Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Aligning latent representations of neural activity

Comparisons of neural recordings across time, across subsets of neurons and across individuals requires the alignment of low-dimensional latent representations.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Comparison of patterns of neural activity via the alignment of their latent spaces.
Fig. 2: Latent spaces can be radically altered by perturbations in neural activity.
Fig. 3: Alignment strategies.

References

  1. Frere, S. & Slutsky, I. Neuron 97, 32–58 (2018).

    Article  CAS  PubMed  Google Scholar 

  2. Sadtler, P. T. et al. Nature 512, 423–426 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hengen, K. B., Torrado Pacheco, A., McGregor, J. N., Van Hooser, S. D. & Turrigiano, G. G. Cell 165, 180–191 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hubel, D. H. & Wiesel, T. N. J. Physiol. (Lond.) 148, 574–591 (1959).

    Article  CAS  Google Scholar 

  5. Saxena, S. & Cunningham, J. P. Curr. Opin. Neurobiol. 55, 103–111 (2019).

    Article  CAS  PubMed  Google Scholar 

  6. Bullmore, E. & Sporns, O. Nat. Rev. Neurosci. 10, 186–198 (2009).

    Article  CAS  PubMed  Google Scholar 

  7. Golub, M. D. et al. Nat. Neurosci. 21, 607–616 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kaufman, M. T., Churchland, M. M., Ryu, S. I. & Shenoy, K. V. Nat. Neurosci. 17, 440–448 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Russo, A. A. et al. Neuron 107, 745–758 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Soudry, D. et al. PLoS Comput. Biol. 11, e1004464 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Nonnenmacher, M., Turaga, S. C. & Macke, J. H. In Adv. Neural Inf. Process. Syst. (NIPS) 5702–5712 (NIPS, 2017).

  12. Brinkman, B. A. W., Rieke, F., Shea-Brown, E. & Buice, M. A. PLoS Comput. Biol. 14, e1006490 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Chialvo, D. R. Nat. Phys. 6, 744–750 (2010).

    Article  CAS  Google Scholar 

  14. Ma, Z., Turrigiano, G. G., Wessel, R. & Hengen, K. B. Neuron 104, 655–664.e4 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cunningham, J. P. & Yu, B. M. Nat. Neurosci. 17, 1500–1509 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Churchland, M. M. et al. Nature 487, 51–56 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Mante, V., Sussillo, D., Shenoy, K. V. & Newsome, W. T. Nature 503, 78–84 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Dyer, E. L. et al. Nat. Biomed. Eng. 1, 967–976 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Gallego, J. A. et al. Nat. Commun. 9, 4233 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Pandarinath, C. et al. Nat. Methods 15, 805–815 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Williamson, R. C., Doiron, B., Smith, M. A. & Yu, B. M. Curr. Opin. Neurobiol. 55, 40–47 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gallego, J. A., Perich, M. G., Chowdhury, R. H., Solla, S. A. & Miller, L. E. Nat. Neurosci. 23, 260–270 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Degenhart, A. D. et al. Nat. Biomed. Eng. 4, 672–685 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Paninski, L. et al. J. Comput. Neurosci. 29, 107–126 (2010).

    Article  PubMed  Google Scholar 

  25. Mazor, O. & Laurent, G. Neuron 48, 661–673 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. Zohary, E., Shadlen, M. N. & Newsome, W. T. Nature 370, 140–143 (1994).

    Article  CAS  PubMed  Google Scholar 

  27. Abbott, L. F. & Dayan, P. Neural Comput. 11, 91–101 (1999).

    Article  CAS  PubMed  Google Scholar 

  28. Tsodyks, M., Kenet, T., Grinvald, A. & Arieli, A. Science 286, 1943–1946 (1999).

    Article  CAS  PubMed  Google Scholar 

  29. Luczak, A., McNaughton, B. L. & Harris, K. D. Nat. Rev. Neurosci. 16, 745–755 (2015).

    Article  CAS  PubMed  Google Scholar 

  30. Harvey, C. D., Coen, P. & Tank, D. W. Nature 484, 62–68 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Cowley, B. R., Smith, M. A., Kohn, A. & Yu, B. M. PLoS Comput. Biol. 12, e1005185 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Child, D. The Essentials of Factor Analysis (Cassell Educational, 1990).

  33. Lee, D. D. & Seung, H. S. Nature 401, 788–791 (1999).

    Article  CAS  PubMed  Google Scholar 

  34. Hyvärinen, A. Phil. Trans. R. Soc. A 371, 20110534 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Stopfer, M., Jayaraman, V. & Laurent, G. Neuron 39, 991–1004 (2003).

    Article  CAS  PubMed  Google Scholar 

  36. Ganmor, E., Segev, R. & Schneidman, E. eLife 4, e06134 (2015).

    Article  PubMed Central  Google Scholar 

  37. Gao, P. et al. Preprint at bioRxiv https://doi.org/10.1101/214262 (2017).

  38. Kobak, D., Pardo-Vazquez, J. L., Valente, M., Machens, C. K. & Renart, A. eLife 8, e44526 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Brunton, B. W., Johnson, L. A., Ojemann, J. G. & Kutz, J. N. J. Neurosci. Methods 258, 1–15 (2016).

    Article  PubMed  Google Scholar 

  40. Grill, W. M., Norman, S. E. & Bellamkonda, R. V. Annu. Rev. Biomed. Eng. 11, 1–24 (2009).

    Article  CAS  PubMed  Google Scholar 

  41. McCreery, D., Pikov, V. & Troyk, P. R. J. Neural Eng. 7, 036005 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Fu, T.-M. et al. Nat. Methods 13, 875–882 (2016).

    Article  CAS  PubMed  Google Scholar 

  43. Lee, J., Dabagia, M., Dyer, E. L. & Rozell, C. J. In Adv. Neural Inf. Process. Syst. (NIPS) 13453–13463 (NIPS, 2019).

  44. Villani, C. Optimal Transport: Old and New Vol. 338 (Springer Science & Business Media, 2008).

  45. Farshchian, A. et al. Preprint at https://doi.org/10.48550/arXiv.1810.00045 (2018).

  46. Gonschorek, D. et al. In Adv. Neural Inf. Process. Syst. (NIPS) 34, 3706–3719 (NIPS, 2021).

  47. Goodfellow, I. et al. Commun. ACM 63, 139–144 (2020).

    Article  Google Scholar 

  48. Arakaki, T., Barello, G. & Ahmadian, Y. Preprint at https://doi.org/10.48550/arXiv.1707.04582 (2017).

  49. Molano-Mazon, M., Onken, A., Piasini, E. & Panzeri, S. In 6th Int. Conference on Learning Representations (ICLR, 2018); https://openreview.net/forum?id=r1VVsebAZ

  50. St-Yves, G. & Naselaris, T. In IEEE Int. Conf. Syst. Man Cybern. (SMC) 1054–1061. (IEEE, 2018).

  51. Chestek, C. A. et al. J. Neural Eng. 8, 045005 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Vaidya, M. et al. In Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 4872–4875 (IEEE, 2014).

  53. Turaga, S. et al. In Adv. Neural Inf. Process. Syst. (NIPS) 539–547 (NIPS, 2013).

  54. Sponberg, S., Daniel, T. L. & Fairhall, A. L. PLoS Comput. Biol. 11, e1004168 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Hotelling, H. Biometrika 28, 321–377 (1936).

    Article  Google Scholar 

  56. Fujiwara, Y., Miyawaki, Y. & Kamitani, Y. Neural Comput. 25, 979–1005 (2013).

    Article  PubMed  Google Scholar 

  57. Dmochowski, J. P., Ki, J. J., DeGuzman, P., Sajda, P. & Parra, L. C. Neuroimage 180, 134–146 (2018).

    Article  PubMed  Google Scholar 

  58. Lai, P. L. & Fyfe, C. Int. J. Neural Syst. 10, 365–377 (2000).

    Article  CAS  PubMed  Google Scholar 

  59. Huang, S.-Y. Lee, M.-H. & Hsiao, C. K. Kernel Canonical Correlation Analysis and its Applications to Nonlinear Measures of Association and Test of Independence (Institute of Statistical Science: Academia Sinica, 2006).

  60. Andrew, G., Arora, R., Bilmes, J. & Livescu, K. In Proc. 30th Int. Conference on Machine Learning (PMLR) 1247–1255 (PMLR, 2013).

  61. Pandarinath, C. et al. J. Neurosci. 38, 9390–9401 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Mehler, D. M. A. & Kording, K. P. Preprint at https://doi.org/10.48550/arXiv.1812.03363 (2018).

  63. Lillicrap, T. P. & Kording, K. P. Preprint at https://doi.org/10.48550/arXiv.1907.06374 (2019).

  64. Gradinaru, V. et al. Cell 141, 154–165 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Roth, B. L. Neuron 89, 683–694 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Shenoy, K. V. & Kao, J. C. Nat. Commun. 12, 633 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Mitchell, J. F., Sundberg, K. A. & Reynolds, J. H. Neuron 63, 879–888 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Cohen, M. R. & Maunsell, J. H. Nat. Neurosci. 12, 1594–1600 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Zhang, Y. et al. Proc. Natl Acad. Sci. USA 108, 8850–8855 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. McAdams, C. J. & Maunsell, J. H. R. J. Neurosci. 19, 431–441 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Polikov, V. S., Tresco, P. A. & Reichert, W. M. J. Neurosci. Methods 148, 1–18 (2005).

    Article  PubMed  Google Scholar 

  72. Fan, J. M. et al. J. Neural Eng. 11, 016004 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Sederberg, A. J., Pala, A., Zheng, H. J. V., He, B. J. & Stanley, G. B. PLoS Comput. Biol. 15, e1006716 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Whiteway, M. R., Socha, K., Bonin, V. & Butts, D. A. Neuron Behav. Data Anal. Theory 3, 1 (2019).

    Google Scholar 

  75. Cao, Z., Ma, L., Long, M. & Wang, J. In Proc. European Conference on Computer Vision (ECCV) 135–150 (ECCV, 2018).

  76. Cao, Z., You, K., Long, M., Wang, J. & Yang, Q. In Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2985–2994 (IEEE, 2019).

  77. Lin, C.-H. Azabou, M. & Dyer, E. L. In Proc. 38th Int. Conference on Machine Learning (PMLR) 139, 6631 (PMLR, 2021).

  78. Feulner, B. & Clopath, C. PLoS Comput. Biol. 17, e1008621 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. LeCun, Y., Bottou, L., Bengio, Y. & Haffner, P. In Proc. IEEE 86, 2278–2324 (IEEE, 1998).

  80. Russakovsky, O. et al. Int. J. Comput. Vis. 115, 211–252 (2015).

    Article  Google Scholar 

  81. de Vries, S. E. J. et al. Nat. Neurosci. 23, 138–151 (2020).

    Article  PubMed  Google Scholar 

  82. Siegle, J. H. et al. Nature 592, 86–92 (2021).

    CAS  PubMed  Google Scholar 

  83. Elhamifar, E. & Vidal, R. In Adv. Neural Inf. Process. Syst. (NIPS) 55–63 (NIPS, 2011).

  84. Dyer, E. L., Sankaranarayanan, A. C. & Baraniuk, R. G. J. Mach. Learn. Res. 14, 2487–2517 (2013).

    Google Scholar 

  85. Elhamifar, E. & Vidal, R. IEEE Trans. Pattern Anal. Mach. Intell. 35, 2765–2781 (2013).

    Article  PubMed  Google Scholar 

  86. Bishop, W. E. & Byron, M. Y. In Adv. Neural Inf. Process. Syst. (NIPS) 2762–2770 (NIPS, 2014).

  87. Liu, G., Liu, Q. & Yuan, X. In Adv. Neural Inf. Process. Syst. (NIPS) 785–794 (NIPS, 2017).

  88. Wingo, A. P. et al. Nat. Genet. 53, 143–146 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Dabagia, M., Kording, K. P. & Dyer, E. L. Preprint at https://doi.org/10.48550/arXiv.2205.08413 (2022).

Download references

Acknowledgements

We thank C. Pandarinath and M. Azabou for helpful discussions. This work was supported by the National Institutes of Health (grant NIH-1R01EB029852) and by generous gifts from the Sloan Foundation and McKnight Foundation.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally.

Corresponding author

Correspondence to Eva L. Dyer.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Biomedical Engineering thanks Reinhold Scherer, Marc Schieber and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dabagia, M., Kording, K.P. & Dyer, E.L. Aligning latent representations of neural activity. Nat. Biomed. Eng (2022). https://doi.org/10.1038/s41551-022-00962-7

Download citation

  • Published:

  • DOI: https://doi.org/10.1038/s41551-022-00962-7

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing