Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A nanoparticle probe for the imaging of autophagic flux in live mice via magnetic resonance and near-infrared fluorescence

Abstract

Autophagy—the lysosomal degradation of cytoplasmic components via their sequestration into double-membraned autophagosomes—has not been detected non-invasively. Here we show that the flux of autophagosomes can be measured via magnetic resonance imaging or serial near-infrared fluorescence imaging of intravenously injected iron oxide nanoparticles decorated with cathepsin-cleavable arginine-rich peptides functionalized with the near-infrared fluorochrome Cy5.5 (the peptides facilitate the uptake of the nanoparticles by early autophagosomes, and are then cleaved by cathepsins in lysosomes). In the heart tissue of live mice, the nanoparticles enabled quantitative measurements of changes in autophagic flux, upregulated genetically, by ischaemia–reperfusion injury or via starvation, or inhibited via the administration of a chemotherapeutic or the antibiotic bafilomycin. In mice receiving doxorubicin, pre-starvation improved cardiac function and overall survival, suggesting that bursts of increased autophagic flux may have cardioprotective effects during chemotherapy. Autophagy-detecting nanoparticle probes may facilitate the further understanding of the roles of autophagy in disease.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Characterization of the ADN and its in vitro validation.
Fig. 2: Specificity of ADN activation and its uptake in early autophagosomes.
Fig. 3: Imaging of cardiomyocyte autophagy ex vivo with ADN is both sensitive and specific.
Fig. 4: ADN detects a reduction in autophagy when H9C2 cardiomyocytes are exposed to Dox and a cytoprotective effect when autophagy is restored.
Fig. 5: Starvation before Dox challenge in mice restores basal levels of autophagy, attenuates apoptosis, enhances cardiac function and improves overall survival.
Fig. 6: In vivo imaging of autophagy with ADN.

Data availability

The main data supporting the results in this study are available within the paper and its Supplementary Information. The raw and analyzed datasets generated during the study are too large to be publicly shared but are available for research purposes from the corresponding authors on reasonable request. Source data are provided with this paper.

References

  1. Levine, B. & Klionsky, D. J. Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev. Cell 6, 463–477 (2004).

    Article  CAS  PubMed  Google Scholar 

  2. Levine, B. Eating oneself and uninvited guests: autophagy-related pathways in cellular defense. Cell 120, 159–162 (2005).

    CAS  PubMed  Google Scholar 

  3. Choi, A. M., Ryter, S. W. & Levine, B. Autophagy in human health and disease. N. Engl. J. Med. 368, 651–662 (2013).

    Article  CAS  PubMed  Google Scholar 

  4. Nishino, I. et al. Primary LAMP-2 deficiency causes X-linked vacuolar cardiomyopathy and myopathy (Danon disease). Nature 406, 906–910 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. Mizushima, N. & Levine, B. Autophagy in human diseases. N. Engl. J. Med. 383, 1564–1576 (2020).

    Article  CAS  PubMed  Google Scholar 

  6. Nah, J., Fernandez, A. F., Kitsis, R. N., Levine, B. & Sadoshima, J. Does autophagy mediate cardiac myocyte death during stress? Circ. Res. 119, 893–895 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Doherty, J. & Baehrecke, E. H. Life, death and autophagy. Nat. Cell Biol. 20, 1110–1117 (2018).

    Article  CAS  PubMed  Google Scholar 

  8. Savini, M. & Wang, M. C. Does autophagy promote longevity? It depends. Cell 177, 221–222 (2019).

    Article  CAS  PubMed  Google Scholar 

  9. Kabeya, Y. et al. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J. 19, 5720–5728 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kimura, S., Noda, T. & Yoshimori, T. Dissection of the autophagosome maturation process by a novel reporter protein, tandem fluorescent-tagged LC3. Autophagy 3, 452–460 (2007).

    Article  CAS  PubMed  Google Scholar 

  11. Gottlieb, R. A., Andres, A. M., Sin, J. & Taylor, D. P. Untangling autophagy measurements: all fluxed up. Circ. Res. 116, 504–514 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kobayashi, S. et al. Artificial induction of autophagy around polystyrene beads in nonphagocytic cells. Autophagy 6, 36–45 (2010).

    Article  CAS  PubMed  Google Scholar 

  13. Remaut, K., Oorschot, V., Braeckmans, K., Klumperman, J. & De Smedt, S. C. Lysosomal capturing of cytoplasmic injected nanoparticles by autophagy: an additional barrier to non viral gene delivery. J. Control. Release 195, 29–36 (2014).

    Article  CAS  PubMed  Google Scholar 

  14. Lewin, M. et al. Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells. Nat. Biotechnol. 18, 410–414 (2000).

    Article  CAS  PubMed  Google Scholar 

  15. Schmidt, N., Mishra, A., Lai, G. H. & Wong, G. C. Arginine-rich cell-penetrating peptides. FEBS Lett. 584, 1806–1813 (2010).

    Article  CAS  PubMed  Google Scholar 

  16. Nakase, I. et al. Arginine-rich cell-penetrating peptide-modified extracellular vesicles for active macropinocytosis induction and efficient intracellular delivery. Sci. Rep. 7, 1991 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Dowaidar, M. et al. Role of autophagy in cell-penetrating peptide transfection model. Sci. Rep. 7, 12635 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Robison, A. D. et al. Polyarginine interacts more strongly and cooperatively than polylysine with phospholipid bilayers. J. Phys. Chem. B 120, 9287–9296 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Najjar, K. et al. Unlocking endosomal entrapment with supercharged arginine-rich peptides. Bioconjug. Chem. 28, 2932–2941 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Appelbaum, J. S. et al. Arginine topology controls escape of minimally cationic proteins from early endosomes to the cytoplasm. Chem. Biol. 19, 819–830 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Qian, Z. et al. Early endosomal escape of a cyclic cell-penetrating peptide allows effective cytosolic cargo delivery. Biochemistry 53, 4034–4046 (2014).

    Article  CAS  PubMed  Google Scholar 

  22. Uchiyama, Y. Autophagic cell death and its execution by lysosomal cathepsins. Arch. Histol. Cytol. 64, 233–246 (2001).

    Article  CAS  PubMed  Google Scholar 

  23. Chen, H. H. et al. Fluorescence tomography of rapamycin-induced autophagy and cardioprotection in vivo. Circ. Cardiovasc. Imaging 6, 441–447 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Wu, P. et al. Myocardial upregulation of cathepsin D by ischemic heart disease promotes autophagic flux and protects against cardiac remodeling and heart failure. Circ. Heart Fail. 10, e004044 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kuma, A. et al. The role of autophagy during the early neonatal starvation period. Nature 432, 1032–1036 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Mizushima, N., Yamamoto, A., Matsui, M., Yoshimori, T. & Ohsumi, Y. In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker. Mol. Biol. Cell 15, 1101–1111 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhou, J. et al. Activation of lysosomal function in the course of autophagy via mTORC1 suppression and autophagosome–lysosome fusion. Cell Res. 23, 508–523 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. McConnell, H. L. et al. Ferumoxytol nanoparticle uptake in brain during acute neuroinflammation is cell-specific. Nanomedicine 12, 1535–1542 (2016).

    Article  CAS  PubMed  Google Scholar 

  29. Morishita, H., Kaizuka, T., Hama, Y. & Mizushima, N. A new probe to measure autophagic flux in vitro and in vivo. Autophagy 13, 757–758 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Nahrendorf, M. et al. The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions. J. Exp. Med. 204, 3037–3047 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Simonson, B. et al. DDiT4L promotes autophagy and inhibits pathological cardiac hypertrophy in response to stress. Sci. Signal. 10, eaaf5967 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Dhingra, R. et al. Bnip3 mediates doxorubicin-induced cardiac myocyte necrosis and mortality through changes in mitochondrial signaling. Proc. Natl Acad. Sci. USA 111, E5537–E5544 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Li, D. L. et al. Doxorubicin blocks cardiomyocyte autophagic flux by inhibiting lysosome acidification. Circulation 133, 1668–1687 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Abdullah, C. S. et al. Doxorubicin-induced cardiomyopathy associated with inhibition of autophagic degradation process and defects in mitochondrial respiration. Sci. Rep. 9, 2002 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Whitehead, N. P., Kim, M. J., Bible, K. L., Adams, M. E. & Froehner, S. C. A new therapeutic effect of simvastatin revealed by functional improvement in muscular dystrophy. Proc. Natl Acad. Sci. USA 112, 12864–12869 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Liu, Y. et al. Visnagin protects against doxorubicin-induced cardiomyopathy through modulation of mitochondrial malate dehydrogenase. Sci. Transl. Med. 6, 266ra170 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Asnani, A. et al. Highly potent visnagin derivatives inhibit Cyp1 and prevent doxorubicin cardiotoxicity. JCI Insight 3, e96753 (2018).

    Article  PubMed Central  Google Scholar 

  38. Klionsky, D. J. et al. Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition). Autophagy 17, 1–382 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Perez, J. M., Josephson, L., O’Loughlin, T., Hogemann, D. & Weissleder, R. Magnetic relaxation switches capable of sensing molecular interactions. Nat. Biotechnol. 20, 816–820 (2002).

    Article  CAS  PubMed  Google Scholar 

  40. Taktak, S., Sosnovik, D., Cima, M. J., Weissleder, R. & Josephson, L. Multiparameter magnetic relaxation switch assays. Anal. Chem. 79, 8863–8869 (2007).

    Article  CAS  PubMed  Google Scholar 

  41. Nahrendorf, M. et al. Dual channel optical tomographic imaging of leukocyte recruitment and protease activity in the healing myocardial infarct. Circ. Res. 100, 1218–1225 (2007).

    Article  CAS  PubMed  Google Scholar 

  42. Chen, H. H. et al. Theranostic nucleic acid binding nanoprobe exerts anti-inflammatory and cytoprotective effects in ischemic injury. Theranostics 7, 814–825 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Yuan, H. et al. Heat-induced-radiolabeling and click chemistry: a powerful combination for generating multifunctional nanomaterials. PLoS ONE 12, e0172722 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Messroghli, D. R. et al. Clinical recommendations for cardiovascular magnetic resonance mapping of T1, T2, T2* and extracellular volume: a consensus statement by the Society for Cardiovascular Magnetic Resonance (SCMR) endorsed by the European Association for Cardiovascular Imaging (EACVI). J. Cardiovasc. Magn. Reson. 19, 75 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported in part by the following grants from the National Institutes of Health: K99/R00HL121152 (to H.H.C.), R01HL112831 and R01HL141563 (to D.E.S.), R01HL122547 and R01HL102368-06A1 (to S.D.), R01HL131635 (to C.M.) and R01HL131831 (to R.M.B.). Electron microscopy was performed in the Microscopy Core of the Center for Systems Biology/Program in Membrane Biology, which is partially supported by an Inflammatory Bowel Disease Grant (DK043351) and a Boston Area Diabetes and Endocrinology Research Center (BADERC) award (DK057521). The funders had no role in the design of the study, in data collection and analysis, in the decision to publish the manuscript or in its preparation.

Author information

Authors and Affiliations

Authors

Contributions

H.H.C. and D.E.S. conceived the study, designed the experiments and performed data acquisition, data analysis, data interpretation, figure preparation and manuscript writing. Z.K. and L.W. contributed to data acquisition and data analysis. C.M. and S.J.W.K. contributed to data analysis and figure preparation. D.P., A.B., E.E., L.M., Y.I.C., L.K., G.L., D.E.C., P.S. and A.T.N.K. contributed to data acquisition and data analysis. R.M.B. contributed to data acquisition, data analysis and data interpretation. H.Y. contributed to experimental design, data acquisition and data analysis. S.D. contributed to experimental design, data analysis and data interpretation. L.J. contributed to the conception of the study and to experimental design and data interpretation. All authors contributed to the editing of the manuscript.

Corresponding author

Correspondence to Howard H. Chen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Biomedical Engineering thanks Richard Kitsis, Ben Loos and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary information

Supplementary results, methods and figures.

Reporting Summary

Source data

Source data for Fig. 4

Uncropped gels for a.

Source data for Fig. 6

Uncropped gels for n.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, H.H., Khatun, Z., Wei, L. et al. A nanoparticle probe for the imaging of autophagic flux in live mice via magnetic resonance and near-infrared fluorescence. Nat. Biomed. Eng 6, 1045–1056 (2022). https://doi.org/10.1038/s41551-022-00904-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41551-022-00904-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing