that 
acts as an overhang (green) are highlighted. Additionally, the components 
involved in the dCas9 RNP are shown. b, Solid-state nanopore with two different 

DNA nanostructures (11111 and 11001) mixed together in solution. Both these 
structures are shown with and without dCas9 binding, highlighting the capability 
to determine specificity and binding efficiency. c, Current traces from the 
nanopore of the different DNA nanostructures when two probes are added.  
The 50 bp overhang cannot be resolved unless the dCas9 is bound.
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infer through relative concentration that the other barcode would be 
2.25 nM. These percentages were normalized to the measured bind-
ing efficiencies for each probe as seen in Methods. We measured the 
samples in at least three different pores to account for variability in 
pore fabrication, as shown by the error bars, with consistent results 
independent of the pore used. The reproducibility was further tested 
by testing three independent repeats from the step of sample prepara-
tion in three different pores when mixing the structures in a 2:1 ratio. 
The standard deviation between the independent repeats was only 
~6% as seen in Fig. 2d. Furthermore, by adding several dCas9 probes to 
a mixed DNA sample, our method can be used to quantify the relative 
concentrations of different DNA targets in solution. This combination 
of quantification of relative DNA concentrations in a mixture as well 
as the specificity for detecting single base-pair changes is a proof of 
concept for a powerful nanopore sensor for multiplexed DNA analysis.

The ability to use CRISPR/dCas9 probes to quantitatively measure 
the amount of a given DNA sequence present in a sample has many 
implications. The concentration of DNA in samples has been measured 
in nanopores by methods such as the electrophoretic capture model27 
and controlled counting method28,29. However, methods, such as the 
controlled counting method, rely on a DNA control that has a notably 
different length than the unknown sample30. While our method requires 
an internal standard for quantitative detection, there is no need for 
pre-existing knowledge of the size of the target DNA. The specificity 
of the method is determined by the bound dCas9 probes. One can 
use DNA markers or several dCas9 probes to create a pre-designed 

spike pattern on the DNA. Spike patterns identify a DNA marker at a 
known concentration by mixing with a sample of DNA at an unknown 
concentration. The combination allows one to determine the relative 
concentration of the target.

Single nucleotide specificity on varying position and identity
Understanding the target specificity of probes based on both position 
and base-pair change of the mutation is essential for designing dCas9 
probes both for genomic engineering and for CRISPR diagnostic tech-
niques. This was studied using a different DNA nanostructure with three 
overhangs highlighted in Fig. 3a,b. As seen in Fig. 3b, we introduced 
single base-pair changes in the overhangs at both the PAM site and at 
various positions from the PAM site to compare the effect both posi-
tion and base identity mismatch. The sequences for these overhangs 
can be found in Supplementary Table 4 and the sequences for dumb-
bells that generate spikes can be seen in Supplementary Table 5. The 
binding of a single dCas9 RNP complex (Fig. 3c) was tested against the 
different mismatched DNA nanostructures in the nanopore. Example 
events can be seen in Fig. 3d. The normalized binding ratio was then 
calculated for the probe at the different positions with the different 
base-pair identities and plotted in Fig. 3e. The equations used to cal-
culate normalized binding ratio can be found in Methods. These cal-
culations rely on normalizing to the value for binding to the control 
(Xcontrol (10)), which was 33.7% with a 2.4% standard deviation as seen 
in Supplementary Fig. 3. Thus, if a probe is found to have a binding 
percentage of 33.7%, it would correspond to a normalized binding 
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target DNA containing no PAM was also tested as seen in grey, where N > 165. 
Calculations were made using equations (1) and (2). c, Quantification of labelled 
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(green or purple) in solution with equimolar concentrations of the two dCas9 
probes (standard deviation represents one sample measured in at least two 
different pores). Calculations were made using equations (3–6). N > 85 events for 
each condition. Error bars represent standard deviation between nanopores.  
d, Reproduced experiments with 11001 and 11111 nanostructures barcode at a ratio 
of 2:1 in solution with equimolar concentrations of both dCas9 probes added. 
The different bars (1, 2 and 3) are three independent sample preparation repeats 
in three different nanopores. Calculations were made using equations (3–6). 
N > 100 events for each measurement. In all experiments, dCas9 probes were 
added in excess to target DNA molecules.
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ratio of 1.0. The normalization is an essential step because this lower 
binding efficiency for these experiments is due to an increase in salt 
concentration in the buffer. With more DNA dumbbells, a higher salt 
concentration must be used to slow translocation for the nanopore, 
as seen in Supplementary Fig. 4; however, this does reduce efficiency 
of binding, as seen in Supplementary Fig. 5.

Mutations one, two and three base pairs proximal to the PAM show 
the lowest binding efficiencies, suggesting that this site has the highest 
specificity for dCas9 binding for this given probe. As the mutations 
near the PAM distal region, there is a steady increase in dCas9 binding. 
This is consistent with findings in the literature that PAM proximal 
bases are more crucial for successful identification of the PAM site and 
the subsequent binding by the dCas9 (ref. 31). The findings also agree 
with literature in that bases in the PAM distal region of dCas9 are not 
as specific for dCas9 binding31.

Consistent with the literature, the DNA with mismatches with the 
highest relative binding occur due to the mispairs adopting ‘wobble’ 
base pairing or Watson–Crick-like conformers32–34. The most tolerated 
base pairing (rG-dT, rU-dG, rA-dC and rC-dA) is a result of the flexible 
DNA backbone enabling slight shifts in the position of nucleotides, 
hence the name ‘wobble’. Our investigation of the most prevalent mis-
matched DNA–RNA base pairings shows these wobble base pairs to be 
dominant from the PAM site to site 5. This suggests that, near the PAM 
site, mismatches in the base pairing are tolerated due to the flexible 
DNA backbone misaligning nucleotides, and that these mismatches do 
not hinder successful DNA–RNA base pairing. However, bases further 
from the PAM site, starting at position 5, do not show this preference for 
wobble mismatch. This perhaps suggests that, as the mutations travel 
further from the key PAM ‘anchoring’ site, there are other external fac-
tors contributing to the mismatched base pairing. The theory that the 
‘wobble’ base pairing influences specificity agrees with recent works 
where the incorporation of inosine into dCas9 gRNAs reduces binding 

to cognate DNA sequences, but allows for pairing with sequences 
bearing single substitutions at overlapping position35. Additionally, 
the structural basis of wobble effects in the context of Cas9 has been 
established in the literature, supporting these claims36.

Evaluating single-mismatch specificity has been highly inves-
tigated in the literature with a number of different probes. While 
consistently most probes show the PAM proximal/distal trend and 
the wobble-base trend, each guide differs from paper to paper. For 
example, in our study, we found a decrease in specificity, relative to 
the general trend, at position 8, and a notably increased specificity at 
position 10. Previous research, although measuring cleavage efficiency, 
has shown that the core sequence sensitive to mismatch is at base pairs 
4–7 upstream of the PAM37. Other research, however, has shown no 
major difference between positions 2 versus 4 for cleavage efficiency, 
but has demonstrated there is an increase in sensitivity to mismatches 
at positions 11 and 13 (ref. 38). These observations are consistent with 
the concept that probes possess varying degrees of GMT, which we go 
on to investigate in Fig. 4.

Effect of guide-intrinsic mismatch on binding
To highlight the usefulness of this assay tool, two probes, depicted in 
Fig. 4a, were compared. These probes were selected because of their 
varying prediction scores using CHOPCHOP but similar binding effi-
ciencies to target DNA structures as seen in Fig. 4b (ref. 39). Despite 
the prediction efficiency score for probe 2 being low, it was found 
to have a high binding efficiency. This gap between predicted and 
measured may be due to the predicted score being based on cleavage 
efficiency rather than binding, as it is known the two are not directly 
interchangeable22. However, because of the lack of computation tools 
to predict binding, CHOPCHOP, which provides a predicted cleavage 
efficiency value was used. Because of the similar binding efficiency, it 
was postulated the probes may have similar trends in single base-pair 
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nanopore event trace. The furthest on the left represents binding of the RNP 
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mismatched target sequences, highlighting low specificity. e, Bar plots for each 
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Error bars are result of standard deviation from normalization to control 
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specificity. The first four base pairs from the PAM were interchanged 
with bases that were not wobble base pairs, which would suggest 
the probes should have a higher level of specificity. However, probe 
2 showed to have very little observed sensitivity to single base-pair 
mutations with a very high normalized binding efficiency as seen in 
Fig. 4c. Despite the high binding efficiency, this lack of specificity 
highlights that this probe would not be useful as a tool for detecting 
single base-pair changes in clinical samples. In contrast, probe 1 shown 
in Fig. 4c is a highly specific probe, which would make it useful as a 
diagnostic tool. This demonstrates the need for an assay such as the 
one demonstrated this work to test specificity of dCas9 probes before 
implementation in further experiments. Because of this interest-
ing finding, this probe was then tested further by introducing single 
base-pair changes into the gRNA sequence as seen in Fig. 4d. Despite 
similar predicted binding efficiencies between the four probes, as 
seen in Fig. 4e, the normalized binding efficiencies that were meas-
ured varied considerably. This highlights the claims in the literature 
that the efficiency of the dCas9 and Cas9 RNP depends uniquely on 
the gRNA being used, with different guides having different GMTs23,24. 
Introducing single base-pair mismatches in the DNA has a completely 
different effect to introducing base-pair changes in the RNA at the 
same location as seen in Fig. 4f. Just one single base-pair change among 
guides can result in completely different behaviour and sensitivity 
to single base-pair changes. Because of these behaviours that are 
unique to guide and the current limitations of computational tools 
to predict these behaviours, the assay technique as demonstrated in 
this work is essential to informed dCas9 probe design.

Discussion
In this work, we highlight the potential of using dCas9 probes for the 
highly specific detection of base-pair changes in DNA. We differentiated 
mixed sequences with single base-pair specificity, and quantified the 
relative concentrations of DNA using dCas9 probes. However, to use 
dCas9 probes for these applications, it is essential to first evaluate the 
specificity of the probe. Hence, we have presented a model assay that is 
sensitive and specific for testing dCas9 probes. This assay can be used 
to verify the specificity of probes before they are used in diagnostic 
and gene-editing contexts.

Although currently this system is limited to the detection of dCas9 
binding, there is potential for translation as a tool to measure cleavage 
as well. It has been shown that SpCas9 remains bound very stably to 
DNA after cleavage40. Similarly, Cas12a cleaves the PAM distal region of 
the target, but remains bound in the PAM proximal41. There is potential 
to innovate DNA nanostructure designs similar to the one discussed in 
this work and test how the cleavage of a variety of different enzymes 
can be affected by mismatches in the target DNA.

Beyond testing the specificity, we illustrate the utility of these 
probes in the diagnostic realm as a method of determining relative con-
centration. Concentration measurements are particularly important 
in diseases or illnesses. The relative abundance of a certain bacteria or 
virus is relevant to determine the treatment, or to justify a change in 
treatment for example due to increasing concentrations of a resistance 
marker. As we have shown here, an additional benefit is that dCas9 
probes is that they can potentially be used to detect relative concentra-
tions of a pathogen with a specific mutation.
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Fig. 4 | Probe-to-probe variation on the specificity of the Cas9 complex. 
a, Probe 1 and probe 2 were designed and compared using nanostructures 
described in Fig. 1. b, Comparing binding efficiency of probes to each other and 
to the predicted efficiency from CHOPCHOP (grey)39. N = 288 events for probe 1 
and N = 558 events for probe 2. Error bars are the standard deviation between at 
least four different measurements in different pores for each probe. c, Bar graphs 
of binding ratio normalized to efficiency of probes to target. Sensitivity to single 
base-pair changes varies greatly between the two probes, highlighting influence 

of GMT. Each experiment has at least N > 45 events. d, Variations of probe 2 with 
mutations in gRNA. e, Comparison between predicted efficiency (grey) and 
measured binding efficiency when mutations are introduced into gRNA. Each 
experiment has at least greater than N > 55 events. f, Bar graphs with normalized 
binding ratios depicting probe dependence of GMT and large variation of 
binding among probes with introduced mutations. Each experiment has at least 
more than N > 55 events.
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Our methodology has the potential to be translated to applica-
tions beyond those shown in this work in both diagnostics and gene 
editing. With an expanded set of barcodes, it can be used as a highly 
specific, high-throughput approach to assaying the dCas9 RNPs to test 
hundreds of gRNAs in the same measurement. While there are in vitro 
and cell-based high-throughput techniques, such as chromatin immu-
noprecipitation followed by sequencing42, it may be excessive depend-
ing on the final application. One advantage of the nanopore system is a 
few sequences of interest can be tested with minimal sample amounts 
(fM concentrations per experiment), which can save the user time and 
resources. A reduction of enzyme amounts as well as target samples is 
especially relevant in diagnostic use cases1,43 and in investigations of 
dCas9 inhibition44, where the electrophoresis mobility-shift assay is 
the de facto standard. In terms of developing diagnostics, using dCas9 
as a label on native DNA has already been demonstrated2, and by using 
the nanopore DNA-nanostructure system one can efficiently design 
and test dCas9 probes.

The combination of nanopore sensing and CRISPR/Cas molecular 
engineering techniques enables a single-molecule highly specific 
approach to assessing the binding efficiency and specificity of CRISPR/
dCas9 probes. To this end, we have created DNA nanostructures con-
taining a DNA overhang that can be designed to have different dCas9 
binding sites, with different ‘barcodes’ identifying the overhang 
sequence to enable multiplexed measurements. We have shown that 
this system can be used for assessing the specificity of dCas9 probes 
and the guide-intrinsic mismatch intolerance of different probes. This 
is particularly important when using these probes in diagnostic appli-
cations for the detection of single base-pair changes. Compared with 
traditional techniques, assessing binding with this system provides 
advantages in speed and specificity.

Methods
DNA-nanostructure barcodes
To observe that the CRISPR–dCas9 system is specific enough to detect 
the single base pair, DNA constructs with different ‘barcodes’ plus an 
overhang sequence for dCas9 was created. The DNA construct was 
synthesized from pairing a linearized 7.2 kbp single-stranded (ss) 
M13mp18 DNA (GuildBiosciences) with 190 complementary oligo-
nucleotides via Watson–Crick base pairing to produce full dsDNA 
over the period of 1 h in a thermocycler. All oligonucleotides were 
synthesized by Integrated DNA Technologies and dissolved in IDTE 
(10 mM Tris–HCl and 0.1 mM ethylenediaminetetraacetic acid, pH 8.0),  
and the sequences can be found in Supplementary Information. The 
sample is then filtered using a 100 kDa Amicon filter and measured 
in a nanodrop spectrophotometer for concentration information. 
Based on the nanodrop measurement, typical yield is 75–95%. For 
the nanostructures in Fig. 1, within the 190 oligos are five groups of 
equally spaced simple dumbbell hairpin motifs to create the spikes 
that act as a barcode on the DNA nanostructure7. Each group consists 
of 11 DNA dumbbells to create a single spike. The exact sequences 
with their numbers are shown in Supplementary Table 1 in Supple-
mentary Information following a previous work7. The overhang was 
created by replacing oligos nos. 142 and 143 with a 90 bp oligo made 
up of 30 bp segments to match the M13 backbone and 50 bp of the 
specific sequences containing the target sequences we aimed to test. 
The 50 bp dsDNA overhang is not large enough to generate a current 
blockade that can be observed. These overhangs are provided in Sup-
plementary Table 2 for the experiments in Fig. 2 and Supplementary 
Table 3 for the experiments in Fig. 4. For the second nanostructure, 
shown in Supplementary Fig. 3, oligos no. 44, 45, 81, 82, 118 and 119 
were replaced with overhang sequences as found in Supplementary 
Table 4. The dumbbells were made by replacing oligos no. 23–28, 
60–65, 97–102, 134–139, 148–153 and 162–167 with the sequences in 
Supplementary Table 5. All samples were stored in a storage buffer of 
10 mM Tris 0.5 mM MgCl2.

Design of dCas9 probes and binding
Catalytically deactivated Cas9 D10A/H10A (dCas9) from Streptococcus 
pyogenes binds with a tracrRNA and a sequence-specific RNA (crRNA), 
both synthesized by Integrated DNA Technologies and dissolved in 
IDTE (10 mM Tris–HCl and 0.1 mM ethylenediaminetetraacetic acid,  
pH 8.0). The target sequences for the crRNA for the probes were 
designed using online software (http://chopchop.cbu.uib.no/)39 and 
can be found in Supplementary Information. To assemble the dCas9 
RNPs, the tracrRNA (200 nM), crRNA (250 nM) and dCas9 (100 nM) 
were incubated in a low-salt buffer (25 mM HEPES–NaOH (pH 8.0), 
150 mM NaCl and 1 mM MgCl2) at 25 °C for at least 20 min.

The assembled dCas9 probes were then incubated with the DNA 
nanostructures for at least 20 min at 25 °C, with the dCas9 probes 
added in excess of typically 15 dCas9 probes per DNA binding site. 
The samples containing DNA nanostructures labelled with dCas9 are 
diluted to 0.1–0.3 nM into a 2 M LiCl, 1× TE buffer solution or 4 M LiCl, 
2× TE, depending upon the nanostructure, immediately before the 
beginning of the measurement in the nanopore system.

Nanopore fabrication and measurement
Nanopores are fabricated from commercially available quartz capillar-
ies (0.2 mm inner diameter/0.5 mm outer diameter Sutter Instruments) 
using a laser-assisted pipette puller (P-2000, Sutter Instrument) to 
around 15 nanometres. We produced a polydimethylsiloxane (PDMS) 
chip with 16 conical nanopores with a communal cis reservoir and 
individual trans reservoirs. Detailed instructions for production can 
be found at Bell et al.45. Silver/silver-chloride (Ag/AgCl) electrodes are 
connected to the cis and trans reservoirs in the polydimethylsiloxane 
chip. The size of each nanopore is estimated before beginning meas-
urements by taking a current–voltage curve in the baseline electrolyte. 
The central cis reservoir contains the sample and is grounded, while 
a 500 mV bias voltage is applied to the trans reservoir to drive DNA 
transport through the nanopore. The measurement is then taken until 
around 1,000 folded and unfolded events are gathered, with a typical 
time range of 45 min to 2 h depending upon the concentration used 
and nanopore. Typically, of these 1,000 events, 300 are unfolded and 
then analysed. An example of the folded and unfolded events can be 
seen in Supplementary Fig. 6.

The Axopatch 200B patch-clamp amplifier (Molecular Devices) 
was used to collect current signals. The set-up is operated in whole-cell 
mode with the internal filter set to 100 kHz. To reduce noise, an 
eight-pole analogue low-pass Bessel filter (900CT, Frequency Devices) 
with a cut-off frequency of 50 kHz is also used. The applied voltage is 
controlled through an I/O analogue-to-digital converter (DAQ-cards, 
PCIe-6251, National Instruments), using a program on LabView 2016 
to simultaneously record the current signal at a bandwidth of 250 kHz.

Analysis of nanopore data
From the Labview GUI, experimental data are stored as technical data 
management streaming (TDMS) files. First, a translocation finder 
Python script (part of the nanopyre package found at https://gitlab.
com/keyserlab/nanopyre) is used that identifies the events from the 
raw traces and stores them in an hdf5 file. After the initial transloca-
tion finder analysis, the events from the hdf5 files are read into Python 
(using the nanopro package https://gitlab.com/keyserlab/nanopro) 
and all events with current noise >15 pA are discarded. The parameters 
to find the spikes are based on manual analysis of the threshold, height, 
distance and prominence parameters from the Python peakfinder 
package. This is tested on the first ten and last ten events to ensure the 
parameters are consistent and will accurately find the peaks. Following 
this, events are sorted on the basis of the number of spikes. Following 
the sorting, the events are analysed by eye and events that have folds 
or knots interfering with the barcode are discarded. Our lab has shown 
that as few as four events are sufficient for positive detection in the 
majority of cases, while nine correct events increase the probability 
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of positive detection to more than 90% (ref. 46). Percentage of events 
with dCas9 bound in Figs. 2b and 4 is calculated the following way:

%dCas9Events11111 =
N11111 dCas9

N11111 dCas9 + N11001dCas9
× 100 (1)

%dCas9Events11001 =
N11001dCas9

N11111 dCas9 + N11001dCas9
× 100 (2)

In these equations N11111 dCas9 represents the number of events with both 
the 11111 barcode a dCas9 bound. N11111 No dCas9 would represent the num-
ber of events with the 11111 barcode and no dCas9 bound.

The calculations of relative concentration have additional param-
eters because the total number of events without dCas9 bound for 
both barcoded nanostructures also plays a role. There is always some 
percentage of error with concentration experiments; thus, to account 
for that, the normalized bound percentage of accounts for the total 
number of events with a given barcode as measured in the nanopore. 
For the events in Fig. 2c,d, the following equations are used:

X = N11111 dCas9
N11111 dCas9 + N11001dCas9

× (N11111No dCas9 + N11111 dCas9) (3)

Y = N11001dCas9
N11111 dCas9 + N11001dCas9

× (N11001No dCas9 + N11001dCas9) (4)

NormalizedBound%X ∶
X

(X + Y ) (5)

NormalizedBound%Y ∶
Y

(X + Y ) (6)

The first part of this formula just looks at events with dCas9 

bound N11111 dCas9
N11111 dCas9+N11001dCas9

, whereas the second part involves multiplying by 

the total number of events with the barcode being measured 
(N11111 No dCas9 + N11111 dCas9). This normalizes the measurements based on 
the relative concentrations that are being measured in the nanopore.

For Fig. 3, a different nanostructure is used and values for nor-
malized ratios are changed accordingly. Ratios are calculated the 
following ways:

XPosition1 =
NdCas9 in Position1

NdCas9 in Position1 + NNodCas9 in Position1
(7)

XPosition2 =
NdCas9 in Position2

NdCas9 in Position2 + NNodCas9 in Position2
(8)

XPosition3 =
NdCas9 in Position3

NdCas9 in Position3 + NNodCas9 in Position3
(9)

XControl =
ΣXControl Position 1,2,3

3 (10)

NormalizedBindingRatiotoMismatchedDNAPosition i =
XPosition i
XControl

(11)

This normalization ratio is slightly different and based on the 
binding efficiency of the target gRNA to its target DNA sequence. Each 
XPosition i represents a different mismatch. XControl defined as ΣXControl Position1,2,3

3
 

is the average binding efficiency at each position of the target dCas9 
to its target DNA sequence. This treats the measured ratio of the dCas9 
RNP to its target as a binding ratio of 1.0 and the other measured ratios 
relative to that.

Binding efficiency (%) is calculated:

Binding Efficiency toTargetDNA sequence (%) = NdCas9
NdCas9 + NNodCas9

× 100
(12)

For the samples with multiple measurements, as described in the 
text, standard deviation of the population was calculated using the 
following:

SD =√
Σ(x − ̄x)2

N

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The main data supporting the results in this study are available within 
the paper and its Supplementary Information. The source raw data 
generated in this study are available at https://doi.org/10.17863/
CAM.96534.

Code availability
LabView 2016 was used for data acquisition. The CHOPCHOP (version 3)  
server is available at https://chopchop.cbu.uib.no. The Python code 
for local installation is available at https://bitbucket.org/valenlab/
chopchop. Nanopore data analysis scripts are available at https://gitlab.
com/keyserlab/nanopyre and https://gitlab.com/keyserlab/nanopro.
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