Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

1H magnetic resonance spectroscopic imaging of deuterated glucose and of neurotransmitter metabolism at 7 T in the human brain

Abstract

Impaired glucose metabolism in the brain has been linked to several neurological disorders. Positron emission tomography and carbon-13 magnetic resonance spectroscopic imaging (MRSI) can be used to quantify the metabolism of glucose, but these methods involve exposure to radiation, cannot quantify downstream metabolism, or have poor spatial resolution. Deuterium MRSI (2H-MRSI) is a non-invasive and safe alternative for the quantification of the metabolism of 2H-labelled substrates such as glucose and their downstream metabolic products, yet it can only measure a limited number of deuterated compounds and requires specialized hardware. Here we show that proton MRSI (1H-MRSI) at 7 T has higher sensitivity, chemical specificity and spatiotemporal resolution than 2H-MRSI. We used 1H-MRSI in five volunteers to differentiate glutamate, glutamine, γ-aminobutyric acid and glucose deuterated at specific molecular positions, and to simultaneously map deuterated and non-deuterated metabolites. 1H-MRSI, which is amenable to clinically available magnetic-resonance hardware, may facilitate the study of glucose metabolism in the brain and its potential roles in neurological disorders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Quantification of SV-MR spectra obtained in the posterior cingulum with single-voxel proton MRS.
Fig. 2: Example of MR spectra obtained from one voxel in the posterior cingulum of one participant at 7 T.
Fig. 3: 1H-MRS difference spectra and their quantification.
Fig. 4: Fitting of time-courses obtained by quantification of MR spectra.
Fig. 5: Effect of 2H-Glc on the spectra obtained from the grey and white matter with 3D multi-voxel 1H-MRSI and 2H-MRSI data.
Fig. 6: Fitting of time-courses from averaged regional MRSI maps after 2H-Glc ingestion.
Fig. 7: Voxel-wise fitting of Glu4 and Glx4 time-courses obtained with high time resolution.

Similar content being viewed by others

Data availability

The main data supporting the results in this study are available within the paper and its Supplementary Information. Source data for Figs. 1, 4 and 6 and for Supplementary Figs. 13 and 5 are provided with this paper. The raw data acquired in the study are too large to be publicly shared, yet they are available for research purposes from the corresponding authors on reasonable request. The data generated by post-processing methods (that is, metabolite maps, MR spectra and outcomes of their quantification in the LCModel) are available at https://doi.org/10.5281/zenodo.5705959. The shared data are in the minc, niifti and MRSpa data formats. A priori information (‘the basis sets’) needed for MRS/MRSI data quantification in the LCModel is also available via the same link.

Code availability

The custom code for the time-course analysis using linear and exponential fits was performed using custom-made Python code (v3.10) available at https://github.com/MRSI-HFMR-GroupVienna/DeuteriumToProtonExchangeMRS.

References

  1. Kim, M. et al. What do we know about dynamic glucose-enhanced (DGE) MRI and how close is it to the clinics? Horizon 2020 GLINT consortium report. MAGMA 35, 87–104 (2022).

  2. de Graaf, R. A., Mason, G. F., Patel, A. B., Behar, K. L. & Rothman, D. L. In vivo 1H-[13C]-NMR spectroscopy of cerebral metabolism. NMR Biomed. 16, 339–357 (2003).

    Article  PubMed  Google Scholar 

  3. Ruhm, L. et al. Deuterium metabolic imaging in the human brain at 9.4 Tesla with high spatial and temporal resolution. Neuroimage https://doi.org/10.1016/j.neuroimage.2021.118639 (2021).

    Article  PubMed  Google Scholar 

  4. Rich, L. J. et al. 1H magnetic resonance spectroscopy of 2H-to-1H exchange quantifies the dynamics of cellular metabolism in vivo. Nat. Biomed. Eng. 4, 335–342 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. van Zijl, P. C. M. & Brindle, K. M. Spectroscopic measurements of metabolic fluxes. Nat. Biomed. Eng. 4, 254–256 (2020).

    Article  PubMed  Google Scholar 

  6. Zhu, X.-H., Lu, M. & Chen, W. Quantitative imaging of brain energy metabolisms and neuroenergetics using in vivo X-nuclear 2H, 17O and 31P MRS at ultra-high field. J. Magn. Reson. 292, 155–170 (2018).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Koppenol, W. H., Bounds, P. L. & Dang, C. V. Otto Warburg’s contributions to current concepts of cancer metabolism. Nat. Rev. Cancer 11, 325–337 (2011).

    Article  CAS  PubMed  Google Scholar 

  8. Norat, P. et al. Mitochondrial dysfunction in neurological disorders: exploring mitochondrial transplantation. NPJ Regen. Med. https://doi.org/10.1038/s41536-020-00107-x (2020).

    Article  PubMed Central  PubMed  Google Scholar 

  9. Manji, H. et al. Impaired mitochondrial function in psychiatric disorders. Nat. Rev. Neurosci. https://doi.org/10.1038/nrn3229 (2012).

    Article  PubMed  Google Scholar 

  10. Hahn, A. et al. Quantification of task-specific glucose metabolism with constant infusion of 18F-FDG. J. Nucl. Med. 57, 1933–1940 (2016).

    Article  CAS  PubMed  Google Scholar 

  11. Rischka, L. et al. Reliability of task-specific neuronal activation assessed with functional PET, ASL and BOLD imaging. J. Cereb. Blood Flow Metab. https://doi.org/10.1177/0271678x211020589 (2021).

    Article  PubMed Central  PubMed  Google Scholar 

  12. Hesketh, R. L. et al. Magnetic resonance imaging is more sensitive than PET for detecting treatment-induced cell death-dependent changes in glycolysis. Cancer Res. 79, 3557–3569 (2019).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Rothman, D. L. et al. in Encyclopedia of Biological Chemistry 3rd edn 688–700 (Elsevier, 2021).

  14. Shulman, R. G., Rothman, D. L., Behar, K. L. & Hyder, F. Energetic basis of brain activity: implications for neuroimaging. Trends Neurosci. 27, 489–495 (2004).

    Article  CAS  PubMed  Google Scholar 

  15. Wang, Z. J. et al. Hyperpolarized 13C MRI: state of the art and future directions. Radiology https://doi.org/10.1148/radiol.2019182391 (2019).

    Article  PubMed Central  PubMed  Google Scholar 

  16. Rischka, L. et al. Reduced task durations in functional PET imaging with [18F]FDG approaching that of functional MRI. Neuroimage 181, 323–330 (2018).

    Article  PubMed  Google Scholar 

  17. Stiernman, L. J. et al. Dissociations between glucose metabolism and blood oxygenation in the human default mode network revealed by simultaneous PET-fMRI. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.2021913118 (2021).

    Article  PubMed Central  PubMed  Google Scholar 

  18. Terpstra, M. et al. Test-retest reproducibility of neurochemical profiles with short-echo, single-voxel MR spectroscopy at 3T and 7T. Magn. Reson. Med. 76, 1083–1091 (2016).

    Article  PubMed  Google Scholar 

  19. Hingerl, L. et al. Clinical high-resolution 3D-MR spectroscopic imaging of the human brain at 7 T. Invest. Radiol. 55, 239–248 (2020).

    Article  CAS  PubMed  Google Scholar 

  20. Bednarik, P. et al. Neurochemical and BOLD responses during neuronal activation measured in the human visual cortex at 7 Tesla. J. Cereb. Blood Flow Metab. 35, 601–610 (2015).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Seuwen, A., Schroeter, A., Grandjean, J., Schlegel, F. & Rudin, M. Functional spectroscopic imaging reveals specificity of glutamate response in mouse brain to peripheral sensory stimulation. Sci. Rep. 9, 10563 (2019).

    Article  PubMed Central  PubMed  Google Scholar 

  22. Scherer, T., Sakamoto, K. & Buettner, C. Brain insulin signalling in metabolic homeostasis and disease. Nat. Rev. Endocrinol. https://doi.org/10.1038/s41574-021-00498-x (2021).

    Article  PubMed  Google Scholar 

  23. Gruetter, R. et al. Localized in vivo 13C NMR spectroscopy of the brain. NMR Biomed. 16, 313–338 (2003).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Mason, G. F. et al. A comparison of 13C NMR measurements of the rates of glutamine synthesis and the tricarboxylic acid cycle during oral and intravenous administration of [1-13C]glucose. Brain Res. Protoc. 10, 181–190 (2003).

    Article  CAS  Google Scholar 

  25. Iozzo, P. & Guzzardi, M. A. Imaging of brain glucose uptake by PET in obesity and cognitive dysfunction: life-course perspective. Endocr. Connect. 8, R169–R183 (2019).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Kuehn, B. M. In Alzheimer research, glucose metabolism moves to center stage. JAMA 323, 297–299 (2020).

  27. Bednařík, P. et al. Neurochemical responses to chromatic and achromatic stimuli in the human visual cortex. J. Cereb. Blood Flow Metab. 38, 347–359 (2018).

    Article  PubMed  Google Scholar 

  28. De Feyter, H. M. et al. Deuterium metabolic imaging (DMI) for MRI-based 3D mapping of metabolism in vivo. Sci. Adv. 4, eaat7314 (2018).

    Article  PubMed Central  PubMed  Google Scholar 

  29. Lu, M., Zhu, X.-H., Zhang, Y., Mateescu, G. & Chen, W. Quantitative assessment of brain glucose metabolic rates using in vivo deuterium magnetic resonance spectroscopy. J. Cereb. Blood Flow Metab. 37, 3518–3530 (2017).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Tiwari, V., An, Z., Wang, Y. & Choi, C. Distinction of the GABA 2.29 ppm resonance using triple refocusing at 3 T in vivo. Magn. Reson. Med. 80, 1307–1319 (2018).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. de Graaf, R. A., Thomas, M. A., Behar, K. L. & De Feyter, H. M. Characterization of kinetic isotope effects and label loss in deuterium-based isotopic labeling studies. ACS Chem. Neurosci. 12, 234–243 (2021).

    Article  PubMed  Google Scholar 

  32. Veltien, A. et al. Simultaneous recording of the uptake and conversion of glucose and choline in tumors by deuterium metabolic imaging. Cancers 13, 4034 (2021).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Plecko, B. et al. Oral β-hydroxybutyrate supplementation in two patients with hyperinsulinemic hypoglycemia: monitoring of β-hydroxybutyrate levels in blood and cerebrospinal fluid, and in the brain by in vivo magnetic resonance spectroscopy. Pediatr. Res. https://doi.org/10.1203/00006450-200208000-00025 (2002).

    Article  PubMed  Google Scholar 

  34. Scafidi, S., Jernberg, J., Fiskum, G. & McKenna, M. C. Metabolism of exogenous [2,4-13C]β-hydroxybutyrate following traumatic brain injury in 21–22-day-old rats: an ex vivo NMR study. Metabolites. 12, 710 (2022).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Craft, S. et al. The ketogenic diet as a potential prevention or therapeutic strategy for AD. Alzheimer’s Dement. https://doi.org/10.1002/alz.038148 (2020).

    Article  Google Scholar 

  36. Wright, J. N., Saneto, R. P. & Friedman, S. D. Hydroxybutyrate detection with proton MR spectroscopy in children with drug-resistant epilepsy on the ketogenic diet. Am. J. Neuroradiol. 39, 1336–1340 (2018).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Lebon, V. et al. Astroglial contribution to brain energy metabolism in humans revealed by 13C nuclear magnetic resonance spectroscopy: elucidation of the dominant pathway for neurotransmitter glutamate repletion and measurement of astrocytic oxidative metabolism. J. Neurosci. https://doi.org/10.1523/jneurosci.22-05-01523.2002 (2002).

    Article  PubMed Central  PubMed  Google Scholar 

  38. Ross, J. M. et al. High brain lactate is a hallmark of aging and caused by a shift in the lactate dehydrogenase A/B ratio. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.1008189107 (2010).

    Article  PubMed Central  PubMed  Google Scholar 

  39. Liguori, C. et al. CSF lactate levels, τ proteins, cognitive decline: a dynamic relationship in Alzheimer’s disease. J. Neurol. Neurosurg. Psychiatry https://doi.org/10.1136/jnnp-2014-308577 (2015).

    Article  PubMed  Google Scholar 

  40. Hingerl, L. et al. Density-weighted concentric circle trajectories for high resolution brain magnetic resonance spectroscopic imaging at 7T. Magn. Reson. Med. https://doi.org/10.1002/mrm.26987 (2018).

    Article  PubMed  Google Scholar 

  41. Cember, A. T. J. et al. Integrating 1H MRS and deuterium labeled glucose for mapping the dynamics of neural metabolism in humans. Neuroimage 251, 118977 (2022).

    Article  CAS  PubMed  Google Scholar 

  42. Maudsley, A. A. et al. Advanced magnetic resonance spectroscopic neuroimaging: experts’ consensus recommendations. NMR Biomed. https://doi.org/10.1002/nbm.4309 (2021).

    Article  PubMed Central  PubMed  Google Scholar 

  43. Wilson, M. et al. Methodological consensus on clinical proton MRS of the brain: review and recommendations. Magn. Reson. Med. 82, 527–550 (2019).

    Article  PubMed Central  PubMed  Google Scholar 

  44. Hyder, F., Fulbright, R. K., Shulman, R. G. & Rothman, D. L. Glutamatergic function in the resting awake human brain is supported by uniformly high oxidative energy. J. Cereb. Blood Flow Metab. 33, 339–347 (2013).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Hyder, F. & Rothman, D. L. Quantitative fMRI and oxidative neuroenergetics. NeuroImage https://doi.org/10.1016/j.neuroimage.2012.04.027 (2012).

    Article  PubMed  Google Scholar 

  46. Yu, Y., Herman, P., Rothman, D. L., Agarwal, D. & Hyder, F. Evaluating the gray and white matter energy budgets of human brain function. J. Cereb. Blood Flow Metab. https://doi.org/10.1177/0271678x17708691 (2018).

    Article  PubMed Central  PubMed  Google Scholar 

  47. Pan, J. W. et al. Spectroscopic imaging of glutamate C4 turnover in human brain. Magn. Reson. Med. 44, 673–679 (2000).

    Article  CAS  PubMed  Google Scholar 

  48. de Graaf, R. A., Mason, G. F., Patel, A. B., Behar, K. L. & Rothman, D. L. In vivo 1H-[13C]-NMR spectroscopy of cerebral metabolism. NMR Biomed. 16, 339–357 (2003).

    Article  PubMed  Google Scholar 

  49. Moreno, A., Blüml, S., Hwang, J. H. & Ross, B. D. Alternative 1-13C glucose infusion protocols for clinical 13C MRS examinations of the brain. Magn. Reson. Med. https://doi.org/10.1002/mrm.1158 (2001).

    Article  PubMed  Google Scholar 

  50. Sundar, L. K. S. et al. Towards quantitative [18F]FDG-PET/MRI of the brain: automated MR-driven calculation of an image-derived input function for the non-invasive determination of cerebral glucose metabolic rates. J. Cereb. Blood Flow Metab. 39, 1516–1530 (2019).

    Article  CAS  PubMed  Google Scholar 

  51. Shiyam Sundar, L. K. et al. Fully integrated PET/MR imaging for the assessment of the relationship between functional connectivity and glucose metabolic rate. Front. Neurosci. 14, 252 (2020).

    Article  PubMed Central  PubMed  Google Scholar 

  52. Andronesi, O. C. et al. Motion correction methods for MRS: experts’ consensus recommendations. NMR Biomed. 34, e4364 (2021).

    Article  PubMed  Google Scholar 

  53. Dikaios, N., Arridge, S., Hamy, V., Punwani, S. & Atkinson, D. Direct parametric reconstruction from undersampled (k, t)-space data in dynamic contrast enhanced MRI. Med. Image Anal. https://doi.org/10.1016/j.media.2014.05.001 (2014).

    Article  PubMed  Google Scholar 

  54. Knutsson, L., Xu, X., van Zijl, P. C. M. & Chan, K. W. Y. Imaging of sugar‐based contrast agents using their hydroxyl proton exchange properties. NMR Biomed. https://doi.org/10.1002/nbm.4784 (2022).

  55. Mason, G. F. et al. Simultaneous determination of the rates of the TCA cycle, glucose utilization, α-ketoglutarate/glutamate exchange, and glutamine synthesis in human brain by NMR. J. Cereb. Blood Flow. Metab. https://doi.org/10.1038/jcbfm.1995.2 (1995).

    Article  PubMed  Google Scholar 

  56. Ross, B., Lin, A., Harris, K., Bhattacharya, P. & Schweinsburg, B. Clinical experience with 13C MRS in vivo. NMR Biomed. 16, 358–369 (2003).

    Article  CAS  PubMed  Google Scholar 

  57. Moser, P. et al. Intra‐session and inter‐subject variability of 3D‐FID‐MRSI using single‐echo volumetric EPI navigators at 3T. Magn. Reson. Med. 83, 1920–1929 (2020).

    Article  PubMed  Google Scholar 

  58. DiNuzzo, M. et al. Perception is associated with the brain’s metabolic response to sensory stimulation. eLife https://doi.org/10.7554/eLife.71016 (2022).

    Article  PubMed Central  PubMed  Google Scholar 

  59. Dou, W. et al. Automatic voxel positioning for MRS at 7 T. MAGMA https://doi.org/10.1007/s10334-014-0469-9 (2015).

    Article  PubMed  Google Scholar 

  60. Gruetter, R. & Tkac, I. Field mapping without reference scan using asymmetric echo-planar techniques. Magn. Reson. Med. 43, 319–323 (2000).

    Article  CAS  PubMed  Google Scholar 

  61. Oz, G. & Tkac, I. Short-echo, single-shot, full-intensity proton magnetic resonance spectroscopy for neurochemical profiling at 4 T: validation in the cerebellum and brainstem. Magn. Reson. Med. 65, 901–910 (2011).

    Article  CAS  PubMed  Google Scholar 

  62. Bednarik, P. et al. Effect of ketamine on human neurochemistry in posterior cingulate cortex: a pilot magnetic resonance spectroscopy study at 3 Tesla. Front. Neurosci. https://doi.org/10.3389/fnins.2021.609485 (2021).

    Article  PubMed Central  PubMed  Google Scholar 

  63. Tkac, I., Starcuk, Z., Choi, I. Y. & Gruetter, R. In vivo 1H- NMR spectroscopy of rat brain at 1 ms echo time. Magn. Reson. Med. 41, 649–656 (1999).

    Article  CAS  PubMed  Google Scholar 

  64. Ridler, T. W. & Calvard, S. Picture thresholding using an iterative selection method. IEEE Trans. Syst. Man Cybern. 8, 630–632 (1978).

    Article  Google Scholar 

  65. Strasser, B. et al. Coil combination of multichannel MRSI data at 7 T: MUSICAL. NMR Biomed. 26, 1796–1805 (2013).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Moser, P. et al. Non-Cartesian GRAPPA and coil combination using interleaved calibration data – application to concentric-ring MRSI of the human brain at 7 T. Magn. Reson. Med. https://doi.org/10.1002/mrm.27822 (2019).

    Article  PubMed Central  Google Scholar 

  67. Maudsley, A. A. et al. Mapping of brain metabolite distributions by volumetric proton MR spectroscopic imaging (MRSI). Magn. Reson. Med. https://doi.org/10.1002/mrm.21875 (2009).

  68. Považan, M. et al. Mapping of brain macromolecules and their use for spectral processing of 1H-MRSI data with an ultra-short acquisition delay at 7 T. Neuroimage 121, 126–135 (2015).

    Article  PubMed  Google Scholar 

  69. Gröhn, H. et al. Influence of repetitive transcranial magnetic stimulation on human neurochemistry and functional connectivity: a pilot MRI/MRS study at 7 T. Front. Neurosci. https://doi.org/10.3389/fnins.2019.01260 (2019).

    Article  PubMed Central  PubMed  Google Scholar 

  70. Oz, G. et al. Clinical proton MR spectroscopy in central nervous system disorders. Radiology 270, 658–679 (2014).

    Article  PubMed  Google Scholar 

  71. Kreis, R. The trouble with quality filtering based on relative Cramer-Rao lower bounds. Magn. Reson. Med. 75, 15–18 (2016).

    Article  PubMed  Google Scholar 

  72. Hangel, G. et al. Inter-subject stability and regional concentration estimates of 3D-FID-MRSI in the human brain at 7 T. NMR Biomed. https://doi.org/10.1002/nbm.4596 (2021).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank P. Bolan of the Center for Magnetic Resonance Research, University of Minnesota, and C. Rogers, University of Cambridge, for providing a tool to store and apply 7 T B0-shims for the 7 T MR scanner; V. Mlynarik for helpful discussions; and the study participants whose help is greatly appreciated. P.B. was supported by the European Union’s Horizon 2020 research and innovation programme under a Marie Skłodowska-Curie grant (agreement no. 846793), and by a NARSAD Young Investigator Grant from the Brain and Behavior Research Foundation (no. 27238). A.S. received funding from the European Union’s Horizon 2020 research and from an innovation programme under a Marie Skłodowska-Curie grant (agreement no. 794986). The authors acknowledge support from the Austrian Science Fund (FWF) (grants P 30701 and KLI 718 to W.B., I 6037 to B.S., KLI 782 to T.S., and KLI 646 to G.H.). W.B. acknowledges the support of the following NIH grant: R01EB031787. D.K.D. acknowledges support from the following National Institutes of Health grants: BTRC P41 EB027061 and P30 NS076408

Author information

Authors and Affiliations

Authors

Contributions

P.B., A.S. and W.B. wrote the manuscript draft. P.B., D.G. and L.H. acquired the data. P.B., D.G., F.N., L.H., D.K.D., B.S., B.S-D., G.H. and A.S. processed the data. P.B., W.B., T.S. and R.L. conceptualized the study design. P.B., A.S., W.B. and R.L. obtained funding. M.K. and S.T. contributed to data interpretation. P.B. and W.B are guarantors of the integrity of the entire study. All authors edited and approved the submitted version of the manuscript.

Corresponding authors

Correspondence to Petr Bednarik or Wolfgang Bogner.

Ethics declarations

Competing interests

R. Lanzenberger received travel grants and/or conference speaker honoraria within the past three years from Bruker BioSpin MR and Heel, and has served as a consultant for Ono Pharmaceutical. He also received investigator-initiated research funding from Siemens Healthcare regarding clinical research using PET/MR and is a shareholder of the start-up company BM Health GmbH since 2019. The other authors declare no competing interests.

Peer review

Peer review information

Nature Biomedical Engineering thanks Kevin Brindle, Ferdia Gallagher and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary figures and table.

Reporting Summary

Peer Review File

Data

Source data for the Supplementary figures.

Source data

Source Data for Fig. 1

MRS data quantified with the LCModel.

Source Data for Fig. 4

MRS data quantified with the LCModel, including timing.

Source Data for Fig. 6

MRS data quantified with the LCModel, including timing.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bednarik, P., Goranovic, D., Svatkova, A. et al. 1H magnetic resonance spectroscopic imaging of deuterated glucose and of neurotransmitter metabolism at 7 T in the human brain. Nat. Biomed. Eng 7, 1001–1013 (2023). https://doi.org/10.1038/s41551-023-01035-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41551-023-01035-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing