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A library of base editors for the precise 
ablation of all protein-coding genes in the 
mouse mitochondrial genome

Pedro Silva-Pinheiro    , Christian D. Mutti    , Lindsey Van Haute, 
Christopher A. Powell, Pavel A. Nash, Keira Turner     & Michal Minczuk     

The development of curative treatments for mitochondrial diseases, which 
are often caused by mutations in mitochondrial DNA (mtDNA) that impair 
energy metabolism and other aspects of cellular homoeostasis, is hindered 
by an incomplete understanding of the underlying biology and a scarcity 
of cellular and animal models. Here we report the design and application 
of a library of double-stranded-DNA deaminase-derived cytosine base 
editors optimized for the precise ablation of every mtDNA protein-coding 
gene in the mouse mitochondrial genome. We used the library, which we 
named MitoKO, to produce near-homoplasmic knockout cells in vitro 
and to generate a mouse knockout with high heteroplasmy levels and no 
off-target edits. MitoKO should facilitate systematic and comprehensive 
investigations of mtDNA-related pathways and their impact on organismal 
homoeostasis, and aid the generation of clinically meaningful in vivo models 
of mtDNA dysfunction.

Mammalian mitochondria contain several copies of their own genome 
(mtDNA) which encodes 13 essential subunits of the oxidative phospho-
rylation (OXPHOS) system. Pathogenic variants in the mitochondrial 
genome (both ‘heteroplasmic’ (mix of normal and mutant genomes) 
or ‘homoplasmic’ (100% mutant genomes)) can result in mitochondrial 
diseases, which are a major group of inherited conditions affecting ~1 
in 8,000 humans1. These disorders are characterized by unexplained 
tissue selectivity and are currently incurable. Accumulation of mtDNA 
mutations has also been observed in healthy humans, in particular 
during the ageing process, and has been associated with common mul-
tifactorial diseases, metabolic disease, heart failure, cancer and neu-
rodegeneration2. There is a pressing need to develop new approaches 
to model mtDNA dysfunction in vitro and in vivo, which will be indis-
pensable for experimental therapy development and, in the longer 
term, to treat diseases in which mtDNA dysfunction is a primary or 
confounding factor3.

Historically, the mitochondrial biology and medicine fields 
were unable to manipulate or modify the mitochondrial genome in 
mammalian mitochondria within cells, which has severely hindered 

research on mtDNA metabolism and the development of in vivo mod-
els for pre-clinical therapies for mtDNA diseases4. Only a few mouse 
models for mtDNA disease have been developed and characterized 
thus far5. For many years, the approaches towards manipulation of 
mtDNA in mammals have been mainly limited to changing the ratio 
of the existing mtDNA variants (heteroplasmy) by mitochondrially 
targeted restriction enzymes and programmable nucleases, both 
in vitro6–10 and in vivo11–14. A method to silence mitochondrial gene 
expression in a systematic way was developed, utilizing chemically 
synthesized precursor-morpholino hybrids15. However, this strat-
egy is only applicable in purified mitochondria, invaliding its use for 
studies in cellular and animal models. Recently, a new approach has 
been developed: DddA-derived cytosine base editor (DdCBE), which 
catalyses site-specific C:G to T:A conversions in mtDNA. DdCBE is 
based on an adapted toxin DddAtox derived from Burkholderia ceno-
cepacia (separated non-toxic halves fused to TALE proteins), which is 
targeted to the mitochondrial matrix to catalyse deamination of cyti-
dines within double-stranded DNA at a sequence determined by TALE 
design in vitro and in vivo16. The initial DdCBEs deaminate cytidines in 
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to the expected C editing of the TGA Trp codon on the opposite 
non-coding H-strand for Nd1, Nd2, Nd3, Nd4, Nd5, Cytb, CoI, CoII, 
CoIII, Atp6 and Atp8 (Fig. 3b and Extended Data Fig. 1a,b). For Nd6, 
which is encoded by the H-strand, the opposite was observed—link-
ing 1333 C with H-strand binding TALEs led to the expected C editing 
of the TGA Trp codon on the opposite non-coding L-strand (Fig. 3b).  
Finally, for Nd4l (expected edits: GTC CAA > GTT TAA; edited C under-
lined), linking 1333 C with H-strand binding TALEs also led to higher 
on-target editing levels (Fig. 3b). Having established the favourable 
DddAtox 1333 split orientation, we set out to optimize the position 
of TALE domain binding for each DdCBE pair combined with scor-
ing off-target effects (Fig. 3c). The score used to assess off-targets 
introduced a penalty score for mtDNA off-targets with heteroplasmy 
greater than 5% (Supplementary Dataset 1). This analysis led to the 
selection of lead pairs for each of the mtDNA-encoded ORFs (Fig. 3d, 
arrow heads). The on-target activity of the lead MitoKO DdCBE pairs 
ranged between ~40% and ~70% (Fig. 3e), which was higher than the 
originally reported DdCBEs, which ranged between ~5 and ~50%16. This 
higher editing efficacy could be explained by differences in DdCBE 
construct selection strategies (antibiotic vs FACS) or in cell type used 
(human HEK293 vs mouse NIH/3T3, which can substantially differ, for 
example, in terms of mitochondrial import or mtDNA base excision 
repair efficiencies). Taken together, we have generated a library of 13 
DdCBEs capable of introducing high levels of premature stop codons 
into the ORFs of mouse mtDNA, therefore, knocking out each of the 
mtDNA-encoded protein-coding genes.

the TC:GA sequence context leading to a TC:GA > TT:AA16. Very recently, 
engineered zinc finger-based mitochondrial deaminases have also 
been developed17 and the strict TC sequence-context constraint of 
DddAtox was expanded to offer a broadened HC (H = A, C or T) sequence 
compatibility18.

Recent reports on the use of DdCBE in plants showed relatively 
high efficiency of editing of plant mitochondrial and plastid genomes, 
but a substantial burden of off-target edits was also observed19–21. A 
proof-of-concept of successful installation of mtDNA edits in ani-
mals in vivo has recently been provided, by delivering DdCBE-coding 
nucleic acids into embryos in mice22,23, rats24 and zebrafish23, and by 
adeno-associated virus–mediated delivery into post-mitotic tissues in 
mice25. However, off-target mutations in the mitochondrial genomes 
have been observed and none of these animals have shown high mtDNA 
editing levels (heteroplasmy, let alone homoplasmy), raising some 
concerns about the specificity and efficacy of DdCBEs for in vivo use.

Here we report a library of improved mitochondrial base edi-
tors (MitoKO) for systematic and comprehensive investigations 
of mtDNA-related pathways. MitoKO provides an easy access solu-
tion for researchers who require the ablation of mtDNA-encoded 
protein-coding genes in the mouse. The MitoKO library can be applied 
to study fundamental processes occurring in mitochondria and their 
impact on organismal homoeostasis, and to generate novel, clinically 
meaningful in vivo models of mtDNA dysfunction for drug discovery 
and pre-clinical investigations.

Results
Design of MitoKO DdCBE constructs
We set out to generate the MitoKO—a library of highly specific DdCBEs to 
knock out (KO) every protein-coding gene of mouse mtDNA through the 
introduction of premature stop codons. For each open reading frame 
(ORF), we designed eight DdCBE pairs containing TALE domains bind-
ing the mtDNA light (L) or heavy (H) strands (DdCBE-L1 and DdCBE-L2 
or DdCBE-H1 and DdCBE-H2, respectively) and different combinations 
of the 1333 DddAtox split (1333 N or 1333 C) targeting a 14–20-bp-long 
sequence in the mitochondrial ORFs (Fig. 1a and Extended Data  
Fig. 1a,b). For all mtDNA-encoded mouse ORFs, except MT-Nd4l, we 
intended to change Trp codons TGA into TAA STOP codons by deaminat-
ing the C on the opposite (non-coding) strand (5′ TCA > 5′ TTA; edited 
C underlined) (Fig. 1b). In the case of MT-Nd4l, we changed a coding 
sequence for Val90 and Gln91 (GTC CAA) into Val and STOP (GTT-TAA; 
edited Cs underlined) by deaminating two consecutive Cs on the coding 
strand (Fig. 1c). These designs led to a collection of truncating muta-
tions as early as at the 6th amino acid-coding codon (MT-CoI) and not 
later than the 146th amino acid-coding codon (MT-CoIII) (Fig. 2a,b).

Screening MitoKO DdCBE pairs
We screened the MitoKO designs using transient high-level expres-
sion of DdCBEs. To this end, DdCBEs were cloned into vectors that 
co-express fluorescent marker proteins (mCherry or GFP) enabling 
fluorescence-activated cell sorting (FACS) of transiently transfected 
cells (Extended Data Fig. 1c). In the initial screen, we intended to 
optimize the 1333 DddAtox split orientation. We tested MitoKO 
DdCBEs with the N-terminal part of the 1333 DddAtox split (1333 N) 
linked either with L-strand-binding TALEs (DdCBE-L1 or DdCBE-L2) 
or H-strand-binding TALEs (DdCBE-H1 or DdCBE-H2) in combina-
tion with the C-terminal part of the 1333 DddAtox split (1333 C) linked 
with pairing/matching TALE constructs (Fig. 3a and Extended Data  
Fig. 1a,b). We transfected these constructs into NIH/3T3 mouse cells, 
which were subjected to FACS at 24 h post-transfection to enrich 
the population of cells expressing the designated MitoKO DdCBEs. 
After FACS, we seeded the transfectants for continued culture and 
collected them at 7 d post-transfection for mtDNA heteroplasmy 
analyses (Extended Data Fig. 1c). The 1333 DddAtox split orientation 
screen revealed that linking 1333 C with L-strand binding TALEs led 
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Fig. 1 | MitoKO DdCBE library design strategy. a, The architecture of DdCBE 
monomers used to generate the mitoKO library targeting each protein-coding 
gene of the mouse mtDNA. The mtDNA specificity is provided by programmable 
TALE domains. In each experiment, the DddAtox G1333 split (purple) was tested 
in both orientations to achieve editing of the desired ‘TC’ sites. The MTS were 
from human superoxide dismutase 2 (SOD2) or cytochrome C oxidase subunit 
8 (COX8). UGI, uracil glycosylase inhibitor. L-strand or (L), light mtDNA strand. 
H-strand or (H), heavy mtDNA strand. b, The strategy employed to ablate the 
12 out of 13 mtDNA protein-encoded genes (Nd1, Nd2, Nd3, Nd4, Nd5, Nd6, Cytb, 
CoI, CoII, CoIII, Atp6 and Atp8) by introducing a premature stop codon with base 
editing. In the vertebrate mitochondrial genetic code, the TGA codon encodes 
tryptophan (Trp). Transition of the cytosine (C) in the opposite strand to a 
thymine (T) (in purple) using base editing leads to a premature TAA stop codon. 
c, The strategy employed to knock out the mtDNA protein-encoded gene Nd4l, by 
introducing a premature stop codon with base editing. Transition of the cytosine 
(C) in a CAA codon encoding glutamine (Gln) to a thymine (T) (in purple) using 
base editing leads to a premature TAA stop codon, thereby silencing the Nd4l 
gene. In this site, base editing can potentially edit the adjacent C of a GTC codon 
encoding valine (Val). However, the resulting GTT codon also encodes valine 
leading to a silent mutation.
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Generation of near-homoplasmic mtDNA knockouts by 
iterative application of MitoKO constructs
Next, we set out to generate high levels of truncating mutations in all 
mtDNA-encoded ORFs by repeated MitoKO treatments. To this end, we 
performed several sequential rounds of transfection and recovery, con-
sisting of MitoKO construct delivery and selection of transfectants by 
FACS at 24 h, followed by a 14 d recovery period, at which point hetero-
plasmy was measured and cells were re-transfected (Fig. 4a,b). Begin-
ning with wild-type (WT) NIH/3T3 cells and using four iterative cycles 
of transfection and recovery, this approach was capable of producing 
effectively homoplasmic cells harbouring premature STOP codons in 
each of the mouse mtDNA-encoded protein-coding genes (Extended 
Data Fig. 2). To substantiate the genetic data showing complete knock-
out of the mtDNA-encoded ORFs, we assessed mitochondrial transla-
tion of each of the 13 mtDNA-encoded polypeptides by incorporating 
radioactively labelled methionine upon inhibition of cytoplasmic pro-
tein synthesis. This analysis revealed that the mitochondrial de novo 
protein synthesis rate was markedly decreased for the genes harbouring 
a MitoKO-introduced STOP mutation, supporting precise installation 
of the gene-disrupting edits (Fig. 4c and Extended Data Fig. 3a). As 
specific bands for Nd4l, Nd5, Nd6, CoIII and Atp8 are not easily iden-
tifiable in the de novo protein synthesis assay, we examined whether 
their genetic ablation results in perturbation of steady-state levels of 
the corresponding OXPHOS complexes using blue-native gel electro-
phoresis (BNGE) (the reduction of mtDNA-encoded core subunits of 
OXPHOS complexes generally leads to their aberrant assembly and/
or instability26). This analysis showed substantially reduced levels of 
complex I in Nd4l, Nd5 and Nd6 knockouts, complex III in CoIII knockout 
and complex V in Atp8-ablated cells (Extended Data Fig. 3b). Consistent 
with this, basal oxygen consumption rates were significantly reduced in 
all 13 mtDNA knockout cell lines, except for the Nd4 KO line, for which 

oxygen consumption rates were lower although without statistical 
significance (Extended Data Fig. 4a). Also, the growth of these 13 mtDNA 
knockout cell lines on galactose-containing medium, which forces the 
cells to rely on OXPHOS to produce ATP, was severely compromised 
(Extended Data Fig. 4b,c). Interestingly, continuous culture of MitoKO 
cell lines on galactose-containing medium for more than 7 d led to 
a partial loss of the damaging nonsense mutations (Extended Data 
Fig. 4d). Taken together, these results demonstrate that sequential 
short-term MitoKO DdCBE treatments could achieve near-complete 
knockouts of mtDNA proteins, thus enabling systematic interrogation 
of the mouse OXPHOS system using reverse genetics.

Limiting off-target mutagenesis with improved MitoKO 
architectures
We then focused on assessing and optimizing the precision of the 
MitoKO, with the aim of bringing the off-target mutagenesis to back-
ground levels found in wild-type cells. To compare mtDNA-wide 
off-targeting of the MitoKO DdCBEs with the previously published 
mitochondrial cytosine base editors16, we re-analysed mtDNA from 
the WT NIH/3T3 cells and cells transfected with MitoKO DdCBEs (14 d 
post-transfection). Wild-type cells were used as a control to distin-
guish MitoKO DdCBE-induced C:G-to-T:A single-nucleotide variants 
(SNVs) from natural background heteroplasmy, which was at 0.02%. 
The average frequencies of mtDNA-wide off-target C:G-to-T:A editing by 
MitoKO DdCBEs were between ~3.5 to ~14.5-fold higher (0.065–0.29%) 
than background heteroplasmy frequency for the control (Extended 
Data Fig. 5a,b). While for many MitoKO constructs the mtDNA-wide 
off-target frequencies were well within the range of ‘precise’ DdCBEs 
(0.04–0.15%)16, for some of them the off-targets were higher than the 
values observed for the originally reported DdCBEs editing mtDNA in 
human HEK293T cells16. Furthermore, there was a positive correlation 
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between on-target and off-target mtDNA editing, with increased levels 
of STOP mutants being accompanied by higher levels of C:G-to-T:A SNVs 
(Extended Data Fig. 5c). Given the latter, we hypothesized that reducing 
DdCBE expression levels would lead to an improved on-target/off-target 
ratio. Therefore, we sought to engineer new DdCBE architectures to 
exercise greater control over protein expression levels. To this end, 
we considered three approaches: (1) The inclusion of an engineered 
hammerhead ribozyme (HHR) into the 3′ untranslated region (UTR) of 

MitoKO DdCBE messenger RNA to constitutively cleave coding mRNA, 
leading to a poly(A)-free 3′ end that is susceptible to degradation, hence 
greatly reducing protein expression27 (Fig. 5a). (2) Linking the MitoKO 
DdCBE monomer coding sequences with the T2A element, therefore 
greatly reducing the mitochondrial concentration of the downstream 
monomer28 (Fig. 5b). (3) Combining the HHR and T2A approaches  
(Fig. 5). Our previous studies showed that the inclusion of HHR 3′K19 
element27 into the 3′ UTR of engineered mitochondrially-targeted zinc 
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Fig. 3 | Selection screening of DdCBEs for MitoKO library generation. a, 
Schematic of the first screening for the optimization of DddAtox G1333 split 
orientation. In this screen, DdCBEs were generated by pairing TALEs L1 with 
H1 and L2 with H2 (Extended Data Fig. 1), testing the N-terminal fragment of 
DddAtox G1333 linked to L1 or L2 and the C-terminal part linked to H1 or H2, and 
the reciprocal orientation, with the C terminal of DddAtox G1333 linked to L1 or 
L2 and the N terminal linked to H1 or H2. b, In vitro on-target editing efficiency 
in cells after transient expression with the indicated MitoKO DdCBE pairs (Pair 
ID). The schematics represent the DdCBE pair combinations and which DddAtox 
G1333 split orientation was used. On-target efficiency was analysed by Sanger 
sequencing. Note the impact of split orientation on the on-target efficiency. c, 
Schematic of the second screening for the optimization of DdCBE pairings and 

off-target analysis. In this screen, DdCBEs with the most efficient DddAtox G1333 
split orientation (from screen 1; b,c) were tested with additional pairings: TALEs 
L1 with H2 and L2 with H1. d, In vitro on-target editing efficiency and off-target 
scores in NIH/3T3 cells after transient expression with the indicated DdCBE pairs 
from the MitoKO library (Pair ID). The schematics represent the DdCBE pair 
combinations and which DddAtox G1333 split orientation was used. On-target 
efficiency and off-targets were analysed by next-generation sequencing (NGS). 
The final MitoKO DdCBEs (indicated with black arrows) were selected on the 
basis of high on-target efficiency and low off-target score (less mtDNA-wide off-
targets). Source data are provided as a Source Data file. e, On-target editing by 
the lead MitoKO DdCBE pairs from 14 d after transfection measured by NGS. Bars 
and error bars represent mean ± s.e.m. (n = 3 technical replicates).
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finger nucleases led to the reduction of their expression (Fig. 5a) and 
a consequent decrease in nuclease off-targeting29. We included 3′K19 
HHR between the DdCBE ORF stop codon and the bovine growth hor-
mone (BGH) poly(A) site of four MitoKO constructs, targeting subunits 
of each OXPHOS complex that contains mtDNA-encoded components 
(complex I, Nd3; complex III, Cytb; complex IV, CoII; complex V, Atp6) 
(Fig. 5a,c). We delivered these constructs with improved DdCBE archi-
tecture as separate plasmids into WT NIH/3T3 cells, selected the trans-
formants by FACS and assessed their on- and off-target performance 
(Fig. 5c, left, 2-plasmid or 2-plasmid-HHR). The HHR-equipped MitoKO 
DdCBEs showed greatly reduced off-targeting, as assessed by analys-
ing mtDNA-wide C:G-to-T:A SNVs (Fig. 5c, Extended Data Fig. 6 and 
Supplementary Dataset 2), with the mtDNA off-targeting for Nd3 and 
Cytb MitoKO constructs being comparable to that of the WT control, 
and mtDNA off-targeting for CoII and Atp6 being only ~1.5-fold higher 
than that of the control (Fig. 5c, 2-plasmid-HHR). Next, we used the 
T2A sequence to tandemly link the ORFs coding for the MitoKO DdCBE 
monomers ablating Nd3, Cytb, CoII and Atp6, delivered these constructs 
on single plasmids into WT NIH/3T3 cells, selected the transformants 
by FACS (mCherry selection) and assessed their mitochondrial on- and 
off-target performance (Fig. 5c, left, Tandem). This tandem architecture 

also yielded a substantial reduction in off-targeting as scored by assess-
ing mtDNA-wide C:G-to-T:A SNVs. The off-targets for Nd3, Cytb and Atp6 
were virtually indistinguishable from those of the control, while the CoII 
construct off-targeting was ~1.5-fold higher than for WT NIH/3T3 cells 
(Fig. 5c, Extended Data Fig. 6 and Supplementary Dataset 2, Tandem). 
Finally, WT NIH/3T3 cells were transfected with the T2A-linked and 
HHR-equipped Nd3, Cytb, CoII and Atp6 MitoKO constructs, followed 
by FACS and mtDNA-wide C:G-to-T:A off-target SNV assessment (Fig. 5c, 
left, Tandem-HHR). The combination of the T2A and HHR architectures 
led to further reduction in mtDNA off-targeting for all analysed con-
structs, with the average C:G-to-T:A off-target SNVs being at the level 
of WT NIH/3T3 cells (Fig. 5c, Extended Data Fig. 6 and Supplementary 
Dataset 2, Tandem-HHR).

According to recent data, high levels of DdCBE expression led 
to off-target editing in the nuclear genome (nDNA) in human cul-
tured cells30 and mouse embryos31. Therefore, we intended to assess 
whether MitoKO also leads to nDNA off-targets and, if that were the 
case, to observe whether the improved T2A-based DdCBE architecture 
leads to a reduction in nDNA off-targeting. To this end, we performed 
whole-genome sequencing in wild-type NIH/3T3 cells and cells trans-
fected with the Atp6 MitoKO construct expressed either from two 
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separate plasmids (Fig. 5c, left, 2-plasmid) or from a single construct 
(Fig. 5c, left, Tandem). First, we selected 109 C:G-to-T:A SNVs from 
five chromosomes (chr15 to chr19) that differed the most between 
WT and 2-plasmid Atp6 MitoKO samples and from those we analysed 
14 and 7 SNVs in the TC and TCC sequence context, respectively. None 
of these SNVs showed statistically significant differences between 
the WT and Atp6 MitoKO 2-plasmid or WT and Atp6 MitoKO Tandem 
conditions (Extended Data Fig. 7). The lack of detectable off-targets 
compared with published studies in human cells30 or mouse embryos31 
could be attributable to differences in cell type used and/or DdCBE 
expression levels.

Taken together, fine-tuning expression levels of MitoKO DdCBEs 
with an upgraded architecture through the inclusion of an HHR in the 
3′ UTR and/or tandemly linking the DdCBE monomers using the T2A 
element has led to great improvement in base editing precision by 
reducing mtDNA off-targeting effects of our MitoKO constructs to 
background levels.

Generation of near-homoplasmic mtDNA knockouts by 
long-term application of MitoKO constructs
The improvement in the MitoKO library precision led to 2–3-fold reduc-
tion in on-target performance (Fig. 5c, Extended Data Fig. 6 and Sup-
plementary Dataset 2). We hypothesized that long-term expression 
of the tandem and Tandem-HHR MitoKO architectures (Fig. 5c) would 
lead to an increased on-target base editing while maintaining the same 
precision levels. To this end, we used a docking site in the genome of 
the NIH/3T3 mouse cell line for FRT recombinase-assisted insertion of 
the T2A-linked and/or HHR-containing Nd3, Cytb, CoII and Atp6 MitoKO 
constructs, followed by hygromycin selection of stable transfectants 
(Fig. 5d, left). Then we analysed on- and off-target mtDNA base editing 
at 28, 35 and 48 d post-transfection. For all T2A-linked architectures 
tested, we observed near-homoplasmic introduction of premature stop 
codons (Fig. 5d, Tandem), while off-targeting remained low and com-
parable to the WT cell background (Fig. 5d and Supplementary Dataset 
2, Tandem), except for the Atp6 MitoKO construct (Fig. 5d, orange 
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(bottom). Right: on-target (Y axis) and off-target (X axis) performance of the Nd3, 
Cytb, CoII and Atp6 MitoKO constructs transiently delivered into NIH/3T3 cells as 
separate monomers (2-plasmid), separate monomers with the HHR incorporated 
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biological replicates).
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circles). Similarly, long-term expression of most of the T2A-linked and 
HHR-containing MitoKO architectures (Fig. 5d, Tandem-HHR) led to 
high heteroplasmies of the premature stop codons (>80%), except for 
Nd3, with minimal off-target detection (Fig. 5d and Supplementary 
Dataset 2, Tandem-HHR). Taken together, we generated mouse cell lines 
with high heteroplasmy levels of protein-coding gene knockouts and 
very low off-target editing by long-term expression of either T2A (Nd3, 
Cytb, CoII) or T2A/HHR (Atp6) improved MitoKO library constructs.

In vivo mouse mtDNA editing with the MitoKO library
Next, we intended to test the utility of the MitoKO library in modify-
ing the mitochondrial genome in vivo. Several truncating mutations 
in Mt-Atp6 have been associated with mitochondrial disease with a 
heterogenous clinical spectrum and various tissue-specific presenta-
tions32–36. Therefore, we decided to model these mitochondrial ATP 
synthase (complex V or CV) disorders in mice. To do this, we injected 

1-cell embryos with in vitro transcribed (IVT), polyadenylated mRNA 
coding for the MitoKO DdCBE introducing m.8069 G > A nonsense 
mutation in Atp6 (Fig. 6a). Next, we implanted DdCBE-injected embryos 
into pseudopregnant, surrogate mothers and obtained F0 offspring 
carrying approximately 3% (female), 10% (female) and 3% (male) of 
m.8069 G > A heteroplasmy. To verify germline transmission of the 
resulting mitochondrial mutation, the female F0 mouse carrying 10% 
of m.8069 G > A was crossed with a wild-type C57BL6/J male to obtain 
F1 pups (Fig. 6a and Supplementary Dataset 3). The first litter of the F1 
generation pups carried m.8069 G > A heteroplasmy ranging between 
9% to 23% (Fig. 6b and Supplementary Dataset 3). Next, we selectively 
bred the highest heteroplasmy females from F1 and F2 to obtain animals 
harbouring more than 50% m.8069 G > A heteroplasmy in F3 (Fig. 6b 
and Supplementary Dataset 3). We also carried out off-targeting analy-
sis of the generations between F0 and F3 by analysing mtDNA-wide 
C:G-to-T:A SNVs and comparing to WT animals. While the F0 female 
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Fig. 6 | In vivo mouse mtDNA editing with the MitoKO library. a, Schematic 
representation of the use of Atp6 MitoKO constructs (L2-C and H2-N) for the 
generation of F0 founder animals carrying a heteroplasmic m.8069 G > A 
mutation and subsequent selective breeding scheme. IVT+poly(A), in vitro 
transcription and polyadenylation. b, The m.8069 G > A heteroplasmy (Y axis) in 
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WT controls. e, Immunoblotting of mitochondria isolated from skeletal muscle 
of F4 generation Atp6 m.8069 G > A heteroplasmic mice and WT controls upon 
a CNGE with a CV-specific antibody (ATP5A). Arrow indicates CV subcomplexes. 
An antibody specific for complex II (SDHB) was used as loading control. f, CNGE 
followed by in-gel ATP hydrolysis activity of CV in mitochondria isolated from 
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controls. Arrow indicates the activity of CV subassemblies. Coomassie brilliant 
blue (CBB) was used as loading control. For e and f, uncropped scans are provided 
as a Source Data file.
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showed a slightly elevated level of C:G-to-T:A SNVs, these got puri-
fied in the subsequent generations (Fig. 6c). Importantly, the average 
m.8069 G > A heteroplasmy values, gradually rising through genera-
tions due to selective breeding, were not accompanied by any detect-
able increase in C:G-to-T:A SNVs, consistent with no linked off-targeting 
being carried through the maternal line (Fig. 6d). Having established 
that F1–F3 generations have virtually no off-targets, we further bred the 
mice to produce F4 and obtained higher m.8069 G > A heteroplasmy 
levels (Supplementary Dataset 3). We then analysed CV in skeletal 
muscle of F4 mice by immunoblotting. Similar to patients carrying 
truncating Mt-Atp6 mutations36, we observed CV subcomplexes in the 
heteroplasmic F4 mice, as detected using an antibody to ATP5A, the 
early assembled ATP synthase F1 subunit α (Fig. 6e). An ATP hydrolysis 
in-gel activity assay confirmed that the subassemblies are consistent 
with the F1 extramembranous catalytic core of CV (Fig. 6f). It is worth 
noting that the levels of CV subcomplexes positively correlated with 
m.8069 G > A heteroplasmy (Fig. 6e,f). Taken together, we show that 
the MitoKO library constructs can be used for in vivo modelling of 
mitochondrial dysfunction and we report a mouse model with ATP 
synthase dysfunction due to an mtDNA mutation.

Discussion
We developed and optimized MitoKO to enable systematic reverse 
engineering of the mitochondrial genome in mouse cells. The MitoKO 
is a library of highly specific DdCBEs to knock out every protein-coding 
gene of mouse mtDNA through the introduction of premature stop 
codons. The MitoKO constructs are extensively optimized for on-target 
activity and show virtually no off-target action, forming a collection 
of reagents for: (1) in vitro use in cultured mouse cells via convenient 
single-plasmid delivery; (2) in vivo applications for embryo microin-
jections, embryonic stem cell transfection or hydrodynamic deliv-
ery; and (3) a collection of knockout mouse cell lines in the NIH/3T3 
background with isogenic distribution of cells with variable mtDNA 
mutant levels from the same parental source without clonal selection, 
which is normally required for the generation of cytoplasmic hybrid 
(cybrid) lines and can lead to a substantial nuclear genome variability37. 
The MitoKO repository will be constantly updated, with the reagents 
being available to the scientific community. In the next stage, we plan 
to implement the potential of somatic tissue-specific mutagenesis 
with adeno-associated virus and Rosa26/TIGRE locus transgenesis for 
spatiotemporal expression control.

While testing on the MitoKO library in vitro, we observed a positive 
correlation between on-target and off-target editing, with increased 
levels of on-target editing being accompanied by higher levels of 
mtDNA-wide C:G-to-T:A off-targets (Extended Data Fig. 5c). Fine-tuning 
the expression levels of the MitoKO constructs through architecture 
improvement led to low levels of off-targets, thus enabling high preci-
sion of the MitoKO constructs. Limiting the concentration of DdCBEs 
in the mitochondrial matrix was pursued with two architectures: (1) 
the incorporation of HHR that reduces DdCBE mRNA stability, hence 
reducing levels of translated protein and (2) linking of DdCBE mono-
mers with a T2A peptide. While use of T2A peptides necessitates the 
addition of a C-terminal peptide tail to the upstream protein and an 
N-terminal prolyl addition to the downstream protein, these were 
shown not to appreciably affect the on-target deaminase activity. 
We also speculate that the N-terminal proline functions as a partial 
mitochondrial targeting sequence (MTS) ‘mask’, diminishing the rate 
of downstream mitochondrial protein import.

While progress has been made in evolving the protein-only cyto-
sine base editor DdCBE to overcome the strong TC sequence context 
dependency of DddA18, these developments are probably more useful 
for precise modelling and correction of disease-associated mtDNA 
point mutation in human cells at non-TC target sites. However, for 
the development of the MitoKO library, the strict TC requirement was 
useful as we could select targeting windows with a single (or a limited 

number of) cytosine in the correct sequence context, hence improving 
targeting specificity. While with optimization of MitoKO we achieved 
off-target editing at the level of controls, further work could aim at 
optimizing the interface contact between split DddAtox fragments to 
limit the formation of active deaminase with two adjacent DNA-binding 
domains (ZF or TALE) being bound to mtDNA, similar to the previous 
work done with obligatory heterodimeric programmable nucleases38.

Two recent reports showed that non-optimized DdCBEs cause 
numerous off-target editing for C-to-T/G-to-A conversions in the 
nuclear genome in human cells30 or mouse embryos31, which in the case 
of mouse embryos were twice as frequent compared with off-targets 
introduced by low-fidelity CRISPR/Cas9-based cytosine base editor31. 
While we did not observe any substantial nDNA off-targets for MitoKO 
Atp6 constructs (Extended Data Fig. 7), these previous results highlight 
the necessity of extensive DdCBE optimization and development of 
methods allowing for detection of DdCBE-induced nuclear off-target 
editing in large cell populations. However, we note that in the context 
of in vivo use of the MitoKO library, this is less of an issue for two rea-
sons: (1) Mitochondria containing precise edits can be transferred to 
embryonic stem cells for mouse model generation as done routinely 
in the past39 and (2) such potential nuclear off-targets can be puri-
fied through back-crossing with wild-type males during the selective 
breeding procedure reported in this work, since mtDNA is maternally 
transmitted. Also, for any in vitro work with cultured cells, potential 
nuclear off-targets can be avoided by producing cybrids, whereby mito-
chondria harbouring MitoKO DdCBE-edited mtDNA are transferred to 
mtDNA-less recipient cells that have not undergone DdCBE treatment, 
using standard protocols40,41.

The MitoKO library also overcomes the limitation of the recent 
study that used precursor-morpholino chimera imported into mito-
chondria for silencing of mitochondrial gene expression. While this 
strategy can be useful to harness mechanistic questions regarding 
mitochondrial gene expression, it can only be applied in vitro in mito-
chondria isolated from cells15.

In summary, here we provide a precise and universal toolset for 
systematic functional interrogation of the OXPHOS system in vitro and 
in vivo, enabling the development of pre-clinical models of mitochon-
drial dysfunction. We envisage that the MitoKO library reported here 
will be widely used for basic and biomedical research and to underpin 
the notion of the role of mitochondria in aging, cancer and neurode-
generative diseases.

Methods
Ethics statement
All animal experiments were carried out in accordance with the UK 
Animals (Scientific Procedures) Act 1986 (Procedure Project Licence: 
P6C20975A) and EU Directive 2010/63/EU, and authorized by the Uni-
versity of Cambridge Animal Welfare and Ethical Review Body.

Plasmid construction
The DdCBE architectures used were as previously reported16. TALE 
arrays were designed using the Repeat Variable Diresidues (RVDs) 
containing NI, NG, NN and HD amino acids, recognizing A, T, G and 
C, respectively. To construct the plasmids used in the cell screens, 
all DdCBEs ORFs were synthesized as gene blocks (GeneArt, Thermo 
Fisher). DdCBEs targeting the L-strand of the mtDNA were cloned in a 
pTracer cytomegalovirus promoter (CMV)/Bsd (pTracer) backbone 
which co-expresses eGFP, while DdCBEs targeting the H-strand of the 
mtDNA were cloned in a pcDNA3.1(−) mCherry (pcmCherry) backbone 
which co-expresses mCherry. DNA targeting sequences of all DdCBEs 
used in this study can be found in Extended Data Fig. 1b. Amino acid 
sequences of the final selected pairs can be found in Supplementary 
Sequences 1. To generate the tandem architectures, the selected DdCBE 
(L) was amplified by PCR to include 5′ NotI and 3′ NheI while also remov-
ing the 3′ stop codon, and the selected DdCBE (H) was amplified by PCR 
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to include a 5′ NheI and 3′ KpnI while also including a 5′ T2A sequence 
to promote ribosome skipping. The two fragments DdCBE (L) and 
(H) were ligated using the NheI site and in the same reaction cloned 
in tandem into a pcmCherry backbone using the 5′ NotI and 3′ KpnI 
sites. The singleHHR and Tandem-HHR versions were generated by 
incorporating a 3K19 HHR sequence at the 3′ end of the ORF, as previ-
ously described13. Vectors used for stable expression were prepared 
by ‘copy-pasting’ the Tandem and Tandem-HHR DdCBEs described 
above into a modified pcDNA5/FRT (Thermo Fisher, V601020) back-
bone using the 5′ NotI and 3′ KpnI sites. Modifications of the pcDNA5/
FRT backbone include the exchange of the CMV promoter by an EF-1α 
promoter and the incorporation of the DddIA gene from B. cenocepacia 
under the pre-existent Lac promoter using the BstZ17I site. The DddIA 
gene was found to be necessary possibly to mitigate bacterial toxicity 
caused by cloning both DddA halves (1333 N and 1333 C) in a single 
vector. Flp recombinase expression for specific genomic integration 
of the DdCBE expression cassette was accomplished using the Flp 
recombinase expression plasmid, pOG44 (Thermo Fisher, V600520).

Cell culture and transfections
NIH/3T3 (CRL-1658, American Type Culture Collection (ATCC)), 
Flp-In-3T3 (Thermo Fisher, R76107) and 3T3 rho-0#8 (Kerafast, ESA101) 
cells were cultured at 37 °C under 5% (v/v) CO2 in complete Dulbecco’s 
modified Eagle medium (DMEM) (4.5 gl−1 glucose, 2 mM glutamine, 
110 mg ml−1 sodium pyruvate), supplemented with 10% calf bovine 
serum with iron, 1% penicillin/streptomycin (all from Gibco) and 
50 µg ml−1 uridine (Sigma, U3750). Mycoplasma tests in the culture 
medium were negative. The cell lines were not authenticated in this 
study. For DdCBE pair screens, NIH/3T3 mouse cells plated in 6-well 
tissue culture plates at a confluency of 70% were transfected with 
3,200 ng of each monomer (L and H), or 6,400 ng of plasmid DNA when 
using Tandem architectures in a single plasmid (L + H), with 16 µl of 
FuGENE-HD (Promega) following the manufacturer’s guidelines. After 
24 h, cells were collected for FACS and sorted for GFP and mCherry 
double-positive cells (or just mCherry in Tandem experiments) using a 
BD FACSMelody cell sorter. The collected cells were allowed to recover 
for another 6 d (or as indicated in the figure legend) and then used for 
DNA extraction as described below. For generation of stable cell lines 
expressing Tandem and Tandem-HHR DdCBEs, Flp-In-3T3 mouse cells 
were transfected with 3,200 ng of the expression vector, together with 
3,200 ng of the Flp recombinase expression plasmid (pOG44), using 
19 µl FuGENE-HD (Promega) following the manufacturer’s guidelines. 
After 24 h, the cells were exposed to selection media supplemented 
with 200 µg ml−1 hygromycin B (Thermo Fisher, 10687010). Cells resist-
ant to hygromycin B were expanded and DNA was extracted for further 
analysis at 28, 35 and 42 d after transfection.

Oxygen consumption measurements
Oxygen consumption rates were measured using an XF24 extracel-
lular flux analyser (Seahorse Biosciences). NIH/3T3 cells were seeded 
at a density of 25,000 cells per well in 250 µl of culture media in an XF 
24-well cell culture microplate (Seahorse Biosciences) and incubated 
for 6 h at 37 °C in 5% (v/v) CO2. The culture medium was then replaced 
with 250 µl of bicarbonate-free DMEM and cells were incubated at 37 °C 
for 30 min before measurement.

Measurement of cell growth
For cell growth assays, DdCBE-transfected NIH/3T3 and 3T3 rho‐0#8 
cells were grown in either glucose-containing DMEM (4.5 g l−1 glucose, 
110 mg l−1 sodium pyruvate, 10% FBS, 100 U ml−1 penicillin, 100 µg ml−1 
streptomycin) or galactose-containing DMEM (0.9 g l−1 galactose, 
110 mg l−1 sodium pyruvate, 10% FBS, 100 U ml−1 penicillin, 100 µg ml−1 
streptomycin). Confluency was measured using an Incucyte S3 live-cell 
imaging system (Essen BioScience). These measurements were taken 
at ×4 zoom, with 9 images per well every 6 h.

35S-methionine labelling of mitochondrial translation 
products
Labelling of newly synthesized mitochondrially expressed proteins 
was performed as previously described42. Briefly, DdCBE-treated 
cells at approximately 80% confluency were incubated in methionine/
cysteine-free medium for 10 min. The medium was then replaced with 
methionine/cysteine-free medium containing 10% dialysed FCS and 
emetine dihydrochloride (100 μg ml−1) to inhibit cytosolic transla-
tion. Following a 20 min incubation, 120 μCi ml−1 of (35S)-methionine 
was added and the cells were incubated for 60 min. After washing 
with 1X PBS, cells were lysed, and 30 μg of protein was loaded on 
either 16% Tris- glycine or 16% Tricine SDS–PAGE gels, as indicated in 
the figure. Dried gels were visualized with a PhosphorImager system 
(Amersham Typhoon 5 scanner). Densitometric quantification was 
performed using ImageJ along the midpoint of each lane and plotted 
using GraphPad Prism.

mRNA preparation and microinjection of mouse zygotes
The Atp6 (L2-C) and Atp6 (H2-N) DdCBE mRNAs were synthesized using 
the in vitro RNA transcription kit mMESSAGE mMACHINE t7 Ultra kit 
(Ambion), utilizing the pre-existing 5′ end T7 promoter in the pTracer 
and pcmCherry backbones. The resulting polyadenylated mRNAs were 
purified with a MEGAclear kit (Ambion). For microinjection, 300 ng ml−1 
Atp6 (L2-C) and 300 ng ml−1 Atp6 (H2-N) mRNAs were diluted in micro-
injection buffer (5 mM Tris-HCl, pH 7.4, 0.1 mM EDTA, pH 8.0) and 
injected into the cytoplasm of mouse 1-cell embryos. Superovulation, 
embryo collection, microinjections and implantation in pseudopreg-
nant females were carried out by the in-house transgenic services at 
the University of Cambridge, UK, following standardized protocols.

Animals
Atp6-KO heteroplasmic mice were kept on a C57BL/6J background. The 
animals were maintained in a temperature- and humidity-controlled 
animal care facility with a 12 h light/12 h dark cycle and free access to 
water and food. Genotyping and off-target analyses of new litters were 
carried out using ear biopsies collected when weaning at approximately 
3 weeks of age.

Genomic DNA isolation and Sanger sequencing
Cells were collected by trypsinization, washed once in PBS and resus-
pended in lysis buffer (1 mM EDTA, 1% Tween 20, 50 mM Tris (pH 8)) with 
200 µg ml−1 proteinase K. Lysates were incubated at 56 °C with agitation 
(300 r.p.m.) for 1 h, and then incubated at 95 °C for 10 min before use in 
downstream applications. Genomic DNA from mouse ear biopsies was 
extracted with a Maxwell 16 tissue DNA purification kit in a Maxwell 16 
instrument (Promega), according to the manufacturer’s instructions.

For Sanger sequencing, a ~300 bp region from each mtDNA 
protein-coding gene was PCR-amplified with GoTaq G2 DNA polymer-
ase (Promega) using specific primers indicated in Supplementary Table 
1. The PCR was performed with an initial heating step of 1 min at 95 °C, 
followed by 35 cycles of amplification (30 s at 95 °C, 30 s at 62 °C, 15 s 
at 72 °C) and a final step of 5 min at 72 °C. PCR purification and Sanger 
sequencing were carried out by Source Bioscience (UK) with the cor-
responding mtDNA gene primer indicated in Supplementary Table 1.

High-throughput targeted amplicon mtDNA sequencing, 
processing and mapping
For mtDNA-wide sequence analysis, two overlapping long amplicons 
(8,331 bp and 8,605 bp) covering the full mtDNA molecule were ampli-
fied by long-range PCR with PrimeSTAR GXL DNA polymerase (TAKARA) 
using the following primers: mmu_ND2_Fw: 5´- TCT CCG TGC TAC CTA 
AAC ACC -3´; with mmu_ND5_Rv: 5´- GGC TGA GGT GAG GAT AAG CA 
-3´; and mmu_ND2_Rv: 5´- GTA CGA TGG CCA GGA GGA TA -3´; with 
mmu_ND5_Fw: 5´- CTT CCC ACT GTA CAC CAC CA -3´. The PCR was 
performed with an initial heating step of 1 min at 94 °C, followed by 
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16 cycles of amplification (30 s at 98 °C, 30 s at 60 °C, 9 min at 72 °C) 
and a final step of 5 min at 72 °C. Tagmentation and the indexing PCR 
were performed using the Nextera XT index kit (Illumina, FC-131-1096) 
according to the manufacturer’s instructions. Briefly, the indexing PCR 
was performed with an initial heating step of 30 s at 98 °C, followed by 
12 cycles of amplification (30 s at 98 °C, 30 s at 55 °C, 30 s at 72 °C) and a 
final step of 5 min at 72 °C. Libraries were subjected to high-throughput 
sequencing using the Illumina MiSeq or NovaSeq platform (PE250) and 
demultiplexed using the Illumina MiSeq or NovaSeq manufacturer’s 
software. For processing and mapping of high-throughput data related 
to mtDNA-wide analysis, a quality trimming and 3′ end adaptor clipping 
of sequenced reads were performed simultaneously, using Trim Galore! 
(--paired)43. For mtDNA-wide sequence analysis, reads were aligned 
to ChrM of the mouse reference genome (GRCm38) with Bowtie2 
(--very-sensitive; --no-mixed; --no-discordant)44. Count tables were 
generated with samtools mpileup (-q 30)45 and varscan46.

mtDNA off-target scoring
To comparatively assess the different DdCBE pair combinations, 
an off-target score was generated. The score penalizes for higher 
C:G-to-T:A off-target frequencies and compensates for higher base edit-
ing on target. The calculation was as follows: the sum of all C:G-to-T:A 
off-target frequencies over 5% plus 25 times the sum of all C:G-to-T:A 
off-target frequencies over 20%, divided by the on-target frequency 
squared.

Whole-genome sequencing, processing and mapping
For whole-genome sequencing analysis, the fragmentation/end prep, 
adaptor ligation and indexing PCR were performed using the NEBNext 
Ultra II FS DNA library prep kit for Illumina (NEB, E6177) according to 
the manufacturer’s instructions, with 25 ng of genomic DNA as initial 
input. Briefly, the fragmentation step was performed for 10 min at 
37 °C. The indexing PCR was performed with an initial heating step of 
30 s at 98 °C, followed by 13 cycles of amplification (10 s at 98 °C, 75 s 
at 65 °C) with a final step of 5 min at 72 °C. Libraries were subjected to 
high-throughput sequencing using the Illumina NovaSeq platform 
(PE150) and demultiplexed using the Illumina NovaSeq manufactur-
er’s software. For processing and mapping of high-throughput data, 
adapter trimmed reads43 were aligned to the mouse genome with HiSat2 
(--no-spliced-alignment –maxins 700 –no-mixed –no-discordant) 
(PMID: 31375807). Mapped reads were extracted per chromosome with 
Samtools45 and variant calling was performed with samtools mpileup 
and Varscan46. Only genome positions with a read depth of more than 
30 in all samples were used in further analysis. All C:G-to-T:A SNVs that 
had 45% of variants in WT samples were removed, as they most probably 
represent differences (hetero or homozygous) in the NIH/3T3 genome 
as compared with the mouse reference genome or positions that are 
difficult to sequence. C:G-to-T:A SNVs with significant confidence 
between WT and DdCBE-treated samples were detected on the basis 
of a two-way analysis of varianve (ANOVA). Further analysis was per-
formed for SNVs identified in the DdCBE preferred sequence context: 
5´-TC-3´ and 5´-TCC-3´.

Blue-native gel electrophoresis (BNGE), clear-native gel 
electrophoresis (CNGE) and in-gel activity analysis
Samples for BNGE were prepared from digitonized cellular extracts, 
while samples for CNGE were prepared from isolated skeletal muscle 
(quadriceps) mitochondria as previously described47. For solubiliza-
tion, the samples were resuspended in 1.5 M aminocaproic acid, 50 mM 
Bis-Tris/HCl (pH 7) and 1.6 mg dodecyl maltoside per mg of protein, 
and incubated for 5 min on ice before centrifuging at 20,000 × g at 
4 °C. The supernatants were collected to new tubes and NativePAGE 
4X sample buffer (Thermo Fisher, BN2003) was added to each sample 
to a final concentration of 1X. For the BNGE samples, 5% Coomassie 
G250 was also added.

Samples for both BNGE and CNGE were loaded onto NativePAGE 
3–12% Bis-Tris Gels (Thermo Fisher) and electrophoresis was performed 
using NativePAGE Running Buffer system (Thermo Fisher). The BNGE 
cathode buffer was supplemented with 20X NativePAGE cathode buffer. 
The CNGE cathode buffer, the 20X NativePAGE cathode, was substituted 
by 10% dodecyl maltoside and 10% sodium deoxycholate. The gels were 
run at a constant 90 V for 30 min, followed by 12 mA for 3 h at 4 °C. After 
electrophoresis, transfer to a PVDF membrane was performed using a 
wet system with a constant current of 300 mA at 4 °C. The membranes 
were blocked in 5% milk in PBS with 0.1% Tween 20 (PBS-T) for 1 h at 
room temperature and then incubated overnight at 4 °C with antibodies 
specific to each mitochondrial complex: mouse anti-NDUFB8, 1:1,000 
(Abcam, ab110242); mouse anti-SDHB, 1:2,000 (Abcam, ab14714); mouse 
anti-UQRC2, 1:1,000 (Abcam, ab14745); mouse anti-COX IV, 1:1,000 
(Abcam, ab14744) and mouse anti-ATP5A, 1:1,000 (Abcam, ab14748) all 
diluted in 5% milk. Membranes were then washed three times with PBS-T 
for 10 min at room temperature and then incubated with an HRP-linked 
secondary antibody anti-mouse IgG (Promega, W4021) diluted 1:2,500 
in 5% milk in PBS-T. The membranes were washed another three times as 
before and imaged digitally with an Amersham Imager 680 blot and gel 
imager (GE Healthcare) upon incubation with Amersham ECL western 
blotting detection reagents (GE Healthcare).

The in-gel ATP hydrolysis activities of complex V and dissociated 
F1-subcomplex were analysed by incubating the CNGE gels with 35 mM 
Tris-HCl pH 7.8, 270 mM glycine, 14 mM MgSO4, 0.2% Pb(NO3)2 and 
8 mM ATP. The lead phosphate precipitation that is proportional to the 
enzymatic ATP hydrolysis activity was stopped by 50% v/v methanol 
after an overnight incubation, and the gels were then transferred to 
water until imaging.

Statistical analysis
Graphical visualization of data and all statistical analyses were per-
formed with GraphPad Prism (version 9.1.0). All numerical data are 
expressed as mean ± s.e.m. Ordinary one-way ANOVA with Dunnett’s 
test and two-way ANOVA with either Sidak’s or Tukey’s test were used 
for multiple comparisons as specified in the figure legends.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The data supporting the findings of this study are available within the 
paper and its Supplementary Information. The NGS files generated in 
this study are available from the GEO database via the accession number 
GSE202643. Source data for the figures are provided with this paper.

Code availability
MtDNA on and off-target effects from next-generation sequencing data 
were calculated with Varscan2 (source code available at https://github.
com/Jeltje/varscan2; ref. 46). Proprietary scripts are available from the 
corresponding author on reasonable request.
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | Design of the MitoKO library. a. Schematic 
representation of possible DdCBE orientations of the DddAtox G1333 split and 
corresponding preference for base editing of cytosines within the DNA targeting 
window. The N and C-terminal fragments of the DddAtox G1333 split can be linked 
to the TALE arrays binding either L-strand or H-strand of the mtDNA. The split 
orientation influences which cytosines are edited. b. The TALE designs to target 
all mouse protein-coding genes in the mouse mitochondrial genome. For each 
mtDNA protein-encoding gene, two TALEs binding the L-strand (L1 and L2) and 

two TALEs binding the H-strand (H1 and H2) of the mtDNA were designed to yield 
variable spacing windows, so that the target cytosine will be positioned at the 
center to reflect the preference of the DddAtox G1333 split. c. Schematic of the 
general workflow for the screening of the MitoKO library involving transient 
transfection of cultured mouse NIH/3T3 cells with plasmids co-expressing 
DdCBE monomers and fluorescent marker proteins, followed by FACS-based 
selection of cells expressing both monomers and evaluation of mtDNA from 
DdCBE-treated cells, 7 days post-transfection.
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Extended Data Fig. 2 | Sequential transfection of MitoKO constructs. Editing of each mouse mtDNA protein-encoded gene (Nd1, Nd2, Nd3, Nd4, Nd4l, Nd5, Nd6, 
Cytb, CoI, CoII, CoIII, Atp6 and Atp8) using the MitoKO library in the indicated time-points as in Fig. 4 (T1, T2, T3 and T4), analyzed by Sanger sequencing.
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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | Mitochondrial translation and OXPHOS complex 
integrity in the MitoKO DdCBE-treated cells. a. Densitometric quantification 
of the mitochondrial de novo protein synthesis gels presented in Fig. 4c. WT (dark 
grey line) was used as baseline control in each mtDNA protein-encoded gene. 
The top panel refers to the 16% Tris-Gly gel and the bottom panel refers to the 16% 
Tricine gel. Source data are provided as a Source Data file. b. Immunoblotting 

of a BNGE with antibodies specific to each mitochondrial complex: NDUFB8 
(CI), UQRC2 (CIII) COX IV (CIV) and ATP5A (CV), in mitochondria isolated from 
NIH/3T3 cells that underwent four rounds of MitoKO DdCBE treatment with 
the Nd4l, Nd5, Nd6, CoIII, Atp8 pairs and WT controls. An antibody specific for 
complex II (SDHB) was used as loading control. Uncropped scans are provided as 
a Source Data file.
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Extended Data Fig. 4 | Mitochondrial respiration and cell growth of MitoKO 
DdCBE-treated cells. a. Basal oxygen consumption rates (OCRs) of MitoKO 
DdCBE-treated cells after 4 cycles of iterative treatments (see Fig. 4). Wild-type 
(WT) and p0 cells, containing no mtDNA, were used as controls. Bars represent 
the mean and error bars represent ± SEM (n = 5, biological replicates). Ordinary 
one-way ANOVA with Dunnett´s test: **** P-value < 0.0001. Source data are 
provided as a Source Data file. b,c. Growth curves of MitoKO DdCBE-treated cells 
after 4 cycles of iterative treatments (see Fig. 4) cultured in DMEM supplemented 
with either glucose (a) or galactose (b). Galactose necessitates mitochondrial ATP 

production via oxidative phosphorylation. Each cell line is indicated on the plot 
and grouped by mitochondrial respiratory complex. Wild-type (WT) and p0 cells, 
containing no mtDNA, were used as controls. Measurements were done using an 
Incucyte S3 live-cell imaging system. 9 images were taken per well every 6 hours 
for 7.5 days. Coloured dots represent mean (n = 3, biological replicates). Source 
data are provided as a Source Data file. d. Editing of MitoKO DdCBE-treated cells 
after being cultured for 7.5 days in DMEM supplemented with either glucose or 
galactose, analyzed by Sanger sequencing.
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Extended Data Fig. 5 | See next page for caption.
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Extended Data Fig. 5 | mtDNA off-target editing by the lead MitoKO DdCBE 
pairs following high level expression. a,b. Mitochondrial genome-wide off-
targeting of the lead MitoKO DdCBE pairs (Fig. 3) measured by NGS 14 days after 
transfection and presented as absolute values (a) or fold change over wild-type 

(WT) controls (b). Bars represent the mean and error bars represent ± SEM (n = 3, 
technical replicates). Source data are provided as a Source Data file. c. On-target 
(Y axis) vs. off-target (X axis) for the lead MitoKO DdCBE pairs. Dots represent the 
mean (n = 3, technical replicates). Source data are provided as a Source Data file.
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Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | mtDNA on and off-target editing by the lead MitoKO 
DdCBE pairs following fine-tuned expression. a. On-target performance 
of the Nd3, Cytb, CoII and Atp6 MitoKO constructs transiently delivered into 
NIH/3T3 cells, as separate monomers (2-plasmid), separate monomers with 
the hammerhead ribozyme (HHR) incorporated in mRNA (2-plasmid-HHR), 
bi-cistronic construct, with the tandemly arrayed DdCBE monomers linked by 
the T2A element (Tandem) and the tandem, T2A-linked monomers harboring 

HHR (Tandem-HHR). Bars represent the mean and error bars represent ± SEM 
(n = 3, biological replicates). Source data are provided as a Source Data file. 
b. Mitochondrial genome-wide off-targeting the Nd3, Cytb, CoII and Atp6 
MitoKO constructs measured by NGS and presented fold change over wild-type 
(WT) controls. Bars represent the mean and error bars represent ± SEM (n = 3, 
biological replicates). Source data are provided as a Source Data file.
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Extended Data Fig. 7 | Nuclear DNA off-target analysis by the Atp6 MitoKO 
DdCBE pair. a. Number of SNVs identified in chromosomes 15 to 19, where  
T:A nucleotides are identified in C:G positions in cells transfected with the 
2-plasmid version of the Atp6 MitoKO constructs, as compared to WT cells,  
and the proportion of SNVs found in a 5´-TC-3´context or non 5´-TC-3´ context. 
b,c. NGS analysis of the proportion of T:A identified in C:G loci at single positions 

of chromosomes 15 to 19 that are in a (b) 5´-TC-3´ or (c) 5´-TCC-3´ context. Cells 
were transiently transfected (7 days) with the 2-plasmid or tandem architecture 
of the Atp6 MitoKO constructs and compared with WT controls. Bars represent 
the mean and error bars represent ± SEM (n = 3 for WT and 2-plasmid, n = 2 for 
Tandem, biological replicates). Ordinary two-way ANOVA with Tukeys´s test:  
* P-value < 0.05; ** P-value < 0.01. Source data are provided as a Source Data file.
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