Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Intravascularly infused extracellular matrix as a biomaterial for targeting and treating inflamed tissues

Abstract

Decellularized extracellular matrix in the form of patches and locally injected hydrogels has long been used as therapies in animal models of disease. Here we report the safety and feasibility of an intravascularly infused extracellular matrix as a biomaterial for the repair of tissue in animal models of acute myocardial infarction, traumatic brain injury and pulmonary arterial hypertension. The biomaterial consists of decellularized, enzymatically digested and fractionated ventricular myocardium, localizes to injured tissues by binding to leaky microvasculature, and is largely degraded in about 3 d. In rats and pigs with induced acute myocardial infarction followed by intracoronary infusion of the biomaterial, we observed substantially reduced left ventricular volumes and improved wall-motion scores, as well as differential expression of genes associated with tissue repair and inflammation. Delivering pro-healing extracellular matrix by intravascular infusion post injury may provide translational advantages for the healing of inflamed tissues ‘from the inside out’.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Generation and architecture of iECM.
Fig. 2: iECM infusions target injured tissues.
Fig. 3: iECM co-localizes with the microvasculature, and reduces vascular permeability and macrophage density after MI.
Fig. 4: iECM binds to injured endothelial cells and facilitates platelet adhesion in vitro.
Fig. 5: iECM significantly improved cardiac function post MI.
Fig. 6: iECM infusions are amenable to intracoronary infusion with a balloon infusion catheter.
Fig. 7: iECM infusions mitigate negative left ventricular remodelling in pig acute MI model.

Similar content being viewed by others

Data availability

The main data supporting the findings of this study are available within the Article and its Supplementary Information. Nanostring data are available from the NCBI GEO database via the identifier LINK. Source data are provided with this paper.

Code availability

Custom Matlab script for cell counting is available at https://doi.org/10.5281/zenodo.7196555. Custom R script for NanoString analysis is available at https://doi.org/10.5281/zenodo.7190262.

References

  1. Badylak, S. F. The extracellular matrix as a biologic scaffold material. Biomaterials 28, 3587–3593 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. Saldin, L. T., Cramer, M. C., Velankar, S. S., White, L. J. & Badylak, S. F. Extracellular matrix hydrogels from decellularized tissues: structure and function. Acta Biomater. 49, 1–15 (2017).

    Article  CAS  PubMed  Google Scholar 

  3. Spang, M. T. & Christman, K. L. Extracellular matrix hydrogel therapies: in vivo applications and development. Acta Biomater. 68, 1–14 (2018).

    Article  CAS  PubMed  Google Scholar 

  4. Badylak, S. F., Freytes, D. O. & Gilbert, T. W. Extracellular matrix as a biological scaffold material: structure and function. Acta Biomater. 5, 1–13 (2009).

  5. Christman, K. L. Biomaterials for tissue repair. Science 363, 340–341 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Freytes, D. O., Martin, J., Velankar, S. S., Lee, A. S. & Badylak, S. F. Preparation and rheological characterization of a gel form of the porcine urinary bladder matrix. Biomaterials 29, 1630–1637 (2008).

    Article  CAS  PubMed  Google Scholar 

  7. Singelyn, J. M. et al. Naturally derived myocardial matrix as an injectable scaffold for cardiac tissue engineering. Biomaterials 30, 5409–5416 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Singelyn, J. M. et al. Catheter-deliverable hydrogel derived from decellularized ventricular extracellular matrix increases endogenous cardiomyocytes and preserves cardiac function post-myocardial infarction. J. Am. Coll. Cardiol. 59, 751–763 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Seif-Naraghi, S. B. et al. Safety and efficacy of an injectable extracellular matrix hydrogel for treating myocardial infarction. Sci. Transl. Med. 5, 173ra125 (2013).

    Article  Google Scholar 

  10. Wassenaar, J. W. et al. Evidence for mechanisms underlying the functional benefits of a myocardial matrix hydrogel for post-MI treatment. J. Am. Coll. Cardiol. 67, 1074–1086 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Dziki, J. L. & Badylak, S. F. Immunomodulatory biomaterials. Curr. Opin. Biomed. Eng. 6, 51–57 (2018).

    Article  Google Scholar 

  12. Sadtler, K. et al. Proteomic composition and immunomodulatory properties of urinary bladder matrix scaffolds in homeostasis and injury. Semin. Immunol. 29, 14–23 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wang, R. M. & Christman, K. L. Decellularized myocardial matrix hydrogels: in basic research and preclinical studies. Adv. Drug Deliv. Rev. 96, 77–82 (2016).

    Article  PubMed  Google Scholar 

  14. Diaz, M. et al. Injectable myocardial matrix hydrogel mitigates negative left ventricular remodeling in a chronic myocardial infarction model. JACC Basic Transl. Sci. 6, 350–361 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Traverse, J. H. et al. First-in-man study of a cardiac extracellular matrix hydrogel in early and late myocardial infarction patients. JACC Basic Transl. Sci. 4, 659–669 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Hobbs, S. K. et al. Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment. Proc. Natl Acad. Sci. USA 95, 4607–4612 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Alexis, F., Pridgen, E., Molnar, L. K. & Farokhzad, O. C. Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol. Pharm. 5, 505–515 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ungerleider, J. L., Johnson, T. D., Rao, N. & Christman, K. L. Fabrication and characterization of injectable hydrogels derived from decellularized skeletal and cardiac muscle. Methods 84, 53–59 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. White, M. M. & Jennings, L. K. Platelet Protocols: Research and Clinical Laboratory Procedures (Elsevier, 1999).

  20. Vayá, A. et al. Erythrocyte aggregation determined with the Myrenne aggregometer at two modes (M0, M1) and at two times (5 and 10 sec). Clin. Hemorheol. Microcirc. 29, 119–127 (2003).

    PubMed  Google Scholar 

  21. Banka, A. L. & Eniola-Adefeso, O. Method article: an in vitro blood flow model to advance the study of platelet adhesion utilizing a damaged endothelium. Platelets 33, 692–699 (2021).

    Article  PubMed  Google Scholar 

  22. Gaetani, R. et al. Cardiac-derived extracellular matrix enhances cardiogenic properties of human cardiac progenitor cells. Cell Transplant. 25, 1653–1663 (2016).

    Article  PubMed  Google Scholar 

  23. Wang, R. M. et al. Myocardial matrix hydrogel acts as a reactive oxygen species scavenger and supports a proliferative microenvironment for cardiomyocytes. Acta Biomater. 152, 47–59 (2022).

    Article  CAS  PubMed  Google Scholar 

  24. Leor, J. et al. Intracoronary injection of in situ forming alginate hydrogel reverses left ventricular remodeling after myocardial infarction in swine. J. Am. Coll. Cardiol. 54, 1014–1023 (2009).

    Article  PubMed  Google Scholar 

  25. Garcia-Dorado, D., Andres-Villarreal, M., Ruiz-Meana, M., Inserte, J. & Barba, I. Myocardial edema: a translational view. J. Mol. Cell. Cardiol. 52, 931–939 (2012).

    Article  CAS  PubMed  Google Scholar 

  26. Dongaonkar, R. M., Stewart, R. H., Geissler, H. J. & Laine, G. A. Myocardial microvascular permeability, interstitial oedema, and compromised cardiac function. Cardiovasc. Res. 87, 331–339 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Thuny, F. et al. Post-conditioning reduces infarct size and edema in patients with ST-segment elevation myocardial infarction. J. Am. Coll. Cardiol. 59, 2175–2181 (2012).

    Article  PubMed  Google Scholar 

  28. Habgood, M. D. et al. Changes in blood-brain barrier permeability to large and small molecules following traumatic brain injury in mice. Eur. J. Neurosci. 25, 231–238 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. Higashida, T. et al. The role of hypoxia-inducible factor-1α, aquaporin-4, and matrix metalloproteinase-9 in blood-brain barrier disruption and brain edema after traumatic brain injury: laboratory investigation. J. Neurosurg. 114, 92–101 (2011).

    Article  CAS  PubMed  Google Scholar 

  30. Zhou, C., Townsley, M. I., Alexeyev, M., Voelkel, N. F. & Stevens, T. Endothelial hyperpermeability in severe pulmonary arterial hypertension: role of store-operated calcium entry. Am. J. Physiol. Lung Cell. Mol. Physiol. 311, L560–L569 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Sugita, T. et al. Lung vessel leak precedes right ventricular hypertrophy in monocrotaline-treated rats. J. Appl. Physiol. Respir. Environ. Exerc. Physiol. 54, 371–374 (1983).

    CAS  PubMed  Google Scholar 

  32. Broos, K., Feys, H. B., De Meyer, S. F., Vanhoorelbeke, K. & Deckmyn, H. Platelets at work in primary hemostasis. Blood Rev. 25, 155–167 (2011).

    Article  CAS  PubMed  Google Scholar 

  33. Ruggeri, Z. M. & Mendolicchio, G. L. Adhesion mechanisms in platelet function. Circ. Res. 100, 1673–1685 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Konstam, M. A. & Abboud, F. M. Ejection fraction: misunderstood and overrated (changing the paradigm in categorizing heart failure). Circulation 135, 717–719 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Jessup, M. et al. Calcium Upregulation by Percutaneous Administration of Gene Therapy in Cardiac Disease (CUPID): a phase 2 trial of intracoronary gene therapy of sarcoplasmic reticulum Ca2+-ATPase in patients with advanced heart failure. Circulation 124, 304–313 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Perin, E. C. et al. A phase II dose-escalation study of allogeneic mesenchymal precursor cells in patients with ischemic or nonischemic heart failure. Circ. Res. 117, 576–584 (2015).

    Article  CAS  PubMed  Google Scholar 

  37. Ungerleider, J. L. et al. Extracellular matrix hydrogel promotes tissue remodeling, arteriogenesis, and perfusion in a rat hindlimb ischemia model. JACC Basic Transl. Sci. 1, 32–44 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Huleihel, L. et al. Matrix-bound nanovesicles within ECM bioscaffolds. Sci. Adv. 2, e1600502 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Huleihel, L. et al. Matrix-bound nanovesicles recapitulate extracellular matrix effects on macrophage phenotype. Tissue Eng. A 23, 1283–1294 (2017).

    Article  CAS  Google Scholar 

  40. Fontes, J. A., Rose, N. R. & Čiháková, D. The varying faces of IL-6: from cardiac protection to cardiac failure. Cytokine 74, 62–68 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Fosgerau, K. & Hoffmann, T. Peptide therapeutics: current status and future directions. Drug Discov. Today 20, 122–128 (2015).

  42. Di, L. Strategic approaches to optimizing peptide ADME properties. AAPS J. 17, 134–143 (2015).

    Article  CAS  PubMed  Google Scholar 

  43. DeQuach, J. A., Yuan, S. H., Goldstein, L. S. & Christman, K. L. Decellularized porcine brain matrix for cell culture and tissue engineering scaffolds. Tissue Eng. A 17, 2583–2592 (2011).

    Article  CAS  Google Scholar 

  44. Grover, G. N., Braden, R. L. & Christman, K. L. Oxime cross-linked injectable hydrogels for catheter delivery. Adv. Mater. 25, 2937–2942 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Oronsky, B., Oronsky, N. & Cabrales, P. Platelet inhibitory effects of the phase 3 anticancer and normal tissue cytoprotective agent, RRx-001. J. Cell. Mol. Med. 22, 5076–5082 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Jani, V. P., Yalcin, O., Williams, A. T., Popovsky, M. A. & Cabrales, P. Rat red blood cell storage lesions in various additive solutions. Clin. Hemorheol. Microcirc. 67, 45–57 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Buono, M. J., Krippes, T., Kolkhorst, F. W., Williams, A. T. & Cabrales, P. Increases in core temperature counterbalance effects of haemoconcentration on blood viscosity during prolonged exercise in the heat. Exp. Physiol. 101, 332–342 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Marin, V., Kaplanski, G., Gres, S., Farnarier, C. & Bongrand, P. Endothelial cell culture: protocol to obtain and cultivate human umbilical endothelial cells. J. Immunol. Methods 254, 183–190 (2001).

    Article  CAS  PubMed  Google Scholar 

  49. Shamseddin, A. et al. Resveratrol-Linoleate protects from exacerbated endothelial permeability via a drastic inhibition of the MMP-9 activity. Biosci. Rep. 38, BSR20171712 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Coenen, D. M., Mastenbroek, T. G. & Cosemans, J. Platelet interaction with activated endothelium: mechanistic insights from microfluidics. Blood 130, 2819–2828 (2017).

    Article  CAS  PubMed  Google Scholar 

  51. Mann, A. P. et al. A peptide for targeted, systemic delivery of imaging and therapeutic compounds into acute brain injuries. Nat. Commun. 7, 1–11 (2016).

    Article  Google Scholar 

  52. Bharadwaj, V. N., Nguyen, D. T., Kodibagkar, V. D. & Stabenfeldt, S. E. Nanoparticle-based therapeutics for brain injury. Adv. Healthc. Mater. 7, 1700668 (2018).

    Article  Google Scholar 

  53. Romine, J., Gao, X. & Chen, J. Controlled cortical impact model for traumatic brain injury. J. Vis. Exp. 90, e51781 (2014).

  54. Osier, N. & Dixon, C. E. The controlled cortical impact model of experimental brain trauma: overview, research applications, and protocol. Methods Mol. Biol. 1462, 177–192 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Maarman, G., Lecour, S., Butrous, G., Thienemann, F. & Sliwa, K. A comprehensive review: the evolution of animal models in pulmonary hypertension research; are we there yet? Pulm. Circ. 3, 739–756 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Gomez-Arroyo, J. G. et al. The monocrotaline model of pulmonary hypertension in perspective. Am. J. Physiol. Lung Cell Mol. Physiol. 302, L363–L369 (2012).

    Article  CAS  PubMed  Google Scholar 

  57. Wassenaar, J. W., Braden, R. L., Osborn, K. G. & Christman, K. L. Modulating in vivo degradation rate of injectable extracellular matrix hydrogels. J. Mater. Chem. B 4, 2794–2802 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ren, Y. et al. Targeted tumor-penetrating siRNA nanocomplexes for credentialing the ovarian cancer oncogene ID4. Sci. Transl. Med. 4, 147ra112 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Bonios, M. et al. Myocardial substrate and route of administration determine acute cardiac retention and lung biodistribution of cardiosphere-derived cells. J. Nucl. Cardiol. 18, 443–450 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Cheng, K. et al. Magnetic enhancement of cell retention, engraftment, and functional benefit after intracoronary delivery of cardiac-derived stem cells in a rat model of ischemia/reperfusion. Cell Transplant. 21, 1121–1135 (2012).

    Article  PubMed  Google Scholar 

  61. Freyman, T. et al. A quantitative, randomized study evaluating three methods of mesenchymal stem cell delivery following myocardial infarction. Eur. Heart J. 27, 1114–1122 (2006).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank J. Placone for confocal imaging assistance, M. Davis for providing the rat cardiac endothelial cells, P. Duran for helpful comments during the manuscript-editing process, and the veterinary staff at the Institutional Animal Care and Use Program of the University of California, San Diego, for assistance with large-animal procedures and safety. K.L.C. and O.E.-A. acknowledge funding support for the research described in this study from the NIH NHLBI (grant numbers R01HL113468, 1R01HL165232 and R43HL150917 to K.L.C. and R01HL145709 to O.E.-A). M.T.S., M.D., J.H. and R.W. acknowledge support from the NIH NHLBI (grant number T32HL105373). M.D., J.H., H.S. and R.W. acknowledge support from the NIH NHLBI (grant numbers F31HL152686, F31HL158212, F31HL152610 and F31HL137347). M.T.S. acknowledges support from an A.H.A. predoctoral fellowship. M.A.V. acknowledges support from the N.S.F. (grant number DGE-1842165) and the Dr. John N. Nicholson Fellowship, which was awarded by Northwestern University. This work made use of the San Diego Nanotechnology Infrastructure (SDNI) of UCSD, a member of the National Nanotechnology Coordinated Infrastructure, which is supported by the National Science Foundation (Grant ECCS-2025752), and the EPIC facility of Northwestern University’s NUANCE Center, which has received support from the SHyNE Resource (NSF ECCS-2025633), the IIN, and Northwestern’s MRSEC program (NSF DMR-1720139).

Author information

Authors and Affiliations

Authors

Contributions

K.L.C. obtained the funding. M.T.S., K.L.C., R.R.R. and A.N.D. conceptually designed the studies. M.T.S., K.L.C. and A.N.D. interpreted the results. M.T.S., M.D., J.H. and J.M. performed the in vitro characterization and analyses. C.L. performed small-animal surgeries. S.I. performed large-animal echocardiography. R.R.R. performed large-animal surgeries. K.G.O. performed large-animal necropsy and histopathology analyses. M.T.S., R.M., M.D., R.W., J.H., J.M., H.S., T.S.L., S.B., J.C., R.K., G.D. and G.S.-G. processed tissue samples and performed analyses. R.M., R.W., J.H., J.M., T.K. and C.L. assisted with large-animal surgeries. A.B. and O.E.-A. designed and analysed the in vitro flow-adhesion assay. M.D. and R.W. assisted with gene-expression analyses. M.A.V., K.G. and N.G. designed and performed cryo-TEM imaging and analysed the data. P.C. designed and performed haemocompatibility analyses. E.K. and F.C. provided consultation, experimental design and data evaluation expertise related to imaging. M.T.S. and K.L.C. drafted the manuscript. All authors edited the manuscript.

Corresponding author

Correspondence to Karen L. Christman.

Ethics declarations

Competing interests

K.L.C. and A.N.D. hold equity in Ventrix Bio, Inc. K.L.C. is a co-founder, consultant and board member of Ventrix Bio, Inc. The other authors declare no competing interests.

Peer review

Peer review information

Nature Biomedical Engineering thanks Ke Cheng, Tal Dvir and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Histological measurements post-infusion show no significant differences in infarct size or fibrosis between iECM and saline infused rats.

Infarct area at 5 weeks (a,b) and 3 days (c,d) post-infusion, reported as area (a,c) and percentage of the LV (b,d). Infarct fibrosis reported as area (e) and percentage of infarct area (f). g, Interstitial fibrosis of the remote myocardium reported as a percentage of area. N = 5 for saline and n = 6 for iECM for day 3 measurements, and n = 10 for both groups for 5 week measurements. Data are mean ± SEM. Add data are biological replicates.

Source data

Extended Data Fig. 2 Correlation matrices for the NanoString nCounter data.

Correlation matrix for day 1 post-infusion significantly differentially expressed genes only (a) and all genes in the Nanostring nCounter custom cardiac codeset (b). Correlation matrix for day 3 post-infusion significantly differentially expressed genes (c) and all genes in the Nanostring nCounter custom cardiac codeset (d). The Nanostring panel used was a 380 gene custom panel designed to probe for differences in gene expression across a wide range of myocardial injury models.

Source data

Extended Data Fig. 3 Effect of iECM on metabolic activity and viability of rat cardiac endothelial cells, ROS scavenging, and thiol content.

Percent difference in reduction in alamarBlue activity of rat cardiac endothelial cells in response to hydrogen peroxide with and without iECM, relative to controls with no hydrogen peroxide (a, n = 6 both groups, **p = 0.006). Percent viability as measured by Calcein-AM staining of rat cardiac endothelial cells in response to hydrogen peroxide with and without iECM, relative to controls with no hydrogen peroxide (b, n = 4 both groups, ***p < 0.001). Concentration of hydrogen peroxide was monitored following incubation with either PBS or iECM, showing a continuing decrease with iECM (c, *p = 0.01, **p = 0.003, n = 3 for both groups at 1 and 24 hrs, n = 2 at 6 hrs). Thiol content was determined compared to N-acetylcysteine standard in iECM per mg of material (d, n = 3). Data are mean ± SEM. All data are biological replicates and were evaluated with a two tailed unpaired t-test.

Source data

Extended Data Fig. 4 Additional echocardiography results showing that iECM infusions mitigate negative LV remodelling in a pig acute MI model.

a, Representative M-mode echocardiographic images showing that iECM mitigates negative LV remodelling. Yellow arrows represent LV diastolic dimension, red arrows represent wall thickness, and white arrows represent wall thinning. b-g, LV diastolic dimension (LVDd, #p = 0.08), LV systolic dimension (LVDs), and fractional shortening (FS) over time (b,d,f) and changes from post-MI to 8 weeks post-MI (c, e (*p = 0.03), g (*p = 0.047)). h, Diagram demonstrating how infarct angle was measured. N = 10 all groups. Data are mean ± SEM. All data are biological replicates and were evaluated with a two tailed unpaired t-test.

Source data

Supplementary information

Source data

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Spang, M.T., Middleton, R., Diaz, M. et al. Intravascularly infused extracellular matrix as a biomaterial for targeting and treating inflamed tissues. Nat. Biomed. Eng 7, 94–109 (2023). https://doi.org/10.1038/s41551-022-00964-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41551-022-00964-5

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research