Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cas9-mediated replacement of expanded CAG repeats in a pig model of Huntington’s disease

Abstract

The monogenic nature of Huntington’s disease (HD) and other neurodegenerative diseases caused by the expansion of glutamine-encoding CAG repeats makes them particularly amenable to gene therapy. Here we show the feasibility of replacing expanded CAG repeats in the mutant HTT allele with a normal CAG repeat in genetically engineered pigs mimicking the selective neurodegeneration seen in patients with HD. A single intracranial or intravenous injection of adeno-associated virus encoding for Cas9, a single-guide RNA targeting the HTT gene, and donor DNA containing the normal CAG repeat led to the depletion of mutant HTT in the animals and to substantial reductions in the dysregulated expression and neurotoxicity of mutant HTT and in neurological symptoms. Our findings support the further translational development of virally delivered Cas9-based gene therapies for the treatment of genetic neurodegenerative diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Analysis of the expression of Cas9 and GFP protein in pig brain.
Fig. 2: RNA-seq analysis of pig striatal tissues injected with AAV-GFP or AAV-Cas9.
Fig. 3: Analysis of HD KI pig brains injected with AAV9 HTT-gRNA-RFP-20Q/Cas9.
Fig. 4: Analysis of intravenous delivery of AAV HTT-gRNA-RFP-20Q/Cas9 in HD KI pigs.
Fig. 5: Intravenous injection of CRISPR/Cas9 in HD KI pigs alleviates motor function deficits.
Fig. 6: Analysis of the neuropathology in HD KI pigs after AAV-CRISPR/Cas9 treatment.
Fig. 7: RNA-seq analysis of CRISPR/Cas9 treatment in HD KI pigs.

Similar content being viewed by others

Data availability

The main data supporting the results in this study are available within the paper and its Supplementary Information. The raw data from whole-genome sequencing are available from the NCBI Sequence Read Archive (SRA), with accession code PRJNA886395. The raw RNA-seq data are available from the NCBI Sequenced Read Archive (SRA), with accession code PRJNA886382. The other raw and analysed datasets generated during the study are too large to be publicly shared, yet they are available for research purposes from the corresponding authors on reasonable request. Source data are provided with this paper.

References

  1. Bates, G. P. et al. Huntington disease. Nat. Rev. Dis. Primers 1, 15005 (2015).

    Article  PubMed  Google Scholar 

  2. Shulman, J. M., De Jager, P. L. & Feany, M. B. Parkinson’s disease: genetics and pathogenesis. Annu. Rev. Pathol. 6, 193–222 (2011).

    Article  CAS  PubMed  Google Scholar 

  3. Sims, R., Hill, M. & Williams, J. The multiplex model of the genetics of Alzheimer’s disease. Nat. Neurosci. 23, 311–322 (2020).

    Article  CAS  PubMed  Google Scholar 

  4. Wyss-Coray, T. Ageing, neurodegeneration and brain rejuvenation. Nature 539, 180–186 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bunting, E. L., Hamilton, J. & Tabrizi, S. J. Polyglutamine diseases. Curr. Opin. Neurobiol. 72, 39–47 (2022).

    Article  CAS  PubMed  Google Scholar 

  6. Lieberman, A. P., Shakkottai, V. G. & Albin, R. L. Polyglutamine repeats in neurodegenerative diseases. Annu. Rev. Pathol. 14, 1–27 (2019).

    Article  CAS  PubMed  Google Scholar 

  7. Orr, H. T. & Zoghbi, H. Y. Trinucleotide repeat disorders. Annu. Rev. Neurosci. 30, 575–621 (2007).

    Article  CAS  PubMed  Google Scholar 

  8. Aronin, N. & DiFiglia, M. Huntingtin-lowering strategies in Huntington’s disease: antisense oligonucleotides, small RNAs, and gene editing. Mov. Disord. 29, 1455–1461 (2014).

    Article  CAS  PubMed  Google Scholar 

  9. Bennett, C. F., Krainer, A. R. & Cleveland, D. W. Antisense oligonucleotide therapies for neurodegenerative diseases. Annu. Rev. Neurosci. 42, 385–406 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Tabrizi, S. J. et al. Targeting huntingtin expression in patients with Huntington’s disease. N. Engl. J. Med. 380, 2307–2316 (2019).

    Article  CAS  PubMed  Google Scholar 

  11. Fyfe, I. Antisense oligonucleotides improve cognitive function in HD model. Nat. Rev. Neurol. 14, 690–691 (2018).

    Article  CAS  PubMed  Google Scholar 

  12. Kordasiewicz, H. B. et al. Sustained therapeutic reversal of Huntington’s disease by transient repression of huntingtin synthesis. Neuron 74, 1031–1044 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Southwell, A. L. et al. Huntingtin suppression restores cognitive function in a mouse model of Huntington’s disease. Sci. Transl. Med. 10, eaar3959 (2018).

    Article  PubMed  Google Scholar 

  14. Franich, N. R. et al. AAV vector–mediated RNAi of mutant huntingtin expression is neuroprotective in a novel genetic rat model of Huntington’s disease. Mol. Ther. 16, 947–956 (2008).

    Article  CAS  PubMed  Google Scholar 

  15. Matos, C. A. et al. in Polyglutamine Disorders (eds Nóbrega, C. & Pereira de Almeida, L.) 395–438 (Springer, 2018).

  16. McBride, J. L. et al. Preclinical safety of RNAi-mediated HTT suppression in the rhesus macaque as a potential therapy for Huntington’s disease. Mol. Ther. 19, 2152–2162 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Spronck, E. A. et al. AAV5-miHTT gene therapy demonstrates sustained huntingtin lowering and functional improvement in Huntington disease mouse models. Mol. Ther. Methods Clin. Dev. 13, 334–343 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Vallès, A. et al. Widespread and sustained target engagement in Huntington’s disease minipigs upon intrastriatal microRNA-based gene therapy. Sci. Transl. Med. 13, eabb8920 (2021).

    Article  PubMed  Google Scholar 

  19. Imbert, M., Blandel, F., Leumann, C., Garcia, L. & Goyenvalle, A. Lowering mutant huntingtin using tricyclo-DNA antisense oligonucleotides as a therapeutic approach for Huntington’s disease. Nucleic Acid Ther. 29, 256–265 (2019).

    Article  CAS  PubMed  Google Scholar 

  20. Silva, A. C. et al. Antisense oligonucleotide therapeutics in neurodegenerative diseases: the case of polyglutamine disorders. Brain 143, 407–429 (2020).

    Article  PubMed  Google Scholar 

  21. Kingwell, K. Double setback for ASO trials in Huntington disease. Nat. Rev. Drug Discov. 20, 412–413 (2021).

    Article  CAS  PubMed  Google Scholar 

  22. Duan, Y. et al. Brain-wide Cas9-mediated cleavage of a gene causing familial Alzheimer’s disease alleviates amyloid-related pathologies in mice. Nat. Biomed. Eng. 6, 168–180 (2022).

    Article  CAS  PubMed  Google Scholar 

  23. Ekman, F. K. et al. CRISPR-Cas9-mediated genome editing increases lifespan and improves motor deficits in a Huntington’s disease mouse model. Mol. Ther. Nucleic Acids 17, 829–839 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yang, S. et al. CRISPR/Cas9-mediated gene editing ameliorates neurotoxicity in mouse model of Huntington’s disease. J. Clin. Invest. 127, 2719–2724 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Yang, W., Li, S. & Li, X.-J. A CRISPR monkey model unravels a unique function of PINK1 in primate brains. Mol. Neurodegener. 14, 17 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Zhou, Y. et al. Atypical behaviour and connectivity in SHANK3-mutant macaques. Nature 570, 326–331 (2019).

    Article  CAS  PubMed  Google Scholar 

  27. Bedbrook, C. N., Deverman, B. E. & Gradinaru, V. Viral strategies for targeting the central and peripheral nervous systems. Annu.Rev. Neurosci. 41, 323–348 (2018).

    Article  CAS  PubMed  Google Scholar 

  28. Chan, K. Y. et al. Engineered AAVs for efficient noninvasive gene delivery to the central and peripheral nervous systems. Nat. Neurosci. 20, 1172–1179 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Deverman, B. E. et al. Cre-dependent selection yields AAV variants for widespread gene transfer to the adult brain. Nat. Biotechnol. 34, 204–209 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Goertsen, D. et al. AAV capsid variants with brain-wide transgene expression and decreased liver targeting after intravenous delivery in mouse and marmoset. Nat. Neurosci. 25, 106–115 (2022).

    Article  CAS  PubMed  Google Scholar 

  31. Lunney, J. K. et al. Importance of the pig as a human biomedical model. Sci. Transl. Med. 13, eabd5758 (2021).

    Article  CAS  PubMed  Google Scholar 

  32. Lind, N. M. et al. The use of pigs in neuroscience: modeling brain disorders. Neurosci. Biobehav. Rev. 31, 728–751 (2007).

    Article  CAS  PubMed  Google Scholar 

  33. Moretti, A. et al. Somatic gene editing ameliorates skeletal and cardiac muscle failure in pig and human models of Duchenne muscular dystrophy. Nat. Med. 26, 207–214 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yan, S. et al. A Huntingtin knockin pig model recapitulates features of selective neurodegeneration in Huntington’s disease. Cell 173, 989–1002.e13 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Foust, K. D. et al. Intravascular AAV9 preferentially targets neonatal neurons and adult astrocytes. Nat. Biotechnol. 27, 59–65 (2009).

    Article  CAS  PubMed  Google Scholar 

  36. Manfredsson, F. P., Rising, A. C. & Mandel, R. J. AAV9: a potential blood-brain barrier buster. Mol. Ther. 17, 403–405 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Dayton, R. D., Wang, D. B. & Klein, R. L. The advent of AAV9 expands applications for brain and spinal cord gene delivery. Expert Opin. Biol. Ther. 12, 757–766 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hudry, E. & Vandenberghe, L. H. Therapeutic AAV gene transfer to the nervous system: a clinical reality. Neuron 101, 839–862 (2019).

    Article  CAS  PubMed  Google Scholar 

  39. Nasir, J. et al. Targeted disruption of the Huntington’s disease gene results in embryonic lethality and behavioral and morphological changes in heterozygotes. Cell 81, 811–823 (1995).

    Article  CAS  PubMed  Google Scholar 

  40. Zeitlin, S., Liu, J.-P., Chapman, D. L., Papaioannou, V. E. & Efstratiadis, A. Increased apoptosis and early embryonic lethality in mice nullizygous for the Huntington’s disease gene homologue. Nat. Genet. 11, 155–163 (1995).

    Article  CAS  PubMed  Google Scholar 

  41. Reiner, A., Dragatsis, I., Zeitlin, S. & Goldowitz, D. Wild-type huntingtin plays a role in brain development and neuronal survival. Mol. Neurobiol. 28, 259–275 (2003).

    Article  CAS  PubMed  Google Scholar 

  42. Wang, G., Liu, X., Gaertig, M. A., Li, S. & Li, X.-J. Ablation of huntingtin in adult neurons is nondeleterious but its depletion in young mice causes acute pancreatitis. Proc. Natl Acad. Sci. USA 113, 3359–3364 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Tabrizi, S. J., Ghosh, R. & Leavitt, B. R. Huntingtin lowering strategies for disease modification in Huntington’s disease. Neuron 102, 899 (2019).

    Article  CAS  PubMed  Google Scholar 

  44. Kaemmerer, W. F. & Grondin, R. C. The effects of huntingtin-lowering: what do we know so far? Degener. Neurol. Neuromuscul. Dis. 9, 3–17 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Cox, D. B. T., Platt, R. J. & Zhang, F. Therapeutic genome editing: prospects and challenges. Nat. Med. 21, 121–131 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Salsman, J. & Dellaire, G. Precision genome editing in the CRISPR era. Biochem. Cell Biol. 95, 187–201 (2017).

    Article  CAS  PubMed  Google Scholar 

  47. Wang, C.-E. et al. Suppression of neuropil aggregates and neurological symptoms by an intracellular antibody implicates the cytoplasmic toxicity of mutant huntingtin. J. Cell Biol. 181, 803–816 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Evers, M. M. et al. AAV5-miHTT gene therapy demonstrates broad distribution and strong human mutant huntingtin lowering in a Huntington’s disease minipig model. Mol. Ther. 26, 2163–2177 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Langfelder, P. et al. Integrated genomics and proteomics define huntingtin CAG length–dependent networks in mice. Nat. Neurosci. 19, 623–633 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Malla, B., Guo, X., Senger, G., Chasapopoulou, Z. & Yildirim, F. A systematic review of transcriptional dysregulation in Huntington’s disease studied by RNA sequencing. Front. Genet. 12, 751033 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Woodman, B. et al. The HdhQ150/Q150 knock-in mouse model of HD and the R6/2 exon 1 model develop comparable and widespread molecular phenotypes. Brain Res. Bull. 72, 83–97 (2007).

    Article  CAS  PubMed  Google Scholar 

  52. Rinaldi, C. & Wood, M. J. A. Antisense oligonucleotides: the next frontier for treatment of neurological disorders. Nat. Rev. Neurol. 14, 9–21 (2018).

    Article  CAS  PubMed  Google Scholar 

  53. Schoch, K. M. & Miller, T. M. Antisense oligonucleotides: translation from mouse models to human neurodegenerative diseases. Neuron 94, 1056–1070 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Marxreiter, F., Stemick, J. & Kohl, Z. Huntingtin lowering strategies. Int. J. Mol. Sci. 21, 2146 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Zeitler, B. et al. Allele-selective transcriptional repression of mutant HTT for the treatment of Huntington’s disease. Nat. Med. 25, 1131–1142 (2019).

    Article  CAS  PubMed  Google Scholar 

  56. Menalled, L. B. Knock-in mouse models of Huntington’s disease. Neurotherapeutics 2, 465–470 (2005).

    Article  Google Scholar 

  57. Sauleau, P., Lapouble, E., Val-Laillet, D. & Malbert, C.-H. The pig model in brain imaging and neurosurgery. Animal 3, 1138–1151 (2009).

    Article  CAS  PubMed  Google Scholar 

  58. Gutierrez, K., Dicks, N., Glanzner, W., Agellon, L. & Bordignon, V. Efficacy of the porcine species in biomedical research. Front. Genet. 6, 293 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Klymiuk, N. et al. Tailored pig models for preclinical efficacy and safety testing of targeted therapies. Toxicol. Pathol. 44, 346–357 (2016).

    Article  CAS  PubMed  Google Scholar 

  60. Meurens, F., Summerfield, A., Nauwynck, H., Saif, L. & Gerdts, V. The pig: a model for human infectious diseases. Trends Microbiol. 20, 50–57 (2012).

    Article  CAS  PubMed  Google Scholar 

  61. Pabst, R. The pig as a model for immunology research. Cell Tissue Res. 380, 287–304 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Swindle, M. M., Makin, A., Herron, A. J., Clubb, F. J. & Frazier, K. S. Swine as models in biomedical research and toxicology testing. Vet. Pathol. 49, 344–356 (2012).

    Article  CAS  PubMed  Google Scholar 

  63. Samaranch, L. et al. AAV9-mediated expression of a non-self protein in nonhuman primate central nervous system triggers widespread neuroinflammation driven by antigen-presenting cell transduction. Mol. Ther. 22, 329–337 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Marcó, S. et al. Seven-year follow-up of durability and safety of AAV CNS gene therapy for a lysosomal storage disorder in a large animal. Mol. Ther. Methods Clin. Dev. 23, 370–389 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  65. West, J. & Gill, W. W. Genome editing in large animals. J. Equine Vet. Sci. 41, 1–6 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Zhao, J., Lai, L., Ji, W. & Zhou, Q. Genome editing in large animals: current status and future prospects. Natl Sci. Rev. 6, 402–420 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Wilton, D. K. & Stevens, B. The contribution of glial cells to Huntington’s disease pathogenesis. Neurobiol. Dis. 143, 104963 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Simhadri, V. L. et al. Prevalence of pre-existing antibodies to CRISPR-associated nuclease Cas9 in the USA population. Mol. Ther. Methods Clin. Dev. 10, 105–112 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Clement, K. et al. CRISPResso2 provides accurate and rapid genome editing sequence analysis. Nat. Biotechnol. 37, 224–226 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).

    Article  CAS  PubMed  Google Scholar 

  72. Howe, K. L. et al. Ensembl 2021. Nucleic Acids Res. 49, D884–D891 (2021).

    Article  CAS  PubMed  Google Scholar 

  73. Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Pertea, M. et al. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat. Biotechnol. 33, 290–295 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Chen, C. et al. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol. Plant 13, 1194–1202 (2020).

    Article  CAS  PubMed  Google Scholar 

  77. Head, S. R. et al. Library construction for next-generation sequencing: overviews and challenges. Biotechniques https://doi.org/10.2144/000114133 (2014).

Download references

Acknowledgements

We thank Z. Ouyang, C. Lai, N. Li, S. Gou, K. Wang, Q. Jin and H. Shi for technical assistance, and D. Wu and Y. Ai for animal care. This work was supported by The National Natural Science Foundation of China (81830032, 31872779, 81922026, 82071421, 82171244,32170981); the National Key Research and Development Program of China (2021YFA0805300,2022YFA1105403); the Guangzhou Key Research Program on Brain Science (202007030008, 202007030003), Key Field Research and Development Program of Guangdong province (2018B030337001); the National Key Research and Development Program of China Stem Cell and Translational Research (2017YFA0105102, 2017YFA0105101, 2017YFA0105103, 2017YFA0105104), Department of Science and Technology of Guangdong Province (2021ZT09Y007, 2020B121201006).

Author information

Authors and Affiliations

Authors

Contributions

S.Y., X.-J.L., S.L. and L.L. designed the research; S.Y., X.Z., Y.L., C.L., Z.L., J.L., Z.T., Y.Z., C.H., Jun Li, X.S., B.H., Y.C., W.W. and W.L. performed the research; S.Y., X.-J.L., S.L., L.L. and X.Z. analysed the data; J.L. performed bioinformatics analysis; S.Y., X.-J.L., S.L. and L.L. wrote the paper with input from all authors.

Corresponding authors

Correspondence to Sen Yan, Liangxue Lai, Xiao-Jiang Li or Shihua Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Biomedical Engineering thanks Yonglun Luo and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary figures, tables and video captions.

Reporting Summary

Peer Review File

Footprints in sand of HD KI pigs treated with a brain injection of AAV-Cas9 and control gRNA, and of a KI pig treated with a brain injection of AAV-Cas9 and HTT gRNA-20Q.

Footprints in sand of an HD KI pig treated with an intravenous injection of AAV-Cas9 and control gRNA, and of a KI pig treated with an intravenous injection of AAV-Cas9 and HTT gRNA-20Q.

Treadmill performance of an HD KI pig after an intravenous control and of a 5-month-old KI pig treated with an intravenous treatment injection.

Treadmill performance of an HD KI pig treated with a brain-injection control and of a 7-month-old KI pig with a treatment brain injection.

Treadmill performance of an HD KI pig before (at 3 months of age) and after (at 7 months of age) brain injection treatment.

Treadmill performance of WT pigs and brain-injection-treated 2-yr-old KI pigs.

Source data

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, S., Zheng, X., Lin, Y. et al. Cas9-mediated replacement of expanded CAG repeats in a pig model of Huntington’s disease. Nat. Biomed. Eng 7, 629–646 (2023). https://doi.org/10.1038/s41551-023-01007-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41551-023-01007-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing