Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News & Views
  • Published:

Genome editing

Gene correction for sickle cell disease hits its prime

Prime editing can efficiently rewrite the genetic mutation causing sickle cell disease, in haematopoietic stem cells from patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Prime editing at the β-globin gene locus corrects the HBBE6V mutation in human HSCs.

References

  1. Everette, K. A. et al. Nat. Biomed. Eng. https://doi.org/10.1038/s41551-023-01026-0 (2023).

    Article  PubMed  Google Scholar 

  2. Anzalone, A. V. et al. Nature 576, 149–157 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Newby, G. A. et al. Nature 595, 295–302 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Nelson, J. W. et al. Nat. Biotechnol. 40, 402–410 (2021); author correction 40, 432 (2022).

  5. Chen, P. J. et al. Cell 184, 5635–5652.e29 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. DeWitt, M. A. et al. Sci. Transl Med. 8, 360ra134 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Kim, D. Y., Moon, S. B., Ko, J.-H., Kim, Y.-S. & Kim, D. Nucleic Acids Res. 48, 10576–10589 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zeng, J. et al. Nat. Med. 26, 535–541 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Frangoul, H. et al. N. Engl. J. Med. 384, 252–260 (2021).

    Article  CAS  PubMed  Google Scholar 

  10. Magnani, A. et al. Haematologica 105, 1240–1247 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yao, S. Graphite Bio announces voluntary pause of phase 1/2 CEDAR study of nulabeglogene autogedtemcel (nula-cel) for sickle cell disease (Graphite Bio, 5 January 2023); https://go.nature.com/3MZNnnA

  12. Levesque, S. et al. Nat. Commun. 13, 5909 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Anzalone, A. V. et al. Nat. Biotechnol. 40, 731–740 (2022).

    Article  CAS  PubMed  Google Scholar 

  14. Yarnall, M. T. N. et al. Nat. Biotechnol. 41, 500–512 (2022).

    Article  PubMed  Google Scholar 

  15. Li, C. et al. Blood https://doi.org/10.1182/blood.2022018252 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel E. Bauer.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Levesque, S., Bauer, D.E. Gene correction for sickle cell disease hits its prime. Nat. Biomed. Eng 7, 605–606 (2023). https://doi.org/10.1038/s41551-023-01040-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41551-023-01040-2

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing