Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Criteria for the design of tissue-mimicking phantoms for the standardization of biophotonic instrumentation

Abstract

A lack of accepted standards and standardized phantoms suitable for the technical validation of biophotonic instrumentation hinders the reliability and reproducibility of its experimental outputs. In this Perspective, we discuss general criteria for the design of tissue-mimicking biophotonic phantoms, and use these criteria and state-of-the-art developments to critically review the literature on phantom materials and on the fabrication of phantoms. By focusing on representative examples of standardization in diffuse optical imaging and spectroscopy, fluorescence-guided surgery and photoacoustic imaging, we identify unmet needs in the development of phantoms and a set of criteria (leveraging characterization, collaboration, communication and commitment) for the standardization of biophotonic instrumentation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Tasks of phantoms along the translational pipeline.
Fig. 2: Base requirements for a biophotonic phantom.
Fig. 3: Phantoms for diffuse optical imaging and spectroscopy.
Fig. 4: Phantoms for FGS.
Fig. 5: Phantoms for PAI.

Similar content being viewed by others

References

  1. Luker, G. D. & Luker, K. E. Optical imaging: current applications and future directions. J. Nucl. Med. 49, 1–4 (2008).

    Article  PubMed  Google Scholar 

  2. Tummers, W. S. et al. Regulatory aspects of optical methods and exogenous targets for cancer detection. Cancer Res. 77, 2197–2206 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Nordstrom, R. J. Phantoms as standards in optical measurements. Proc. SPIE 7906, 79060H (2011).

  4. Hwang, J., Ramella-Roman, J. C. & Nordstrom, R. Introduction: feature issue on phantoms for the performance evaluation and validation of optical medical imaging devices. Biomed. Opt. Express 3, 1399–1403 (2012).

  5. Pogue, B. W. & Patterson, M. S. Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry. J. Biomed. Opt. 11, 041102 (2006).

    Article  PubMed  Google Scholar 

  6. Lamouche, G. et al. Review of tissue simulating phantoms with controllable optical, mechanical and structural properties for use in optical coherence tomography. Biomed. Opt. Express 3, 1381–1398 (2012).

  7. Alexanderson-Rosas, E. et al. Current and future trends in multimodality imaging of coronary artery disease. Expert Rev. Cardiovasc. Ther. 13, 715–731 (2015).

    Article  CAS  PubMed  Google Scholar 

  8. Yankeelov, T. E., Abramson, R. G. & Quarles, C. C. Quantitative multimodality imaging in cancer research and therapy. Nat. Rev. Clin. Oncol. 11, 670–680 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Kainz, W. et al. Advances in computational human phantoms and their applications in biomedical engineering—a topical review. IEEE Trans. Radiat. Plasma Med. Sci. 3, 1–23 (2018).

    Article  Google Scholar 

  10. Jacques, S. L. Optical properties of biological tissues: a review. Phys. Med. Biol. 58, R37–R61 (2013).

    Article  PubMed  Google Scholar 

  11. Cheong, W. F., Prahl, S. A. & Welch, A. J. A review of the optical properties of biological tissues. IEEE J. Quantum Electron. 26, 2166–2185 (1990).

    Article  Google Scholar 

  12. Duck, F. A. Physical Properties of Tissue. A Comprehensive Reference Book (Academic Press, 1990).

  13. Azhari, H. Basics of Biomedical Ultrasound for Engineers 313–314 (Wiley, 2010); https://doi.org/10.1002/9780470561478.app1

  14. Yao, D.-K., Zhang, C., Maslov, K. & Wang, L. V. Photoacoustic measurement of the Grüneisen parameter of tissue. J. Biomed. Opt. 19, 017007 (2014).

    Article  PubMed Central  Google Scholar 

  15. Lemaillet, P., Bouchard, J.-P., Hwang, J. & Allen, D. W. Double-integrating-sphere system at the National Institute of Standards and Technology in support of measurement standards for the determination of optical properties of tissue-mimicking phantoms. J. Biomed. Opt. 20, 121310 (2015).

    Article  PubMed  Google Scholar 

  16. Wilson, B. C. in Optical-Thermal Response of Laser-Irradiated Tissue (eds Welch, A. J. et al.) 233–303 (Springer, 1995); https://doi.org/10.1007/978-1-4757-6092-7_8

  17. Cubeddu, R., Pifferi, A., Taroni, P., Torricelli, A. & Valentini, G. Experimental test of theoretical models for time-resolved reflectance. Med. Phys. 23, 1625–1633 (1996).

    Article  CAS  PubMed  Google Scholar 

  18. Spinelli, L. et al. Determination of reference values for optical properties of liquid phantoms based on Intralipid and India ink. Biomed. Opt. Express 5, 2037–2053 (2014).

  19. Pifferi, A. et al. Performance assessment of photon migration instruments: the MEDPHOT protocol. Appl. Opt. 44, 2104–2114 (2005).

    Article  PubMed  Google Scholar 

  20. Collins, D. E. ICRU REPORT 61: Tissue substitutes, phantoms and computational modelling in medical ultrasound. Radiol. Technol. 71, 215–215 (1999).

    Google Scholar 

  21. Breitenberg, M. A. The ABC’s of Standards Activities NISTIR 7614 (NIST, 2009); https://doi.org/10.6028/NIST.IR.7614

  22. Nordstrom, R. J. Translational research and standardization in optical imaging. Curr. Mol. Imaging 3, 129–143 (2015).

    Article  Google Scholar 

  23. Investigational Device Exemptions (IDEs) for Early Feasibility Medical Device Clinical Studies, Including Certain First in Human (FIH) Studies (FDA, 2013); https://www.fda.gov/regulatory-information/search-fda-guidance-documents/investigational-device-exemptions-ides-early-feasibility-medical-device-clinical-studies-including

  24. The 510(k) Program: Evaluating Substantial Equivalence in Premarket Notifications [510(k)] (FDA, 2014); https://www.fda.gov/regulatory-information/search-fda-guidance-documents/510k-program-evaluating-substantial-equivalence-premarket-notifications-510k

  25. Cerussi, A. E. et al. Tissue phantoms in multicenter clinical trials for diffuse optical technologies. Biomed. Opt. Express 3, 966–971 (2012).

  26. Pikkula, B. M. et al. Instrumentation as a source of variability in the application of fluorescence spectroscopic devices for detecting cervical neoplasia. J. Biomed. Opt. 12, 034014 (2007).

    Article  PubMed  Google Scholar 

  27. Anastasopoulou, M. et al. Comprehensive phantom for interventional fluorescence molecular imaging. J. Biomed. Opt. 21, 091309 (2016).

    Article  PubMed  Google Scholar 

  28. Flock, S. T., Jacques, S. L., Wilson, B. C., Star, W. M. & van Gemert, M. J. C. Optical properties of intralipid: a phantom medium for light propagation studies. Lasers Surg. Med. 12, 510–519 (1992).

    Article  CAS  PubMed  Google Scholar 

  29. van Staveren, H. J., Moes, C. J. M., van Marie, J., Prahl, S. A. & van Gemert, M. J. C. Light scattering in lntralipid-10% in the wavelength range of 400–1100 nm. Appl. Opt. 30, 4507–4514 (1991).

  30. Di Ninni, P., Bérubé-Lauzière, Y., Mercatelli, L., Sani, E. & Martelli, F. Fat emulsions as diffusive reference standards for tissue simulating phantoms? Appl. Opt. 51, 7176–7182 (2012).

  31. Di Ninni, P., Martelli, F. & Zaccanti, G. Intralipid: towards a diffusive reference standard for optical tissue phantoms. Phys. Med. Biol. 56, N21–N28 (2011).

    Article  PubMed  Google Scholar 

  32. Michels, R., Foschum, F. & Kienle, A. Optical properties of fat emulsions. Opt. Express 16, 5907–5925 (2008).

  33. Lepore, M. & Delfino, I. Intralipid-based phantoms for the development of new optical diagnostic techniques. Open Biotechnol. J. 13, 163–172 (2019).

    Article  CAS  Google Scholar 

  34. Vishwanath, K., Pogue, B. & Mycek, M.-A. Quantitative fluorescence lifetime spectroscopy in turbid media: comparison of theoretical, experimental and computational methods. Phys. Med. Biol. 47, 3387–3405 (2002).

    Article  PubMed  Google Scholar 

  35. Firbank, M. et al. An improved design for a stable and reproducible phantom material for use in near-infrared spectroscopy and imaging. Phys. Med. Biol. 40, 955–961 (1995).

    Article  CAS  PubMed  Google Scholar 

  36. Saager, R. B., Quach, A., Rowland, R. A., Baldado, M. L. & Durkin, A. J. Low-cost tissue simulating phantoms with adjustable wavelength-dependent scattering properties in the visible and infrared ranges. J. Biomed. Opt. 21, 067001 (2016).

    Article  PubMed Central  Google Scholar 

  37. Ntombela, L., Adeleye, B. & Chetty, N. Low-cost fabrication of optical tissue phantoms for use in biomedical imaging. Heliyon 6, e03602 (2020).

  38. Wróbel, M. S. et al. Multi-layered tissue head phantoms for noninvasive optical diagnostics. J. Innov. Opt. Health Sci. 8, 1541005 (2015).

  39. Wróbel, M. S. et al. Use of optical skin phantoms for preclinical evaluation of laser efficiency for skin lesion therapy. J. Biomed. Opt. 20, 085003 (2015).

    Article  PubMed Central  Google Scholar 

  40. de Bruin, D. M. et al. Optical phantoms of varying geometry based on thin building blocks with controlled optical properties. J. Biomed. Opt. 15, 025001 (2010).

    Article  PubMed  Google Scholar 

  41. Huang, X. & El-Sayed, M. A. Gold nanoparticles: optical properties and implementations in cancer diagnosis and photothermal therapy. J. Adv. Res. 1, 13–28 (2010).

    Article  Google Scholar 

  42. Di Ninni, P., Martelli, F. & Zaccanti, G. The use of India ink in tissue-simulating phantoms. Opt. Express 18, 26854–26865 (2010).

  43. Madsen, S. J., Patterson, M. S. & Wilson, B. C. The use of India ink as an optical absorber in tissue-simulating phantoms. Phys. Med. Biol. 37, 985–993 (1992).

    Article  CAS  PubMed  Google Scholar 

  44. Iizuka, M., Sherar, M. & Vitkin, I. Optical phantom materials for near infrared laser photocoagulation studies. Lasers Surg. Med. 25, 159–169 (1999).

    Article  CAS  PubMed  Google Scholar 

  45. Vitkin, I. A., Wilson, B. C. & Anderson, R. R. Analysis of layered scattering materials by pulsed photothermal radiometry: application to photon propagation in tissue. Appl. Opt. 34, 2973–2982 (1995).

  46. Moffitt, T., Chen, Y.-C. & Prahl, S. A. Preparation and characterization of polyurethane optical phantoms. J. Biomed. Opt. 11, 041103 (2006).

    Article  PubMed  Google Scholar 

  47. Madsen, E. L., Zagzebski, J. A., Banjavie, R. A. & Jutila, R. E. Tissue mimicking materials for ultrasound phantoms. Med. Phys. 5, 391–394 (1978).

    Article  CAS  PubMed  Google Scholar 

  48. Burlew, M. M., Madsen, E. L., Zagzebski, J. A., Banjavic, R. A. & Sum, S. W. A new ultrasound tissue-equivalent material. Radiology 134, 517–520 (1980).

    Article  CAS  PubMed  Google Scholar 

  49. Ramnarine, K. V., Anderson, T. & Hoskins, P. R. Construction and geometric stability of physiological flow rate wall-less stenosis phantoms. Ultrasound Med. Biol. 27, 245–250 (2001).

    Article  CAS  PubMed  Google Scholar 

  50. Madsen, E. L., Zagzebski, J. A. & Frank, G. R. Oil-in-gelatin dispersions for use as ultrasonically tissue-mimicking materials. Ultrasound Med. Biol. 8, 277–287 (1982).

    Article  CAS  PubMed  Google Scholar 

  51. Madsen, E. L., Frank, G. R. & Dong, F. Liquid or solid ultrasonically tissue-mimicking materials with very low scatter. Ultrasound Med. Biol. 24, 535–542 (1998).

    Article  CAS  PubMed  Google Scholar 

  52. Madsen, E. L. et al. Tissue-mimicking oil-in-gelatin dispersions for use in heterogeneous elastography phantoms. Ultrason. Imaging 25, 17–38 (2003).

    Article  CAS  PubMed  Google Scholar 

  53. D’Souza, W. D. et al. Tissue mimicking materials for a multi-imaging modality prostate phantom. Med. Phys. 28, 688–700 (2001).

    Article  PubMed  Google Scholar 

  54. Quarto, G. et al. Recipes to make organic phantoms for diffusive optical spectroscopy. Appl. Opt. 52, 2494–2502 (2013).

    Article  PubMed  Google Scholar 

  55. Merritt, S. et al. Comparison of water and lipid content measurements using diffuse optical spectroscopy and MRI in emulsion phantoms. Technol. Cancer Res. Treat. 2, 563–569 (2003).

    Article  CAS  PubMed  Google Scholar 

  56. Linford, J., Shalev, S., Bews, J., Brown, R. & Schipper, H. Development of a tissue equivalent phantom for diaphanography. Med. Phys. 13, 869–875 (1986).

    Article  CAS  PubMed  Google Scholar 

  57. Ebert, B. et al. Near-infrared fluorescent dyes for enhanced contrast in optical mammography: phantom experiments. J. Biomed. Opt. 6, 134–140 (2001).

  58. Cortese, L. et al. Liquid phantoms for near-infrared and diffuse correlation spectroscopies with tunable optical and dynamic properties. Biomed. Opt. Express 9, 2068–2080 (2018).

  59. Hull, E. L., Nichols, M. G. & Foster, T. H. Quantitative broadband near-infrared spectroscopy of tissue-simulating phantoms containing erythrocytes. Phys. Med. Biol. 43, 3381–3404 (1998).

    Article  CAS  PubMed  Google Scholar 

  60. Wang, D., Chen, Y. & Liu, J. T. C. A liquid optical phantom with tissue-like heterogeneities for confocal microscopy. Biomed. Opt. Express 3, 3153–3160 (2012).

  61. Del Bianco, S. et al. Liquid phantom for investigating light propagation through layered diffusive media. Opt. Express 12, 2102–2111 (2004).

  62. Moes, C. J. M., van Gemert, M. J. C., Star, W. M., Marijnissen, J. P. A. & Prahl, S. A. Measurements and calculations of the energy fluence rate in a scattering and absorbing phantom at 633 nm. Appl. Opt. 28, 2292–2296 (1989).

  63. Hale, G. M. & Querry, M. R. Optical constants of water in the 200-nm to 200-μm wavelength region. Appl. Opt. 12, 555–563 (1973).

  64. Glacomini, A. Ultrasonic velocity in ethanol-water mixtures. J. Acoust. Soc. Am. 19, 701–702 (1947).

    Article  Google Scholar 

  65. Hunter, R. J., Patterson, M. S., Farrell, T. J. & Hayward, J. E. Haemoglobin oxygenation of a two-layer tissue-simulating phantom from time-resolved reflectance: effect of top layer thickness. Phys. Med. Biol. 47, 193–208 (2002).

    Article  CAS  PubMed  Google Scholar 

  66. Loginova, D. A., Sergeeva, E. A., Krainov, A. D., Agrba, P. D. & Kirillin, M. Y. Liquid optical phantoms mimicking spectral characteristics of laboratory mouse biotissues. Quantum Electron. 46, 528–533 (2016).

    Article  CAS  Google Scholar 

  67. Kleiser, S., Nasseri, N., Andresen, B., Greisen, G. & Wolf, M. Comparison of tissue oximeters on a liquid phantom with adjustable optical properties. Biomed. Opt. Express 7, 2973–2992 (2016).

  68. Hyttel-Sorensen, S., Kleiser, S., Wolf, M. & Greisen, G. Calibration of a prototype NIRS oximeter against two commercial devices on a blood-lipid phantom. Biomed. Opt. Express 4, 1662–1672 (2013).

  69. Kleiser, S., Hyttel-Sorensen, S., Greisen, G. & Wolf, M. Comparison of near-infrared oximeters in a liquid optical phantom with varying intralipid and blood content. Adv. Exp. Med. Biol. 876, 413–418 (2016).

  70. Isler, H. et al. Liquid blood phantoms to validate NIRS oximeters: yeast versus nitrogen for deoxygenation. Adv. Exp. Med. Biol. 1072, 381–385 (2018).

  71. Wabnitz, H. et al. Performance assessment of time-domain optical brain imagers, part 2: nEUROPt protocol. J. Biomed. Opt. 19, 086012 (2014).

    Article  PubMed  Google Scholar 

  72. Ohmae, E. et al. Stable tissue-simulating phantoms with various water and lipid contents for diffuse optical spectroscopy. Biomed. Opt. Express 9, 5792–5808 (2018).

  73. Andersson-Engels, S., Berg, R. & Svanberg, S. Effects of optical constants on time-gated transillumination of tissue and tissue-like media. J. Photochem. Photobiol. B 16, 155–167 (1992).

    Article  CAS  PubMed  Google Scholar 

  74. Pogue, B. W., Patterson, M. S., Jiang, H. & Paulsen, K. D. Initial assessment of a simple system for frequency domain diffuse optical tomography. Phys. Med. Biol. 40, 1709–1729 (1995).

    Article  CAS  PubMed  Google Scholar 

  75. Cubeddu, R., Pifferi, A., Taroni, P., Torricelli, A. & Valentini, G. Time-resolved imaging on a realistic tissue phantom: μs′ and μa images versus time-integrated images. Appl. Opt. 35, 4533–4540 (1996).

  76. Li, X. & Su, X. Multifunctional smart hydrogels: potential in tissue engineering and cancer therapy. J. Mater. Chem. B 6, 4714–4730 (2018).

    Article  CAS  PubMed  Google Scholar 

  77. Khan, S., Ullah, A., Ullah, K. & Rehman, N. U. Insight into hydrogels. Des. Monomers Polym. 19, 456–478 (2016).

    Article  CAS  Google Scholar 

  78. Hall, T. J., Bilgen, M., Insana, M. F. & Krouskop, T. A. Phantom materials for elastography. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 44, 1355–1365 (1997).

    Article  Google Scholar 

  79. Cubeddu, R., Pifferi, A., Taroni, P., Torricelli, A. & Valentini, G. A solid tissue phantom for photon migration studies. Phys. Med. Biol. 42, 1971–1979 (1997).

    Article  CAS  PubMed  Google Scholar 

  80. Mustari, A. et al. Agarose-based tissue mimicking optical phantoms for diffuse reflectance spectroscopy. J. Vis. Exp. 2018, e57578 (2018).

    Google Scholar 

  81. Wagnières, G. et al. An optical phantom with tissue-like properties in the visible for use in PDT and fluorescence spectroscopy. Phys. Med. Biol. 42, 1415–1426 (1997).

    Article  PubMed  Google Scholar 

  82. Durkin, A. J., Jaikumar, S. & Richards-Kortum, R. Optically dilute, absorbing, and turbid phantoms for fluorescence spectroscopy of homogeneous and inhomogeneous samples. Appl. Spectrosc. 47, 2114–2121 (1993).

    Article  CAS  Google Scholar 

  83. Saiko, G., Zheng, X., Betlen, A. & Douplik, A. Fabrication and optical characterization of gelatin-based phantoms for tissue oximetry. Adv. Exp. Med. Biol. 1232, 369–374 (2020).

  84. Hielscher, A. H., Liu, H., Chance, B., Tittel, F. K. & Jacques, S. L. Time-resolved photon emission from layered turbid media. Appl. Opt. 35, 719–728 (1996).

  85. Bush, N. L. & Hill, C. R. Gelatine-alginate complex gel: a new acoustically tissue-equivalent material. Ultrasound Med. Biol. 9, 479–484 (1983).

    Article  CAS  PubMed  Google Scholar 

  86. McDonald, M., Lochhead, S., Chopra, R. & Bronskill, M. J. Multi-modality tissue-mimicking phantom for thermal therapy. Phys. Med. Biol. 49, 2767–2778 (2004).

    Article  PubMed  Google Scholar 

  87. Geoghegan, R. et al. A tissue-mimicking prostate phantom for 980 nm laser interstitial thermal therapy. Int. J. Hyperthermia 36, 992–1001 (2019).

    Article  CAS  Google Scholar 

  88. Fromageau, J., Brusseau, E., Vray, D., Gimenez, G. & Delachartre, P. Characterization of PVA cryogel for intravascular ultrasound elasticity imaging. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 50, 1318–1324 (2003).

    Article  PubMed  Google Scholar 

  89. Kharine, A. et al. Poly(vinyl alcohol) gels for use as tissue phantoms in photoacoustic mammography. Phys. Med. Biol. 48, 357–370 (2003).

  90. Xia, W. et al. Poly(vinyl alcohol) gels as photoacoustic breast phantoms revisited. J. Biomed. Opt. 16, 075002 (2011).

    Article  PubMed  CAS  Google Scholar 

  91. Devi, C. U., Vasu, R. M. & Sood, A. K. Design, fabrication, and characterization of a tissue-equivalent phantom for optical elastography. J. Biomed. Opt. 10, 044020 (2005).

    Article  Google Scholar 

  92. Culjat, M. O., Goldenberg, D., Tewari, P. & Singh, R. S. A review of tissue substitutes for ultrasound imaging. Ultrasound Med. Biol. 36, 861–873 (2010).

    Article  PubMed  Google Scholar 

  93. Cook, J. R., Bouchard, R. R. & Emelianov, S. Y. Tissue-mimicking phantoms for photoacoustic and ultrasonic imaging. Biomed. Opt. Express 2, 3193–3206 (2011).

  94. Teirlinck, C. J. P. M. et al. Development of an example flow test object and comparison of five of these test objects, constructed in various laboratories. Ultrasonics 36, 653–660 (1998).

    Article  CAS  PubMed  Google Scholar 

  95. Fonseca, M., Zeqiri, B., Beard, P. C. & Cox, B. T. Characterisation of a phantom for multiwavelength quantitative photoacoustic imaging. Phys. Med. Biol. 61, 4950–4973 (2016).

    Article  CAS  PubMed  Google Scholar 

  96. Bini, M. G. et al. The Polyacrylamide as a phantom material for electromagnetic hyperthermia studies. IEEE Trans. Biomed. Eng. 31, 317–322 (1984).

    Article  CAS  PubMed  Google Scholar 

  97. Zell, K., Sperl, J. I., Vogel, M. W., Niessner, R. & Haisch, C. Acoustical properties of selected tissue phantom materials for ultrasound imaging. Phys. Med. Biol. 52, N475–N484 (2007).

    Article  CAS  PubMed  Google Scholar 

  98. General Purpose Ultrasound Phantom (CIRS, accessed 3 May 2022); https://www.cirsinc.com/products/ultrasound/zerdine-hydrogel/general-purpose-ultrasound-phantom/

  99. Yang, X., Tong, Y. Y., Li, Z. C. & Liang, D. Aggregation-induced microgelation: a new approach to prepare gels in solution. Soft Matter 7, 978–985 (2011).

    Article  CAS  Google Scholar 

  100. Surry, K. J. M., Austin, H. J. B., Fenster, A. & Peters, T. M. Poly(vinyl alcohol) cryogel phantoms for use in ultrasound and MR imaging. Phys. Med. Biol. 49, 5529–5546 (2004).

    Article  CAS  PubMed  Google Scholar 

  101. Wan, W. K., Campbell, G., Zhang, Z. F., Hui, A. J. & Boughner, D. R. Optimizing the tensile properties of polyvinyl alcohol hydrogel for the construction of a bioprosthetic heart valve stent. J. Biomed. Mater. Res. 63, 854–861 (2002).

    Article  CAS  PubMed  Google Scholar 

  102. Goharian, M. et al. Modifying the MRI, elastic stiffness and electrical properties of polyvinyl alcohol cryogel using irradiation. Nucl. Instrum. Methods Phys. Res. B 263, 239–244 (2007).

    Article  CAS  Google Scholar 

  103. Hassan, C. M. & Peppas, N. A. Structure and applications of poly(vinyl alcohol) hydrogels produced by conventional crosslinking or by freezing/thawing methods. Adv. Polym. Sci. 153, 37–65 (2000).

    Article  CAS  Google Scholar 

  104. Mori, Y., Tokura, H. & Yoshikawa, M. Properties of hydrogels synthesized by freezing and thawing aqueous polyvinyl alcohol solutions and their applications. J. Mater. Sci. 32, 491–496 (1997).

    Article  CAS  Google Scholar 

  105. Hyon, S. H., Cha, W. I. & Ikada, Y. Preparation of transparent poly(vinyl alcohol) hydrogel. Polym. Bull. 22, 119–122 (1989).

    Article  CAS  Google Scholar 

  106. Mano, I., Goshima, H., Nambu, M. & Iio, M. New polyvinyl alcohol gel material for MRI phantoms. Magn. Reson. Med. 3, 921–926 (1986).

    Article  CAS  PubMed  Google Scholar 

  107. Sukowski, U., Schubert, F., Grosenick, D. & Rinneberg, H. Preparation of solid phantoms with defined scattering and absorption properties for optical tomography. Phys. Med. Biol. 41, 1823–1844 (1996).

    Article  CAS  PubMed  Google Scholar 

  108. Firbank, M. & Delpy, D. T. A phantom for the testing and calibration of near infra-red spectrometers. Phys. Med. Biol. 39, 1509–1513 (1994).

    Article  CAS  PubMed  Google Scholar 

  109. Hebden, J. C., Hall, D. J., Firbank, M. & Delpy, D. T. Time-resolved optical imaging of a solid tissue-equivalent phantom. Appl. Opt. 34, 8038–8047 (1995).

  110. Hebden, J. C. et al. An electrically-activated dynamic tissue-equivalent phantom for assessment of diffuse optical imaging systems. Phys. Med. Biol. 53, 329–337 (2008).

    Article  PubMed  Google Scholar 

  111. Krauter, P. et al. Optical phantoms with adjustable subdiffusive scattering parameters. J. Biomed. Opt. 20, 105008 (2015).

    Article  PubMed  Google Scholar 

  112. Koh, P. H., Elwell, C. E. & Delpy, D. T. Development of a dynamic test phantom for optical topography. Adv. Exp. Med. Biol. 645, 141–146 (2009).

  113. Netz, U. J., Toelsner, J. & Bindig, U. Calibration standards and phantoms for fluorescence optical measurements. Med. Laser Appl. 26, 101–108 (2011).

    Article  Google Scholar 

  114. Pifferi, A. et al. Mechanically switchable solid inhomogeneous phantom for performance tests in diffuse imaging and spectroscopy. J. Biomed. Opt. 20, 121304 (2015).

    Article  PubMed  Google Scholar 

  115. Avanaki, M. R. N., Podoleanu, A. G., Price, M. C., Corr, S. A. & Hojjatoleslami, S. A. Two applications of solid phantoms in performance assessment of optical coherence tomography systems. Appl. Opt. 52, 7054–7061 (2013).

    Article  PubMed  Google Scholar 

  116. Vernon, M. L., Fréchette, J., Painchaud, Y., Caron, S. & Beaudry, P. Fabrication and characterization of a solid polyurethane phantom for optical imaging through scattering media. Appl. Opt. 38, 4247–4251 (1999).

  117. Zhu, B., Tan, I. C., Rasmussen, J. C. & Sevick-Mraca, E. M. Validating the sensitivity and performance of near-infrared fluorescence imaging and tomography devices using a novel solid phantom and measurement approach. Technol. Cancer Res. Treat. 11, 95–104 (2012).

    Article  CAS  PubMed  Google Scholar 

  118. Zhu, B., Rasmussen, J. C. & Sevick-Muraca, E. M. A matter of collection and detection for intraoperative and noninvasive near-infrared fluorescence molecular imaging: to see or not to see? Med. Phys. 41, 022105 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Firbank, M., Oda, M. & Delpy, D. T. An improved design for a stable and reproducible phantom material for use in near-infrared spectroscopy and imaging. Phys. Med. Biol. 40, 955–961 (1995).

    Article  CAS  PubMed  Google Scholar 

  120. Bae, Y., Son, T., Park, J. & Jung, B. Fabrication of a thin-layer solid optical tissue phantom by a spin-coating method: pilot study. J. Biomed. Opt. 18, 025006 (2013).

    Article  CAS  Google Scholar 

  121. Swartling, J., Dam, J. S. & Andersson-Engels, S. Comparison of spatially and temporally resolved diffuse-reflectance measurement systems for determination of biomedical optical properties. Appl. Opt. 42, 4612–4620 (2003).

  122. Clarke, A. J., Evans, J. A., Truscott, J. G., Milner, R. & Smith, M. A. A phantom for quantitative ultrasound of trabecular bone. Phys. Med. Biol. 39, 1667–1687 (1994).

  123. Tatarinov, A., Pontaga, I. & Vilks, U. Modeling the influence of mineral content and porosity on ultrasound parameters in bone by using synthetic phantoms. Mech. Compos. Mater. 35, 147–154 (1999).

  124. Falardeau, T. & Belanger, P. Ultrasound tomography in bone mimicking phantoms: simulations and experiments. J. Acoust. Soc. Am. 144, 2937–2946 (2018).

    Article  CAS  PubMed  Google Scholar 

  125. Wydra, A. & Maev, R. G. A novel composite material specifically developed for ultrasound bone phantoms: cortical, trabecular and skull. Phys. Med. Biol. 58, N303–N319 (2013).

    Article  CAS  PubMed  Google Scholar 

  126. Cafarelli, A., Miloro, P., Verbeni, A., Carbone, M. & Menciassi, A. Speed of sound in rubber-based materials for ultrasonic phantoms. J. Ultrasound 19, 251–256 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Goldstein, A. The effect of acoustic velocity on phantom measurements. Ultrasound Med. Biol. 26, 1133–1143 (2000).

    Article  CAS  PubMed  Google Scholar 

  128. Gorpas, D., Koch, M., Anastasopoulou, M., Klemm, U. & Ntziachristos, V. Benchmarking of fluorescence cameras through the use of a composite phantom. J. Biomed. Opt. 22, 016009 (2017).

    Article  Google Scholar 

  129. Ruiz, A. J. et al. Indocyanine green matching phantom for fluorescence-guided surgery imaging system characterization and performance assessment. J. Biomed. Opt. 25, 056003 (2020).

  130. Dernehl, C. Health hazards associated with polyurethane foams. J. Occup. Med. 8, 59–62 (1966).

  131. Bays, R. et al. Three‐dimensional optical phantom and its application in photodynamic therapy. Lasers Surg. Med. 21, 227–234 (1997).

    Article  CAS  PubMed  Google Scholar 

  132. Beck, G. C., Akgün, N., Rück, A. & Steiner, R. Design and characterisation of a tissue phantom system for optical diagnostics. Lasers Med. Sci. 13, 160–171 (1998).

    Article  Google Scholar 

  133. Lualdi, M., Colombo, A., Farina, B., Tomatis, S. & Marchesini, R. A phantom with tissue-like optical properties in the visible and near infrared for use in photomedicine. Lasers Surg. Med. 28, 237–243 (2001).

    Article  CAS  PubMed  Google Scholar 

  134. Greening, G. J. et al. Characterization of thin poly(dimethylsiloxane)-based tissue-simulating phantoms with tunable reduced scattering and absorption coefficients at visible and near-infrared wavelengths. J. Biomed. Opt. 19, 115002 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  135. Saager, R. B., Quach, A., Kennedy, G. T., Tromberg, B. J. & Durkin, A. J. From theory to practice: the broadening role of polydimethylsiloxane phantoms as an intermediary between model validation and instrument performance testing. Proc. SPIE 9700, 97000G (2016).

  136. Saager, R. B. et al. Multilayer silicone phantoms for the evaluation of quantitative optical techniques in skin imaging. Proc. SPIE 7567, 756706 (2010).

  137. Monte, A. F. G., Reis, A. F., Cruz Junior, L. B. & Antunes, A. Preparation and quantitative characterization of polydimethylsiloxane optical phantoms with zinc-phthalocyanine dye absorbers. Appl. Opt. 57, 5865–5871 (2018).

  138. Bisaillon, C. E., Lamouche, G., Maciejko, R., Dufour, M. & Monchalin, J. P. Deformable and durable phantoms with controlled density of scatterers. Phys. Med. Biol. 53, N237–N247 (2008).

    Article  PubMed  Google Scholar 

  139. Smith, G. T., Lurie, K. L., Zlatev, D. V., Liao, J. C. & Ellerbee Bowden, A. K. Multimodal 3D cancer-mimicking optical phantom. Biomed. Opt. Express 7, 648–662 (2016).

  140. Curatolo, A., Kennedy, B. F. & Sampson, D. D. Structured three-dimensional optical phantom for optical coherence tomography. Opt. Express 19, 19480–19485 (2011).

  141. Agrawal, A., Pfefer, T. J., Gilani, N. & Drezek, R. Three-dimensional characterization of optical coherence tomography point spread functions with a nanoparticle-embedded phantom. Opt. Lett. 35, 2269–2271 (2010).

  142. Park, J., Ha, M., Yu, S. & Jung, B. Fabrication of various optical tissue phantoms by the spin-coating method. J. Biomed. Opt. 21, 65008 (2016).

    Article  PubMed  Google Scholar 

  143. Sekar, S. K. V. et al. Solid phantom recipe for diffuse optics in biophotonics applications: a step towards anatomically correct 3D tissue phantoms. Biomed. Opt. Express 10, 2090–2100 (2019).

  144. Little, C. D. et al. Micron resolution, high-fidelity three-dimensional vascular optical imaging phantoms. J. Biomed. Opt. 24, 1– 4 (2019).

  145. Homma, H., Mirley, C. L., Ronzello, J. A. & Boggs, S. A. Field and laboratory aging of RTV silicone insulator coatings. IEEE Trans. Power Deliv. 15, 1298–1303 (2000).

    Article  CAS  Google Scholar 

  146. Baxi, J. et al. Retina-simulating phantom for optical coherence tomography. J. Biomed. Opt. 19, 21106 (2013).

    Article  Google Scholar 

  147. Lurie, K. L., Smith, G. T., Khan, S. A., Liao, J. C. & Ellerbee, A. K. Three-dimensional, distendable bladder phantom for optical coherence tomography and white light cystoscopy. J. Biomed. Opt. 19, 36009 (2014).

    Article  PubMed  Google Scholar 

  148. Bisaillon, C.-É., Dufour, M. L. & Lamouche, G. Artery phantoms for intravascular optical coherence tomography: healthy arteries. Biomed. Opt. Express 2, 2599–2613 (2011).

  149. Lualdi, M., Colombo, A., Mari, A., Tomatis, S. & Marchesini, R. Development of simulated pigmented lesions in an optical skin-tissue phantom: experimental measurements in the visible and near infrared. J. Laser Appl. 14, 122–127 (2002).

    Article  Google Scholar 

  150. Diao, D. Y. et al. Durable rough skin phantoms for optical modeling. Phys. Med. Biol. 59, 485–492 (2014).

    Article  PubMed  Google Scholar 

  151. Oldenburg, A. L., Toublan, F. J.-J., Suslick, K. S., Wei, A. & Boppart, S. A. Magnetomotive contrast for in vivo optical coherence tomography. Opt. Express 13, 6597–6614 (2005).

  152. Kennedy, B. F., Hillman, T. R., McLaughlin, R. A., Quirk, B. C. & Sampson, D. D. In vivo dynamic optical coherence elastography using a ring actuator. Opt. Express 17, 21762–21772 (2009).

  153. Davis, D., McConnell, R. & Meyer, M. F. Jr Poly (vinyl chloride) plastisol compositions. US patent 4,401,720 (1983).

  154. Bohndiek, S. E., Bodapati, S., Van De Sompel, D., Kothapalli, S.-R. R. & Gambhir, S. S. Development and application of stable phantoms for the evaluation of photoacoustic imaging instruments. PLoS ONE 8, e75533 (2013).

  155. Spirou, G., Oraevsky, A., Vitkin, I. & Whelan, W. Optical and acoustic properties at 1064 nm of polyvinyl chloride-plastisol for use as a tissue phantom in biomedical optoacoustics. Phys. Med. Biol. 50, N141–N153 (2005).

    Article  PubMed  Google Scholar 

  156. Vogt, W. C., Jia, C., Wear, K. A., Garra, B. S. & Joshua Pfefer, T. Biologically relevant photoacoustic imaging phantoms with tunable optical and acoustic properties. J. Biomed. Opt. 21, 101405 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  157. Bakaric, M., Miloro, P., Zeqiri, B., Cox, B. T. & Treeby, B. E. The effect of curing temperature and time on the acoustic and optical properties of PVCP. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 67, 505–512 (2020).

    Article  PubMed  Google Scholar 

  158. Rybachuk, G. V., Kozlova, I. I., Mozzhukhin, V. B. & Guzeev, V. V. PVC plastisols: preparation, properties, and application. Polym. Sci. C 49, 6–12 (2007).

  159. Dantuma, M., van Dommelen, R. & Manohar, S. Semi-anthropomorphic photoacoustic breast phantom. Biomed. Opt. Express 10, 5921–5939 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Jeong, E. et al. Fabrication and characterization of PVCP human breast tissue-mimicking phantom for photoacoustic imaging. BioChip J. 11, 67–75 (2017).

    Article  CAS  Google Scholar 

  161. Heudorf, U., Mersch-Sundermann, V. & Angerer, J. Phthalates: toxicology and exposure. Int. J. Hyg. Environ. Health 210, 623–634 (2007).

    Article  CAS  PubMed  Google Scholar 

  162. Legge, N. R., Holden, G. & Schroeder, H. E. Thermoplastic Elastomers (Hanser, 1996).

    Google Scholar 

  163. Maneas, E. et al. Gel wax-based tissue-mimicking phantoms for multispectral photoacoustic imaging. Biomed. Opt. Express 9, 1151–1163 (2018).

  164. Maneas, E. et al. Anatomically realistic ultrasound phantoms using gel wax with 3D printed moulds. Phys. Med. Biol. 63, 015033 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  165. Jones, C. J. M. & Munro, P. R. T. Stability of gel wax based optical scattering phantoms. Biomed. Opt. Express 9, 3495–3502 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Grillo, F. W., Cabrelli, L. C., Sampaio, D. R. T., Carneiro, A. A. O. & Pavan, T. Z. Glycerol in oil-based phantom with improved performance for photoacoustic imaging. In 2017 IEEE International Ultrasonics Symposium 1–4 (IEEE, 2017); https://doi.org/10.1109/ULTSYM.2017.8091705

  167. Cabrelli, L. C. et al. Stable phantom materials for ultrasound and optical imaging. Phys. Med. Biol. 62, 432–447 (2017).

    Article  CAS  PubMed  Google Scholar 

  168. Oudry, J., Bastard, C., Miette, V., Willinger, R. & Sandrin, L. Copolymer-in-oil phantom materials for elastography. Ultrasound Med. Biol. 35, 1185–1197 (2009).

    Article  CAS  PubMed  Google Scholar 

  169. Hacker, L. et al. A copolymer-in-oil tissue-mimicking material with tuneable acoustic and optical characteristics for photoacoustic imaging phantoms. IEEE Trans. Med. Imaging 40, 3593–3603 (2021).

  170. Suzuki, A. et al. Oil gel-based phantom for evaluating quantitative accuracy of speed of sound measured in ultrasound computed tomography. Ultrasound Med. Biol. 45, 2554–2567 (2019).

    Article  PubMed  Google Scholar 

  171. Oudry, J. et al. Cross-validation of magnetic resonance elastography and ultrasound-based transient elastography: a preliminary phantom study. J. Magn. Reson. Imaging 30, 1145–1150 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  172. Cabrelli, L. C., Grillo, F. W., Sampaio, D. R. T., Carneiro, A. A. O. & Pavan, T. Z. Acoustic and elastic properties of glycerol in oil-based gel phantoms. Ultrasound Med. Biol. 43, 2086–2094 (2017).

    Article  PubMed  Google Scholar 

  173. Wang, K., Ho, C. C., Zhang, C. & Wang, B. A review on the 3D printing of functional structures for medical phantoms and regenerated tissue and organ applications. Engineering 3, 653–662 (2017).

    Article  CAS  Google Scholar 

  174. Filippou, V. & Tsoumpas, C. Recent advances on the development of phantoms using 3D printing for imaging with CT, MRI, PET, SPECT, and ultrasound. Med. Phys. 45, e740–e760 (2018).

    Article  Google Scholar 

  175. Afshari, A. et al. Cerebral oximetry performance testing with a 3D-printed vascular array phantom. Biomed. Opt. Express 10, 3731–3746 (2019).

  176. Wang, J. et al. Three-dimensional printing of tissue phantoms for biophotonic imaging. Opt. Lett. 39, 3010–3013 (2014).

  177. Kim, H., Hau, N. T., Chae, Y.-G., Lee, B. & Kang, H. W. 3D printing-assisted fabrication of double-layered optical tissue phantoms for laser tattoo treatments. Lasers Surg. Med. 48, 392–399 (2016).

    Article  PubMed  Google Scholar 

  178. Arconada-Alvarez, S. J., Lemaster, J. E., Wang, J. & Jokerst, J. V. The development and characterization of a novel yet simple 3D printed tool to facilitate phantom imaging of photoacoustic contrast agents. Photoacoustics 5, 17–24 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  179. Ghassemi, P. et al. Rapid prototyping of biomimetic vascular phantoms for hyperspectral reflectance imaging. J. Biomed. Opt. 20, 121312 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  180. Diep, P. et al. Three-dimensional printed optical phantoms with customized absorption and scattering properties. Biomed. Opt. Express 6, 4212–4220 (2015).

  181. Pinkert, M. A., Cox, B. L., Dai, B., Hall, T. J. & Eliceiri, K. W. 3-D-printed registration phantom for combined ultrasound and optical imaging of biological tissues. Ultrasound Med. Biol. 46, 1808–1814 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  182. Aljohani, W. et al. Three-dimensional printing of alginate-gelatin-agar scaffolds using free-form motor assisted microsyringe extrusion system. J. Polym. Res. 25, 1–10 (2018).

  183. Li, J., Wu, C., Chu, P. K. & Gelinsky, M. 3D printing of hydrogels: rational design strategies and emerging biomedical applications. Mater. Sci. Eng. R 140, 100543 (2020).

  184. Dong, E. et al. Three-dimensional fuse deposition modeling of tissue-simulating phantom for biomedical optical imaging. J. Biomed. Opt. 20, 121311 (2015).

    Article  PubMed  Google Scholar 

  185. Corcoran, A., Muyo, G., Van Hemert, J., Gorman, A. & Harvey, A. R. Application of a wide-field phantom eye for optical coherence tomography and reflectance imaging. J. Mod. Opt. 62, 1828–1838 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Bentz, B. Z. et al. Printed optics: phantoms for quantitative deep tissue fluorescence imaging. Opt. Lett. 41, 5230–5233 (2016).

  187. Oropallo, W. & Piegl, L. A. Ten challenges in 3D printing. Eng. Comput. 32, 135–148 (2016).

    Article  Google Scholar 

  188. Gordeev, E. G., Galushko, A. S. & Ananikov, V. P. Improvement of quality of 3D printed objects by elimination of microscopic structural defects in fused deposition modeling. PLoS ONE 13, e0198370 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  189. Kienle, A. et al. Spatially resolved absolute diffuse reflectance measurements for noninvasive determination of the optical scattering and absorption coefficients of biological tissue. Appl. Opt. 35, 2304–2314 (1996).

    Article  CAS  PubMed  Google Scholar 

  190. Grabtchak, S., Montgomery, L. G. & Whelan, W. M. Optical absorption and scattering properties of bulk porcine muscle phantoms from interstitial radiance measurements in 650–900 nm range. Phys. Med. Biol. 59, 2431–2444 (2014).

    Article  PubMed  Google Scholar 

  191. Grabtchak, S., Tonkopi, E. & Whelan, W. M. Optical detection of gold nanoparticles in a prostate-shaped porcine phantom. J. Biomed. Opt. 18, 077005 (2013).

    Article  PubMed  CAS  Google Scholar 

  192. Shen, Y., Liu, Y., Ma, C. & Wang, L. V. Focusing light through biological tissue and tissue-mimicking phantoms up to 9.6 cm in thickness with digital optical phase conjugation. J. Biomed. Opt. 21, 085001 (2016).

    Article  PubMed Central  Google Scholar 

  193. McDowell, E. J. et al. Turbidity suppression from the ballistic to the diffusive regime in biological tissues using optical phase conjugation. J. Biomed. Opt. 15, 025004 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  194. Stockbridge, C. et al. Focusing through dynamic scattering media. Opt. Express 20, 15086–15092 (2012).

  195. Demos, S., Radousky, H. & Alfano, R. Deep subsurface imaging in tissues using spectral and polarization filtering. Opt. Express 7, 23–28 (2000).

  196. Yoon, J. et al. A clinically translatable hyperspectral endoscopy (HySE) system for imaging the gastrointestinal tract. Nat. Commun. 10, 1902 (2019).

  197. Parot, V. et al. Photometric stereo endoscopy. J. Biomed. Opt. 18, 076017 (2013).

  198. Leopaldi, A. M. et al. In vitro hemodynamics and valve imaging in passive beating hearts. J. Biomech. 45, 1133–1139 (2012).

    Article  CAS  PubMed  Google Scholar 

  199. Eshmuminov, D. et al. An integrated perfusion machine preserves injured human livers for 1 week. Nat. Biotechnol. 38, 189–198 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Sokolov, K. et al. Realistic three-dimensional epithelial tissue phantoms for biomedical optics. J. Biomed. Opt. 7, 148–156 (2002).

  201. Nieman, L., Myakov, A., Aaron, J. & Sokolov, K. Optical sectioning using a fiber probe with an angled illumination-collection geometry: evaluation in engineered tissue phantoms. Appl. Opt. 43, 1308–1319 (2004).

    Article  PubMed  Google Scholar 

  202. Robichaux Viehoever, A., Anderson, D., Jansen, D. & Mahadevan-Jansen, A. Organotypic raft cultures as an effective in vitro tool for understanding raman spectral analysis of tissue. Photochem. Photobiol. 78, 517–524 (2007).

    Article  Google Scholar 

  203. Liu, Y., Kim, Y. L. & Backman, V. Development of a bioengineered tissue model and its application in the investigation of the depth selectivity of polarization gating. Appl. Opt. 44, 2288–2299 (2005).

    Article  PubMed  Google Scholar 

  204. Li, Z. & Kawashita, M. Current progress in inorganic artificial biomaterials. J. Artif. Organs 14, 163–170 (2011).

    Article  CAS  PubMed  Google Scholar 

  205. Murphy, S. V. & Atala, A. 3D bioprinting of tissues and organs. Nat. Biotechnol. 32, 773–785 (2014).

    Article  CAS  PubMed  Google Scholar 

  206. Pfefer, J. & Agrawal, A. A review of consensus test methods for established medical imaging modalities and their implications for optical coherence tomography. Proc. SPIE 8215, 82150D (2012).

  207. ISO 8600-5:2020 Optics and Photonics — Medical Endoscopes and Endotherapy Devices — Part 5: Determination of Optical Resolution of Rigid Endoscopes with Optics (ISO, 2020); https://www.iso.org/standard/65019.html

  208. ISO 8600-3:2019 Endoscopes — Medical Endoscopes and Endotherapy Devices — Part 3: Determination of Field of View and Direction of View of Endoscopes with Optics (ISO, 2019); https://www.iso.org/standard/65018.html

  209. ISO 80601-2-61:2017 Medical Electrical Equipment — Part 2-61: Particular Requirements for Basic Safety and Essential Performance of Pulse Oximeter Equipment (ISO, 2017); https://www.iso.org/standard/67963.html

  210. ISO 16971:2015 Ophthalmic Instruments — Optical Coherence Tomograph for the Posterior Segment of the Human Eye (ISO, 2015); https://www.iso.org/standard/58076.html

  211. Wabnitz, H. et al. Performance assessment of time-domain optical brain imagers, part 1: basic instrumental performance protocol. J. Biomed. Opt. 19, 086010 (2014).

    Article  PubMed  Google Scholar 

  212. Lanka, P. et al. The BITMAP exercise: a multi-laboratory performance assessment campaign of diffuse optical instrumentation. Proc. SPIE 11074, 110741A (2019).

  213. Hansen, M. L. et al. Cerebral near-infrared spectroscopy monitoring versus treatment as usual for extremely preterm infants: a protocol for the SafeBoosC randomised clinical phase III trial. Trials 20, 811 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Kleiser, S. et al. Comparison of tissue oximeters on a liquid phantom with adjustable optical properties: an extension. Biomed. Opt. Express 9, 86–101 (2018).

  215. IEC 80601-2-71:2015 Medical Electrical Equipment — Part 2-71: Particular Requirements for the Basic Safety and Essential Performance of Functional Near-infrared Spectroscopy (NIRS) Equipment (ISO, 2015); https://www.iso.org/standard/61105.html

  216. ISO 80601-2-85:2021 Medical Electrical Equipment — Part 2-85: Particular Requirements for the Basic Safety and Essential Performance of Cerebral Tissue Oximeter Equipment (ISO, 2021); https://www.iso.org/standard/72442.html

  217. IEC - TC 62/SC 62D/JWG 5. IEC https://www.iec.ch/dyn/www/f?p=103:14:5576978447608::::FSP_ORG_ID,FSP_LANG_ID:2492,25 (accessed 5 May 2022).

  218. ISO/TC 121/SC 3 Respiratory Devices and Related Equipment Used for Patient Care (ISO, 1982); https://www.iso.org/committee/52012.html

  219. Pogue, B. W. Perspective review of what is needed for molecular-specific fluorescence-guided surgery. J. Biomed. Opt. 23, 1–9 (2018).

  220. Alander, J. T. et al. A review of indocyanine green fluorescent imaging in surgery. Int. J. Biomed. Imaging 2012, 940585 (2012).

  221. Nagaya, T., Nakamura, Y. A., Choyke, P. L. & Kobayashi, H. Fluorescence-guided surgery. Front. Oncol. 7, 314 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  222. Roy, M., Kim, A., Dadani, F. & Wilson, B. C. Homogenized tissue phantoms for quantitative evaluation of subsurface fluorescence contrast. J. Biomed. Opt. 16, 16013 (2011).

    Article  Google Scholar 

  223. De Grand, A. M. et al. Tissue-like phantoms for near-infrared fluorescence imaging system assessment and the training of surgeons. J. Biomed. Opt. 11, 014007 (2006).

  224. Samkoe, K. S., Bates, B. D., Tselepidakis, N. N., DSouza, A. V. & Gunn, J. R. Development and evaluation of a connective tissue phantom model for subsurface visualization of cancers requiring wide local excision. J. Biomed. Opt. 22, 1–12 (2017).

  225. Pleijhuis, R. et al. Tissue-simulating phantoms for assessing potential near-infrared fluorescence imaging applications in breast cancer surgery. J. Vis. Exp. https://doi.org/10.3791/51776 (2014).

  226. van Willigen, D. M. et al. Multispectral fluorescence guided surgery; a feasibility study in a phantom using a clinical-grade laparoscopic camera system. Am. J. Nucl. Med. Mol. Imaging 7, 138–147 (2017).

    PubMed  PubMed Central  Google Scholar 

  227. Würth, C., Hoffmann, K., Behnke, T., Ohnesorge, M. & Resch-Genger, U. Polymer- and glass-based fluorescence standards for the near infrared (NIR) spectral region. J. Fluorescence 21, 953–961 (2011).

  228. DeRose, P. C., Smith, M. V., Mielenz, K. D., Blackburn, D. H. & Kramer, G. W. Characterization of standard reference material 2941, uranyl-ion-doped glass, spectral correction standard for fluorescence. J. Luminescence 128, 257–266 (2008).

    Article  CAS  Google Scholar 

  229. DeRose, P. C., Smith, M. V., Mielenz, K. D., Blackburn, D. H. & Kramer, G. W. Characterization of standard reference material 2940, Mn-ion-doped glass, spectral correction standard for fluorescence. J. Luminescence 129, 349–355 (2009).

    Article  CAS  Google Scholar 

  230. Liu, Y. et al. Biomimetic 3D-printed neurovascular phantoms for near-infrared fluorescence imaging. Biomed. Opt. Express 9, 2810–2824 (2018).

  231. Koch, M., Symvoulidis, P. & Ntziachristos, V. Tackling standardization in fluorescence molecular imaging. Nat. Photon. https://doi.org/10.1038/s41566-018-0221-5 (2018).

  232. Pogue, B. W. et al. Fluorescence-guided surgery and intervention—an AAPM emerging technology blue paper. Med. Phys. 45, 2681–2688 (2018).

  233. Kaufman, M. B. Pharmaceutical approval update. P T 42, 673–683 (2017).

    PubMed  PubMed Central  Google Scholar 

  234. DSouza, A. V., Lin, H., Henderson, E. R., Samkoe, K. S. & Pogue, B. W. Review of fluorescence guided surgery systems: identification of key performance capabilities beyond indocyanine green imaging. J. Biomed. Opt. 21, 080901 (2016).

    Article  PubMed Central  Google Scholar 

  235. Tummers, W. S. et al. Recommendations for reporting on emerging optical imaging agents to promote clinical approval. Theranostics 8, 5336–5347 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Hoogstins, C. et al. Setting standards for reporting and quantification in fluorescence-guided surgery. Mol. Imaging Biol. 21, 11–18 (2019).

    Article  PubMed  Google Scholar 

  237. Pogue, B. W. et al. Update on AAPM task group 311: guidance for technical performance evaluation for fluorescence guided surgery systems. Proc. SPIE 11222, 112220S (2020).

  238. Zhu, B., Rasmussen, J. C., Litorja, M. & Sevick-Muraca, E. M. Determining the performance of fluorescence molecular imaging devices using traceable working standards with SI units of radiance. IEEE Trans. Med. Imaging 35, 802–811 (2016).

    Article  PubMed  Google Scholar 

  239. Zhu, B., Kwon, S., Rasmussen, J. C., Litorja, M. & Sevick-Muraca, E. M. Comparison of NIR versus SWIR fluorescence image device performance using working standards calibrated with SI units. IEEE Trans. Med. Imaging 39, 944–951 (2020).

    Article  PubMed  Google Scholar 

  240. Gorpas, D. et al. Multi-parametric standardization of fluorescence imaging systems based on a composite phantom. IEEE Trans. Biomed. Eng. 67, 185–192 (2020).

    Article  PubMed  Google Scholar 

  241. Attia, A. B. E. et al. A review of clinical photoacoustic imaging: current and future trends. Photoacoustics 16, 100144 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  242. Beard, P. Biomedical photoacoustic imaging. Interface Focus 1, 602–631 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  243. Laufer, J., Zhang, E. & Beard, P. Evaluation of absorbing chromophores used in tissue phantoms for quantitative photoacoustic spectroscopy and imaging. IEEE J. Sel. Top. Quantum Electron. 16, 600–607 (2010).

    Article  CAS  Google Scholar 

  244. Avigo, C. et al. Organosilicon phantom for photoacoustic imaging. J. Biomed. Opt. 20, 046008 (2015).

    Article  CAS  Google Scholar 

  245. Ratto, F. et al. Hybrid organosilicon/polyol phantom for photoacoustic imaging. Biomed. Opt. Express 10, 3719–3730 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Gehrung, M., Bohndiek, S. E. & Brunker, J. Development of a blood oxygenation phantom for photoacoustic tomography combined with online pO2 detection and flow spectrometry. J. Biomed. Opt. 24, 1 (2019).

    Article  PubMed  Google Scholar 

  247. Vogt, W. C. et al. Phantom-based image quality test methods for photoacoustic imaging systems. J. Biomed. Opt. 22, 1–14 (2017).

  248. Tissue-mimicking polymer test phantoms for optical-acoustic medical imaging. US FDA https://www.fda.gov/science-research/licensing-and-collaboration-opportunities/tissue-mimicking-polymer-test-phantoms-optical-acoustic-medical-imaging (2019).

  249. Bohndiek, S. Addressing photoacoustics standards. Nat. Photon. 13, 298 (2019).

  250. Sun, J. Y. et al. Highly stretchable and tough hydrogels. Nature 489, 133–136 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Sjoding, M. W., Dickson, R. P., Iwashyna, T. J., Gay, S. E. & Valley, T. S. Racial bias in pulse oximetry measurement. N. Engl. J. Med. 383, 2477–2478 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  252. Belykh, E. et al. Utilization of intraoperative confocal laser endomicroscopy in brain tumor surgery. J. Neurosurgical Sci. 62, 704–717 (2018).

    Google Scholar 

  253. Keenan, M. et al. Design and characterization of a combined OCT and wide field imaging falloposcope for ovarian cancer detection. Biomed. Opt. Express 8, 124–136 (2017).

  254. Masters, B. R. et al. Mitigating thermal mechanical damage potential during two-photon dermal imaging. J. Biomed. Opt. 9, 1265–1270 (2004).

  255. Liang, W. et al. Increased illumination uniformity and reduced photodamage offered by the Lissajous scanning in fiber-optic two-photon endomicroscopy. J. Biomed. Opt. 17, 021108 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  256. Qualification of Medical Device Development Tools (US FDA, 2017); https://www.fda.gov/regulatory-information/search-fda-guidance-documents/qualification-medical-device-development-tools

  257. Clarke, G. D. Overview of the ACR MRI Accreditation Phantom (American College of Radiology, 1999).

  258. IEC 60601-2-37:2007 Particular Requirements for the Basic Safety and Essential Performance of Ultrasonic Medical Diagnostic and Monitoring Equipment (IEC Webstore, 2007); https://webstore.iec.ch/publication/2652

  259. IEC TS 61206:1993 Ultrasonics – Continuous-Wave Doppler Systems – Test Procedures (IEC Webstore, 1993); https://webstore.iec.ch/publication/4909

  260. IEC 61685:2001 Ultrasonics – Flow Measurement Systems – Flow Test Object (IEC Webstore, 2001); https://webstore.iec.ch/publication/5721

  261. IEC TS 63081:2019 Ultrasonics – Methods for the Characterization of the Ultrasonic Properties of Materials (IEC Webstore, 2019); https://webstore.iec.ch/publication/32282

  262. Aldrich, M. B. et al. in Translational Research in Biophotonics: Four National Cancer Institute Case Studies (ed. Nordstrom, R. J.) 29–66 (SPIE, 2014); https://doi.org/10.1117/3.1002515.ch3

  263. Bouchard, J.-P. et al. Reference optical phantoms for diffuse optical spectroscopy Part 1 – error analysis of a time resolved transmittance characterization method. Opt. Express 18, 11495–11507 (2010).

  264. Heikka, T. et al. Testing a phantom eye under various signal-to-noise ratio conditions using eleven different OCT devices. Biomed. Opt. Express 11, 1306–1315 (2020).

  265. Standardisation and Performance Assessment in Biophotonics – The Report (European Commission, 2019); https://digital-strategy.ec.europa.eu/en/library/standardisation-and-performance-assessment-biophotonics-report

  266. Blumenröther, E., Melchert, O., Wollweber, M. & Roth, B. Detection, numerical simulation and approximate inversion of optoacoustic signals generated in multi-layered PVA hydrogel based tissue phantoms. Photoacoustics 4, 125–132 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  267. Samarov, D. V. et al. Algorithm validation using multicolor phantoms. Biomed. Opt. Express 3, 1300–1311 (2012).

  268. Manohar, S., Kharine, A., Hespen, J., van Steenbergen, W. & van Leeuwen, T. Photoacoustic mammography laboratory prototype: imaging of breast tissue phantoms. J. Biomed. Opt. 9, 1172–1181 (2004).

    Article  PubMed  Google Scholar 

  269. Richards-Kortum, R. & Sevick-Muraca, E. Quantitative optical spectroscopy for tissue diagnosis. Annu. Rev. Phys. Chem. 47, 555–606 (1996).

    Article  CAS  PubMed  Google Scholar 

  270. Vishwanath, K., Zhong, W., Close, M. & Mycek, M. A. Fluorescence quenching by polystyrene microspheres in UV-visible and NIR tissue-simulating phantoms. Opt. Express 14, 7776–7788 (2006).

    Article  CAS  PubMed  Google Scholar 

  271. Doyley, M. M. et al. Shear modulus estimation using parallelized partial volumetric reconstruction. IEEE Trans. Med. Imaging 23, 1404–1416 (2004).

    Article  PubMed  Google Scholar 

  272. Jiang, S. Near-infrared breast tomography calibration with optoelastic tissue simulating phantoms. J. Electron. Imaging 12, 613–620 (2003).

  273. Hussain, A., Petersen, W., Staley, J., Hondebrink, E. & Steenbergen, W. Quantitative blood oxygen saturation imaging using combined photoacoustics and acousto-optics. Opt. Lett. 41, 1720–1723 (2016).

  274. Pfefer, T. J., Chan, K. F., Hammer, D. X. & Welch, A. J. Dynamics of pulsed holmium:YAG laser photocoagulation of albumen. Phys. Med. Biol. 45, 1099–1114 (2000).

    Article  CAS  PubMed  Google Scholar 

  275. Takegami, K. et al. Polyacrylamide gel containing egg white as new model for irradiation experiments using focused ultrasound. Ultrasound Med. Biol. 30, 1419–1422 (2004).

    Article  PubMed  Google Scholar 

  276. Khokhlova, V. A. et al. Effects of nonlinear propagation, cavitation, and boiling in lesion formation by high intensity focused ultrasound in a gel phantom. J. Acoust. Soc. Am. 119, 1834–1848 (2006).

    Article  PubMed  Google Scholar 

  277. Lafon, C. et al. Gel phantom for use in high-intensity focused ultrasound dosimetry. Ultrasound Med. Biol. 31, 1383–1389 (2005).

    Article  PubMed  Google Scholar 

  278. Choi, M. J., Guntur, S. R., Lee, K. I. L., Paeng, D. G. & Coleman, A. A tissue mimicking polyacrylamide hydrogel phantom for visualizing thermal lesions generated by high intensity focused ultrasound. Ultrasound Med. Biol. 39, 439–448 (2013).

    Article  PubMed  Google Scholar 

  279. Kennedy, G. T. et al. Solid tissue simulating phantoms having absorption at 970 nm for diffuse optics. J. Biomed. Opt. 22, 076013 (2017).

    Article  PubMed Central  Google Scholar 

  280. Xie, Y. et al. Soft optically-tuneable fluorescence phantoms based on gel wax and quantum dots: a tissue surrogate for fluorescence imaging validation. Proc. SPIE 10862, 108621F (2019).

  281. Cortela, G., Benech, N., Pereira, W. C. A. & Negreira, C. Characterization of acoustical properties of a phantom for soft tissues (PVCP and graphite powder) in the range 20–45 °C. Phys. Procedia 70, 179–182 (2015).

  282. de Carvalho, I. M. et al. Polyvinyl chloride plastisol breast phantoms for ultrasound imaging. Ultrasonics 70, 98–106 (2016).

    Article  PubMed  CAS  Google Scholar 

  283. Li, W. et al. Polyvinyl chloride as a multimodal tissue-mimicking material with tuned mechanical and medical imaging properties. Med. Phys. 43, 5577–5592 (2016).

    Article  CAS  PubMed  Google Scholar 

  284. Spinelli, L. et al. Calibration of scattering and absorption properties of a liquid diffusive medium at NIR wavelengths. Time-resolved method. Opt. Express 15, 6589–6604 (2007).

  285. Madsen, E. L., Hobson, M. A., Shi, H., Varghese, T. & Frank, G. R. Stability of heterogeneous elastography phantoms made from oil dispersions in aqueous gels. Ultrasound Med. Biol. 32, 261–270 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  286. Chu, K. C. & Rutt, B. K. Polyvinyl alcohol cryogel: an ideal phantom material for MR studies of arterial flow and elasticity. Magn. Reson. Med. 37, 314–319 (1997).

    Article  CAS  PubMed  Google Scholar 

  287. Jiang, S., Liu, S. & Feng, W. PVA hydrogel properties for biomedical application. J. Mech. Behav. Biomed. Mater. 4, 1228–1233 (2011).

    Article  CAS  PubMed  Google Scholar 

  288. O’Connor, J. P. B. et al. Imaging biomarker roadmap for cancer studies. Nat. Rev. Clin. Oncol. 14, 169–186 (2017).

    Article  PubMed  CAS  Google Scholar 

  289. Waterhouse, D. Translation of optical imaging biomarkers: opportunities and challenges. Nat. Biomed. Eng. 3, 339–353 (2019).

    Article  CAS  PubMed  Google Scholar 

  290. Martelli, F. et al. Phantoms for diffuse optical imaging based on totally absorbing objects, part 2: experimental implementation. J. Biomed. Opt. 19, 076011 (2014).

    Article  PubMed  Google Scholar 

  291. Re, R. et al. Multi-channel medical device for time domain functional near infrared spectroscopy based on wavelength space multiplexing. Biomed. Opt. Express 4, 2231–2246 (2013).

Download references

Acknowledgements

We thank W. C. Vogt for helpful advice on performance testing of medical-imaging devices. L.H. was funded by the MedAccel programme of NPL, financed by the Industrial Strategy Challenge Fund of the Department for Business, Energy and Industrial Strategy. S.E.B. is funded by Cancer Research UK under grant numbers C47594/A16267 and C9545/A29580.

Author information

Authors and Affiliations

Authors

Contributions

S.E.B. and L.H. conceived the project. L.H. researched and wrote the manuscript together with H.W., A.P., T.J.P., B.W.P. and S.E.B. All authors discussed the content, reviewed and edited the manuscript, and agreed with the final version of the manuscript.

Corresponding author

Correspondence to Sarah E. Bohndiek.

Ethics declarations

Competing interests

S.E.B. has received research support from iThera Medical GmbH and PreXion Corporation, the photoacoustic imaging division of which was later acquired by CYBERDYNE Inc; both companies are vendors of photoacoustic imaging instruments. B.W.P. is financially involved as co-founder and president of DoseOptics, LLC, which develops Cherenkov imaging in radiation therapy, and QUEL Imaging, LLC, which develops fluorescence-imaging tools for surgery and photodynamic therapy. A.P. is a co-founder of PIONIRS srl, which develops time-domain tissue oximeters. The mention of commercial products, their sources or their use in connection with material reported in this Perspective is not to be construed as either an actual or implied endorsement of such products by the United States Department of Health and Human Services. This Perspective reflects the views of the authors and should not be construed to represent views or policies of the United States Food and Drug Administration.

Peer review

Peer review information

Nature Biomedical Engineering thanks Laura Mezzanotte, Eva Sevick-Muraca and the other, anonymous, reviewers(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary tables and references.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hacker, L., Wabnitz, H., Pifferi, A. et al. Criteria for the design of tissue-mimicking phantoms for the standardization of biophotonic instrumentation. Nat. Biomed. Eng 6, 541–558 (2022). https://doi.org/10.1038/s41551-022-00890-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41551-022-00890-6

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research