Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Comment
  • Published:

Neurocognitive and motor-control challenges for the realization of bionic augmentation

Robotic fingers and arms that augment the motor abilities of non-disabled individuals are increasingly feasible yet face neurocognitive barriers and hurdles in efferent motor control.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Motor augmentation for enhanced motor capabilities.
Fig. 2: Body parts used in current interfaces for the motor control of X-limbs.
Fig. 3: High-density arrays of recording electrodes for EMG can be used to extract the activity of single motor units using blind-source separation techniques.
Fig. 4: A monkey performing an isometric-force-generation task with their right arm, and a centre-out reaching task using a decoder of the primary motor cortex driven by input from the left contralateral arm.

References

  1. Collinger, J. L. et al. Lancet 381, 557–564 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Wodlinger, B. et al. J. Neural Eng. 12, 016011 (2015).

    Article  CAS  PubMed  Google Scholar 

  3. Bensmaia, S. J., Tyler, D. J. & Micera, S. Nat. Biomed. Eng. https://doi.org/10.1038/s41551-020-00630-8 (2020).

    Article  PubMed  Google Scholar 

  4. Kuiken, T., Feuser, A. & Barlow, A. (eds) Targeted Muscle Reinnervation: A Neural Interface for Artificial Limbs 1st edn (CRC Press, 2013).

  5. Srinivasan, S. S. et al. Sci. Robotics 2, eaan2971 (2017).

    Article  Google Scholar 

  6. Willett, F. R. et al. Nature 593, 249–254 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Warwick, K. et al. Arch. Neurol. 60, 1369 (2003).

    Article  PubMed  Google Scholar 

  8. Maeso, S. et al. Ann. Surg. 252, 254–262 (2010).

    Article  PubMed  Google Scholar 

  9. Bogue, R. Industrial Robot. Int. J. 45, 585–590 (2018).

    Article  Google Scholar 

  10. Kieliba, P. et al. Sci. Robotics 6, eabd7935 (2021).

    Article  Google Scholar 

  11. Sasaki, T. et al. SIGGRAPH '17: ACM SIGGRAPH 2017 Emerging Technologies (ACM, 2017); https://doi.org/10.1145/3084822.3084837

  12. Dominijanni, G. et al. Nat. Mach. Intell. 3, 850–860 (2021).

    Article  Google Scholar 

  13. Zhuang, K. Z. et al. Nat. Mach. Intell. 1, 400–411 (2019).

    Article  Google Scholar 

  14. Amoruso, E. et al. J. Neural Eng. 19, 016006 (2022).

    Article  Google Scholar 

  15. Farina, D. et al. Nat. Biomed. Eng. 1, 0025 (2017).

    Article  Google Scholar 

  16. Brcklein, M. et al. J. Neural Eng. 18, 016001 (2021).

    Article  Google Scholar 

  17. Formento, E., Botros, P. & Carmena, J. M. J. Neural Eng. 18, 066019 (2021).

    Article  Google Scholar 

  18. Bräcklein, M. et al. Elife 11, e72871 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Wolpaw, J. R. et al. Neurology 91, e258–e267 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Chen, X. et al. Proc. Natl Acad. Sci. 112, E6058–E6067 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Abiri, R. et al. J. Neural Eng. 16, 011001 (2019).

    Article  PubMed  Google Scholar 

  22. Fetz, E. E. & Finocchio, D. V. Science 174, 431–435 (1971).

    Article  CAS  PubMed  Google Scholar 

  23. Ganguly, K. et al. Nat. Neurosci. 14, 662–667 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kaufman, M. T. et al. Nat. Neurosci. 17, 440–448 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Orsborn, A. L. et al. Neuron 82, 1380–1393 (2014).

    Article  CAS  PubMed  Google Scholar 

  26. Gallego, J. A. et al. Neuron 94, 978–984 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Oby, E. R. et al. Proc. Natl Acad. Sci. 116, 15210–15215 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Flesher, S. N. et al. Science 372, 831–836 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Childress, D. S. Ann. Biomed. Eng. 8, 293–303 (1980).

    Article  CAS  PubMed  Google Scholar 

  30. Gallego, J. A., Makin, T. R. & McDougle, S. D. Trends Neurosci. 45, 176–183 (2022).

    Article  CAS  PubMed  Google Scholar 

  31. de Vignemont, F. in The Oxford Handbook of the Philosophy of Consciousness (ed. Kriegel, U.) 81–101 (2020).

  32. Longmore, S. K., Naik, G. & Gargiulo, G. D. Robotics 9, 42 (2020).

    Article  Google Scholar 

  33. Ting, J. E. et al. J. Neurophysiol. 126, 2104–2118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank D. Clode for her assistance with creating Figs. 1 and 2. T.R.M. was supported by an ERC Starting Grant (715022 EmbodiedTech), a Wellcome Trust Senior Research Fellowship (215575/Z/19/Z) and MRC funding award G116768 at the MRC Cognition and Brain Sciences Unit. S.M. was partly funded by the Bertarelli Foundation and the Swiss National Competence Center Research in Robotics. L.E.M was funded by the National Institute of Neurological Disorders and Stroke (R01NS095251, R01 NS053603, R01 NS109257).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to all aspects of this piece, from conceptualization through to the writing and editing.

Corresponding authors

Correspondence to Tamar R. Makin, Silvestro Micera or Lee E. Miller.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Biomedical Engineering thanks Daniel Ferris, Juan Moreno and Renaud Ronsse for their contribution to the peer review of this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Makin, T.R., Micera, S. & Miller, L.E. Neurocognitive and motor-control challenges for the realization of bionic augmentation. Nat. Biomed. Eng 7, 344–348 (2023). https://doi.org/10.1038/s41551-022-00930-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41551-022-00930-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing