Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Isolation of tumour-reactive lymphocytes from peripheral blood via microfluidic immunomagnetic cell sorting

Abstract

The clinical use of tumour-infiltrating lymphocytes for the treatment of solid tumours is hindered by the need to obtain large and fresh tumour fractions, which is often not feasible in patients with unresectable tumours or recurrent metastases. Here we show that circulating tumour-reactive lymphocytes (cTRLs) can be isolated from peripheral blood at high yield and purity via microfluidic immunomagnetic cell sorting, allowing for comprehensive downstream analyses of these rare cells. We observed that CD103 is strongly expressed by the isolated cTRLs, and that in mice with subcutaneous tumours, tumour-infiltrating lymphocytes isolated from the tumours and rapidly expanded CD8+CD103+ cTRLs isolated from blood are comparably potent and respond similarly to immune checkpoint blockade. We also show that CD8+CD103+ cTRLs isolated from the peripheral blood of patients and co-cultured with tumour cells dissociated from their resected tumours resulted in the enrichment of interferon-γ-secreting cell populations with T-cell-receptor clonotypes substantially overlapping those of the patients’ tumour-infiltrating lymphocytes. Therapeutically potent cTRLs isolated from peripheral blood may advance the clinical development of adoptive cell therapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Non-invasive collection of tumour-reactive cells in blood circulation for cancer immunotherapy.
Fig. 2: Isolation of tumour-reactive TRLs in blood circulation.
Fig. 3: Molecular and phenotypic signature of cTRL during and post migration.
Fig. 4: cTRLs exhibit significant levels of activity against primary and metastasized tumours in murine models.
Fig. 5: Synergistic effects of cTRLs and ICB/co-stimulatory molecules.
Fig. 6: CD103+ defines cTRL population in human PBMC.
Fig. 7: CD8+CD103+ cTRLs are phenotypically and clonally tumour specific.

Similar content being viewed by others

Data availability

The main data supporting the results in this study are available within the paper and its Supplementary Information. The RNA-seq data are available from the Gene Expression Omnibus (GEO, https://www.ncbi.nlm.nih.gov/geo/) under the access code GSE227345. The unprocessed TCR-sequencing files and CyTOF data are too large to be publicly shared, yet they are available from the corresponding author on reasonable request. Source data are provided with this paper.

References

  1. Rosenberg, S. A. Cell transfer immunotherapy for metastatic solid cancer—what clinicians need to know. Nat. Rev. Clin. Oncol. 8, 577–585 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Gong, N., Sheppard, N. C., Billingsley, M. M., June, C. H. & Mitchell, M. J. Nanomaterials for T-cell cancer immunotherapy. Nat. Nanotechnol. 16, 25–36 (2021).

    Article  CAS  PubMed  Google Scholar 

  3. Andersen, R. et al. Long-lasting complete responses in patients with metastatic melanoma after adoptive cell therapy with tumor-infiltrating lymphocytes and an attenuated IL2 regimen. Clin. Cancer Res. 22, 3734–3745 (2016).

    Article  CAS  PubMed  Google Scholar 

  4. van den Berg, J. H. et al. Tumor infiltrating lymphocytes (TIL) therapy in metastatic melanoma: boosting of neoantigen-specific T cell reactivity and long-term follow-up. J. Immunother. Cancer 8, e000848 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Veatch, J. R., Simon, S. & Riddell, S. R. Tumor-infiltrating lymphocytes make inroads in non–small-cell lung cancer. Nat. Med. 27, 1338–1339 (2021).

    Article  Google Scholar 

  6. Andersen, R. et al. T-cell responses in the microenvironment of primary renal cell carcinoma—implications for adoptive cell therapy. Cancer Immunol. Res. 6, 222–235 (2018).

    Article  CAS  PubMed  Google Scholar 

  7. Stevanović, S. et al. Complete regression of metastatic cervical cancer after treatment with human papillomavirus–targeted tumor-infiltrating T cells. J. Clin. Oncol. 33, 1543–1550 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Zacharakis, N. et al. Breast cancers are immunogenic: immunologic analyses and a phase ii pilot clinical trial using mutation-reactive autologous lymphocytes. J. Clin. Oncol. 40, 1741–1754 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Dijkstra, K. K. et al. Generation of tumor-reactive T cells by co-culture of peripheral blood lymphocytes and tumor organoids. Cell 174, 1586–1598.e12 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chen, F. et al. Neoantigen identification strategies enable personalized immunotherapy in refractory solid tumors. J. Clin. Invest. 129, 2056–2070 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  11. van Rooij, N. et al. Tumor exome analysis reveals neoantigen-specific T-cell reactivity in an ipilimumab-responsive melanoma. J. Clin. Oncol. 31, e439–e442 (2013).

    Article  PubMed  Google Scholar 

  12. Rizvi, N. A. et al. Mutational landscape determines sensitivity to PD-1 blockade in non–small cell lung cancer. Science 348, 124–128 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gros, A. et al. Prospective identification of neoantigen-specific lymphocytes in the peripheral blood of melanoma patients. Nat. Med. 22, 433–438 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cohen, C. J. et al. Isolation of neoantigen-specific T cells from tumor and peripheral lymphocytes. J. Clin. Invest. 125, 3981–3991 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Peng, S. et al. Sensitive detection and analysis of neoantigen-specific T cell populations from tumors and blood. Cell Rep. 28, 2728–2738.e7 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bobisse, S. et al. Sensitive and frequent identification of high avidity neo-epitope specific CD8+ T cells in immunotherapy-naive ovarian cancer. Nat. Commun. 9, 1092 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Martin, S. D. et al. A library-based screening method identifies neoantigen-reactive T cells in peripheral blood prior to relapse of ovarian cancer. OncoImmunology 7, e1371895 (2018).

    Article  Google Scholar 

  18. Valpione, S. et al. Immune awakening revealed by peripheral T cell dynamics after one cycle of immunotherapy. Nat. Cancer 1, 210–221 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kamphorst, A. O. et al. Proliferation of PD-1+ CD8 T cells in peripheral blood after PD-1–targeted therapy in lung cancer patients. Proc. Natl Acad. Sci. USA 114, 4993–4998 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Holm, J. S. et al. Neoantigen-specific CD8 T cell responses in the peripheral blood following PD-L1 blockade might predict therapy outcome in metastatic urothelial carcinoma. Nat. Commun. 13, 1935 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wang, Z. Efficient recovery of potent tumour-infiltrating lymphocytes through quantitative immunomagnetic cell sorting. Nat. Biomed. Eng. 6, 108–117 (2022).

    Article  CAS  PubMed  Google Scholar 

  22. Fehlings, M. et al. Late-differentiated effector neoantigen-specific CD8+ T cells are enriched in peripheral blood of non-small cell lung carcinoma patients responding to atezolizumab treatment. J. Immunother. Cancer 7, 249 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Li, Z. et al. In vivo labeling reveals continuous trafficking of TCF-1+ T cells between tumor and lymphoid tissue. J. Exp. Med. 219, e20210749 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Roberts, A. D., Ely, K. H. & Woodland, D. L. Differential contributions of central and effector memory T cells to recall responses. J. Exp. Med. 202, 123–133 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wang, Z. et al. Ultrasensitive and rapid quantification of rare tumorigenic stem cells in hPSC-derived cardiomyocyte populations. Sci. Adv. 6, eaay7629 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wang, Z., Sargent, E. H. & Kelley, S. O. Ultrasensitive detection and depletion of rare leukemic B cells in T cell populations via immunomagnetic cell ranking. Anal. Chem. 93, 2327–2335 (2021).

    Article  CAS  PubMed  Google Scholar 

  27. Allan, A. L. & Keeney, M. Circulating tumor cell analysis: technical and statistical considerations for application to the clinic. J. Oncol. 2010, 426218 (2010).

    Article  PubMed  Google Scholar 

  28. Hedley, B. D. & Keeney, M. Technical issues: flow cytometry and rare event analysis. Int. J. Lab. Hematol. 35, 344–350 (2013).

    Article  CAS  PubMed  Google Scholar 

  29. Faraghat, S. A. et al. High-throughput, low-loss, low-cost, and label-free cell separation using electrophysiology-activated cell enrichment. Proc. Natl Acad. Sci. USA 114, 4591–4596 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sutermaster, B. A. & Darling, E. M. Considerations for high-yield, high-throughput cell enrichment: fluorescence versus magnetic sorting. Sci. Rep. 9, 227 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Labib, M. et al. Tracking the expression of therapeutic protein targets in rare cells by antibody-mediated nanoparticle labelling and magnetic sorting. Nat. Biomed. Eng. 5, 41–52 (2021).

    Article  CAS  PubMed  Google Scholar 

  32. Wang, Z. et al. Nanoparticle amplification labeling for high-performance magnetic cell sorting. Nano Lett. 22, 4774–4783 (2022). acs.nanolett.2c01018.

    Article  CAS  PubMed  Google Scholar 

  33. Carlisle, M. L., King, M. R. & Karp, D. R. g-Glutamyl transpeptidase activity alters the T cell response to oxidative stress and Fas-induced apoptosis. Int. Immunol. 15, 17 (2003).

    Article  CAS  PubMed  Google Scholar 

  34. Xiao, Z., Mescher, M. F. & Jameson, S. C. Detuning CD8 T cells: down-regulation of CD8 expression, tetramer binding, and response during CTL activation. J. Exp. Med. 204, 2667–2677 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wong, M. T. et al. A high-dimensional atlas of human T cell diversity reveals tissue-specific trafficking and cytokine signatures. Immunity 45, 442–456 (2016).

    Article  CAS  PubMed  Google Scholar 

  36. Corgnac, S. et al. CD103+CD8+ TRM cells accumulate in tumors of anti-PD-1-responder lung cancer patients and are tumor-reactive lymphocytes enriched with Tc17. Cell Rep. Med. 1, 100127 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Banchereau, R. et al. Intratumoral CD103+ CD8+ T cells predict response to PD-L1 blockade. J. Immunother. Cancer 9, e002231 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Duhen, T. et al. Co-expression of CD39 and CD103 identifies tumor-reactive CD8 T cells in human solid tumors. Nat. Commun. 9, 2724 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Park, S. L., Gebhardt, T. & Mackay, L. K. Tissue-resident memory T cells in cancer immunosurveillance. Trends Immunol. 40, 735–747 (2019).

    Article  CAS  PubMed  Google Scholar 

  40. Klicznik, M. M. et al. Human CD4+ CD103+ cutaneous resident memory T cells are found in the circulation of healthy individuals. Sci. Immunol. 4, eaav8995 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Fonseca, R. et al. Developmental plasticity allows outside-in immune responses by resident memory T cells. Nat. Immunol. 21, 412–421 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Schlickum, S. et al. Integrin αE(CD103)β7 influences cellular shape and motility in a ligand-dependent fashion. Blood 112, 619–625 (2008).

    Article  CAS  PubMed  Google Scholar 

  43. Mattila, P. K. & Lappalainen, P. Filopodia: molecular architecture and cellular functions. Nat. Rev. Mol. Cell Biol. 9, 446–454 (2008).

    Article  CAS  PubMed  Google Scholar 

  44. Abd Hamid, M. et al. Self-maintaining CD103+ cancer-specific T cells are highly energetic with rapid cytotoxic and effector responses. Cancer Immunol. Res. 8, 203–216 (2020).

    Article  CAS  PubMed  Google Scholar 

  45. Dudley, M. E., Wunderlich, J. R., Shelton, T. E., Even, J. & Rosenberg, S. A. Generation of tumor-infiltrating lymphocyte cultures for use in adoptive transfer therapy for melanoma patients. J. Immunother. 26, 332–342 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Carmona, S. J., Siddiqui, I., Bilous, M., Held, W. & Gfeller, D. Deciphering the transcriptomic landscape of tumor-infiltrating CD8 lymphocytes in B16 melanoma tumors with single-cell RNA-seq. OncoImmunology 9, 1737369 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Miller, B. C. et al. Subsets of exhausted CD8+ T cells differentially mediate tumor control and respond to checkpoint blockade. Nat. Immunol. 20, 326–336 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Good, C. R. et al. An NK-like CAR T cell transition in CAR T cell dysfunction. Cell 184, 6081–6100.e26 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zheng, L. et al. Pan-cancer single-cell landscape of tumor-infiltrating T cells. Science 374, abe6474 (2021).

    Article  PubMed  Google Scholar 

  50. Ma, Q., Wang, Y., Lo, A. S.-Y., Gomes, E. M. & Junghans, R. P. Cell density plays a critical role in ex vivo expansion of T cells for adoptive immunotherapy. J. Biomed. Biotechnol. 2010, 386545 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Amsen, D., van Gisbergen, K. P. J. M., Hombrink, P. & van Lier, R. A. W. Tissue-resident memory T cells at the center of immunity to solid tumors. Nat. Immunol. 19, 538–546 (2018).

    Article  CAS  PubMed  Google Scholar 

  52. Szabo, P. A., Miron, M. & Farber, D. L. Location, location, location: tissue resident memory T cells in mice and humans. Sci. Immunol. 4, eaas9673 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Wang, Z.-Q. et al. CD103 and intratumoral immune response in breast cancer. Clin. Cancer Res. 22, 6290–6297 (2016).

    Article  CAS  PubMed  Google Scholar 

  54. Djenidi, F. et al. CD8+ CD103+ tumor–infiltrating lymphocytes are tumor-specific tissue-resident memory T cells and a prognostic factor for survival in lung cancer patients. J. Immunol. 194, 3475–3486 (2015).

    Article  CAS  PubMed  Google Scholar 

  55. Komdeur, F. L. et al. CD103+ tumor-infiltrating lymphocytes are tumor-reactive intraepithelial CD8+ T cells associated with prognostic benefit and therapy response in cervical cancer. OncoImmunology 6, e1338230 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Xiao, Y. et al. CD103+ T and dendritic cells indicate a favorable prognosis in oral cancer. J. Dent. Res. 98, 1480–1487 (2019).

    Article  CAS  PubMed  Google Scholar 

  57. Li, T. et al. TIMER2.0 for analysis of tumor-infiltrating immune cells. Nucleic Acids Res. 48, W509–W514 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Newman, A. M. et al. Robust enumeration of cell subsets from tissue expression profiles. Nat. Methods 12, 453–457 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Jiang, P. et al. Signatures of T cell dysfunction and exclusion predict cancer immunotherapy response. Nat. Med. 24, 1550–1558 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kim, Y., Shin, Y. & Kang, G. H. Prognostic significance of CD103+ immune cells in solid tumor: a systemic review and meta-analysis. Sci. Rep. 9, 3808 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Guedan, S., Ruella, M. & June, C. H. Emerging cellular therapies for cancer. Annu. Rev. Immunol. 37, 145–171 (2019).

    Article  CAS  PubMed  Google Scholar 

  62. Krishna, S. et al. Stem-like CD8 T cells mediate response of adoptive cell immunotherapy against human cancer. Science 370, 1328–1334 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Leko, V. et al. Identification of neoantigen-reactive T lymphocytes in the peripheral blood of a patient with glioblastoma. J. Immunother. Cancer 9, e002882 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Melenhorst, J. J. et al. Decade-long leukaemia remissions with persistence of CD4+ CAR T cells. Nature 602, 503–509 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Lawson, K. A. et al. Functional genomic landscape of cancer-intrinsic evasion of killing by T cells. Nature 586, 120–126 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank T. Chen at the Centre for Advanced Single Cell Analysis (CASCA), Sick Children Hospital, Toronto for her help in CyTOF, N. Simard at the centralize flow cytometry facility at Temerty Faculty of Medicine, University of Toronto for her help in FACS sorting, A. C. Zhou at the Medicine by Design initiative at the University of Toronto for her comments, W. Xiao and A. Archila at the University Health Network (UHN) for their help in tail vein injection, M. Peralta at the UHN PRP facility and N. Law at the UHN STTARR facility for their help in IHC, J. Jonkman at the UHN AOMF facility for his help in image quantitation, and J. Wei and J. Moffat at the Terrence Donnelly Centre, University of Toronto for donating CT26HA and OT-1 cells. This study was supported in part by the Canadian Institutes of Health Research (grant no. FDN-148415) and the Collaborative Health Research Projects program (CIHR/NSERC partnered). This research was part of the University of Toronto’s Medicine by Design initiative, which receives funding from the Canada First Research Excellence Fund. The study was also supported in part by the McCormick Catalyst Fund at Northwestern University.

Author information

Authors and Affiliations

Authors

Contributions

Z.W. and S.O.K. conceived and designed the experiments. Z.W. performed cell isolation, flow cytometry and CyTOF. S.A. performed the animal study. M.L. performed RNA extraction and qPCR. H.W. extracted the OVA plasmid and assisted with the animal study. L.W. maintained the AE17 cell lines. L.W., F.B.-Z., N.S., S.B. and S.K. managed patient-sample collection, distribution and administration. All authors discussed the results, analysed the data and contributed to the preparation and editing of the manuscript.

Corresponding author

Correspondence to Shana O. Kelley.

Ethics declarations

Competing interests

S.O.K. and Z.W. have a filled patent application using parts of the data reported in this article. S.O.K. has a patent ‘Device for capture of particles in a flow’ US10073079 licensed to Cellular Analytics. A.J.R.M. is a paid consultant for Cellular Analytics. M.D.P. received personal fees from Actelion, AstraZeneca, Bayer, Bristol Myers Squibb, Merck and Roche outside of the submitted work. S.O.K. received research funds from Amgen through a sponsored research agreement. The other authors declare no competing interests.

Peer review

Peer review information

Nature Biomedical Engineering thanks Rong Fan, Alexandre Harari and Paul Robbins for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Introduction of immunogenic epitopes promote the endogenous immune responses against the inoculated tumors.

a, Workflow of the identification of TRLs and cTRLs via defined epitope models. b, Quantitation of tumor-reactive T cells in tumor and blood. Unpaired t-test, mean ± s.d., each dot represents a biological replicate.

Extended Data Fig. 2 Comparison of the performance of rare cell isolation based on multimer-labeling among FACS, MACS and microfluidics.

Unpaired t-test, mean ± s.d., each dot represents a biological replicate.

Extended Data Fig. 3 Comparison of the rare cTRL sorting based on CD103 labeling among FACS, MACS and microfluidics.

Unpaired t-test, mean ± s.d., each dot represents a biological replicate.

Extended Data Fig. 4 Quantitation of tumor size, survival rate and percentage of infiltrated CD8+ cells in s.c. LLC-1 models in WT C57BL6 mice treated by different populations of lymphocytes (n = 5).

Unpaired t-test, mean ± s.d., each dot represents a biological replicate.

Extended Data Fig. 5 Quantitation of lung metastases in i.v. 4T1 models in nude mice at the endpoint treated by different T cells. (n = 6, 6 layers for each animal L: Lung, T: Tumor).

Unpaired t-test, mean ± s.d., each dot represents a biological replicate.

Extended Data Fig. 6 Quantitation of tumor size, survival rate and percentage of infiltrated CD8+ cells in s.c. MC38 models in RAG−/− C57BL6 mice treated by different therapeutic modalities (n = 5).

Unpaired t-test, mean ± s.d., each dot represents a biological replicate.

Supplementary information

Supplementary Information

Supplementary discussion, methods, figures, tables and references.

Reporting Summary

Peer Review File

Source data

Source Data

Tumour-growth data for Figs. 4 and 5, and for Extended Data Figs. 4 and 6.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Ahmed, S., Labib, M. et al. Isolation of tumour-reactive lymphocytes from peripheral blood via microfluidic immunomagnetic cell sorting. Nat. Biomed. Eng 7, 1188–1203 (2023). https://doi.org/10.1038/s41551-023-01023-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41551-023-01023-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing