Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

An integrated wearable microneedle array for the continuous monitoring of multiple biomarkers in interstitial fluid


Implementations of wearable microneedle-based arrays of sensors for the monitoring of multiple biomarkers in interstitial fluid have lacked system integration and evidence of robust analytical performance. Here we report the development and testing of a fully integrated wearable array of microneedles for the wireless and continuous real-time sensing of two metabolites (lactate and glucose, or alcohol and glucose) in the interstitial fluid of volunteers performing common daily activities. The device works with a custom smartphone app for data capture and visualization, comprises reusable electronics and a disposable microneedle array, and is optimized for system integration, cost-effective fabrication via advanced micromachining, easier assembly, biocompatibility, pain-free skin penetration and enhanced sensitivity. Single-analyte and dual-analyte measurements correlated well with the corresponding gold-standard measurements in blood or breath. Further validation of the technology in large populations with concurrent validation of sensor readouts through centralized laboratory tests should determine the robustness and utility of real-time simultaneous monitoring of several biomarkers in interstitial fluid.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Illustrations of the multiplexed microneedle-based wearable sensor system and its subcomponents.
Fig. 2: Electronics and sensor architecture.
Fig. 3: In vivo performance of the single-analyte sensors.
Fig. 4: In vivo performance of the multiplexed sensors.

Similar content being viewed by others

Data availability

The main data supporting the results in this study are available within the paper and its Supplementary Information. The raw and analysed datasets generated during the study are too large to be publicly shared, yet they are available for research purposes from the corresponding authors on reasonable request. Source data are provided with this paper.

Code availability

The firmware for the electronic hardware, custom-developed and written in C, and the source code for the app, custom-developed in Swift, are available from the authors for research purposes on reasonable request.


  1. Kim, J., Campbell, A. S., de Ávila, B. E. F. & Wang, J. Wearable biosensors for healthcare monitoring. Nat. Biotechnol. 37, 389–406 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Dunn, J., Runge, R. & Snyder, M. Wearables and the medical revolution. Per. Med. 15, 429–448 (2018).

    Article  CAS  PubMed  Google Scholar 

  3. Gao, W. et al. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature 529, 509–514 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Heikenfeld, J. et al. Wearable sensors: modalities, challenges, and prospects. Lab Chip 18, 217–248 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Choi, J. et al. Bio-integrated wearable systems: a comprehensive review. Chem. Rev. 119, 5461–5533 (2019).

    Article  PubMed  Google Scholar 

  6. Koh, A. et al. A soft, wearable microfluidic device for the capture, storage, and colorimetric sensing of sweat. Sci. Transl. Med. 8, 366ra165 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Baker, L. B. et al. Skin-interfaced microfluidic system with personalized sweating rate and sweat chloride analytics for sports science applications. Sci. Adv. 6, eabe3929 (2021).

    Article  Google Scholar 

  8. Emaminejad, S. et al. Autonomous sweat extraction and analysis applied to cystic fibrosis and glucose monitoring using a fully integrated wearable platform. Proc. Natl Acad. Sci. USA 114, 4625–4630 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bandodkar, A. J. et al. Battery-free, skin-interfaced microfluidic/electronic systems for simultaneous electrochemical, colorimetric, and volumetric analysis of sweat. Sci. Adv. 5, eaav3294 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Lee, H. et al. A graphene-based electrochemical device with thermoresponsive microneedles for diabetes monitoring and therapy. Nat. Nanotechnol. 11, 566–572 (2016).

    Article  PubMed  Google Scholar 

  11. Imani, S. et al. A wearable chemical–electrophysiological hybrid biosensing system for real-time health and fitness monitoring. Nat. Commun. 7, 11650 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bandodkar, A. J. et al. Tattoo-based noninvasive glucose monitoring: a proof-of-concept study. Anal. Chem. 87, 394–398 (2015).

    Article  CAS  PubMed  Google Scholar 

  13. Lipani, L. et al. Non-invasive, transdermal, path-selective and specific glucose monitoring via a graphene-based platform. Nat. Nanotechnol. 13, 504–511 (2018).

    Article  CAS  PubMed  Google Scholar 

  14. Brothers, M. C. et al. Achievements and challenges for real-time sensing of analytes in sweat within wearable platforms. Acc. Chem. Res. 52, 297–306 (2019).

    Article  CAS  PubMed  Google Scholar 

  15. Heikenfeld, J. et al. Accessing analytes in biofluids for peripheral biochemical monitoring. Nat. Biotechnol. 37, 407–419 (2019).

    Article  CAS  PubMed  Google Scholar 

  16. Nyein, H. Y. Y. et al. Regional and correlative sweat analysis using high-throughput microfluidic sensing patches toward decoding sweat. Sci. Adv. 5, eaaw9906 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wiorek, A., Parrilla, M., Cuartero, M. & Crespo, G. A. Epidermal patch with glucose biosensor: pH and temperature correction toward more accurate sweat analysis during sport practice. Anal. Chem. 92, 10153–10161 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Fairbairn, C. E. & Kang, D. Temporal dynamics of transdermal alcohol concentration measured via new-generation wrist-worn biosensor. Alcohol. Clin. Exp. Res. 43, 2060–2069 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Samant, P. P. et al. Sampling interstitial fluid from human skin using a microneedle patch. Sci. Transl. Med. 12, eaaw0285 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Tran, B. Q. et al. Proteomic characterization of dermal interstitial fluid extracted using a novel microneedle-assisted technique. J. Proteome Res. 17, 479–485 (2018).

    Article  CAS  PubMed  Google Scholar 

  21. Teymourian, H., Tehrani, F., Mahato, K. & Wang, J. Lab under the skin: microneedle based wearable devices. Adv. Healthc. Mater. 10, 2002255 (2021).

    Article  CAS  Google Scholar 

  22. Kolluru, C., Williams, M., Chae, J. & Prausnitz, M. R. Recruitment and collection of dermal interstitial fluid using a microneedle patch. Adv. Healthc. Mater. 8, 1801262 (2019).

    Article  CAS  Google Scholar 

  23. Lee, I., Probst, D., Klonoff, D. & Sode, K. Continuous glucose monitoring systems - current status and future perspectives of the flagship technologies in biosensor research. Biosens. Bioelectron. 181, 113054 (2021).

    Article  CAS  PubMed  Google Scholar 

  24. Teymourian, H., Barfidokht, A. & Wang, J. Electrochemical glucose sensors in diabetes management: an updated review (2010–2020). Chem. Soc. Rev. 49, 7671–7709 (2020).

    Article  CAS  PubMed  Google Scholar 

  25. Top 10 Emerging Technologies of 2020 (World Economic Forum, 2020).

  26. Rawson, T. M. et al. Microneedle biosensors for real-time, minimally invasive drug monitoring of phenoxymethylpenicillin: a first-in-human evaluation in healthy volunteers. Lancet Digit. Health 1, e335–e343 (2019).

    Article  PubMed  Google Scholar 

  27. Smart, W. H. & Subramanian, K. The use of silicon microfabrication technology in painless blood glucose monitoring. Diabetes Technol. Ther. 2, 549–559 (2000).

    Article  CAS  PubMed  Google Scholar 

  28. Gao, J., Huang, W., Chen, Z., Yi, C. & Jiang, L. Simultaneous detection of glucose, uric acid and cholesterol using flexible microneedle electrode array-based biosensor and multi-channel portable electrochemical analyzer. Sens. Actuators B Chem. 287, 102–110 (2019).

    Article  CAS  Google Scholar 

  29. Teymourian, H. et al. Microneedle-based detection of ketone bodies along with glucose and lactate: toward real-time continuous interstitial fluid monitoring of diabetic ketosis and ketoacidosis. Anal. Chem. 92, 2291–2300 (2020).

    Article  CAS  PubMed  Google Scholar 

  30. Parrilla, M. et al. Wearable all-solid-state potentiometric microneedle patch for intradermal potassium detection. Anal. Chem. 91, 1578–1586 (2019).

    Article  CAS  PubMed  Google Scholar 

  31. Goud, K. Y. et al. Wearable electrochemical microneedle sensor for continuous monitoring of levodopa: toward Parkinson management. ACS Sens. 4, 2196–2204 (2019).

    Article  CAS  PubMed  Google Scholar 

  32. Ribet, F., Stemme, G. & Roxhed, N. Real-time intradermal continuous glucose monitoring using a minimally invasive microneedle-based system. Biomed. Microdevices 20, 101 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Sharma, S., Huang, Z., Rogers, M., Boutelle, M. & Cass, A. E. G. Evaluation of a minimally invasive glucose biosensor for continuous tissue monitoring. Anal. Bioanal. Chem. 408, 8427–8435 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sharma, S. et al. A pilot study in humans of microneedle sensor arrays for continuous glucose monitoring. Anal. Methods 10, 2088–2095 (2018).

    Article  CAS  Google Scholar 

  35. Dervisevic, M. et al. Transdermal electrochemical monitoring of glucose via high-density silicon microneedle array patch. Adv. Funct. Mater. 32, 2009850 (2022).

    Article  CAS  Google Scholar 

  36. Burtis, C. A. & Ashwood, E. R. Tietz Textbook of Clinical Chemistry (W.B. Saunders, 1999).

  37. Yu, G. et al. Utility of the early lactate area score as a prognostic marker for septic shock patients in the emergency department. Acute Crit. Care 34, 126–132 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Sakaguchi, K. et al. Glucose area under the curve during oral glucose tolerance test as an index of glucose intolerance. Diabetol. Int. 7, 53–58 (2016).

    Article  PubMed  Google Scholar 

  39. Vinson, D. C., Reidinger, C. & Wilcosky, T. Factors affecting the validity of a Timeline Follow-Back interview. J. Stud. Alcohol 64, 733–740 (2003).

    Article  PubMed  Google Scholar 

  40. Gibb, K. A., Yee, A. S., Johnston, C. C., Martin, S. D. & Nowak, R. M. Accuracy and usefulness of a breath alcohol analyzer. Ann. Emerg. Med. 13, 516–520 (1984).

    Article  CAS  PubMed  Google Scholar 

  41. Campbell, A. S., Kim, J. & Wang, J. Wearable electrochemical alcohol biosensors. Curr. Opin. Electrochem. 10, 126–135 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Karns-Wright, T. E. et al. Time delays in transdermal alcohol concentrations relative to breath alcohol concentrations. Alcohol Alcohol. 52, 35–41 (2017).

    Article  CAS  PubMed  Google Scholar 

  43. Sakai, J. T., Mikulich-Gilbertson, S. K., Long, R. J. & Crowley, T. J. Validity of transdermal alcohol monitoring: fixed and self-regulated dosing. Alcohol. Clin. Exp. Res. 30, 26–33 (2006).

    Article  CAS  PubMed  Google Scholar 

  44. Wolkowicz, K. L. et al. A review of biomarkers in the context of type 1 diabetes: biological sensing for enhanced glucose control. Bioeng. Transl. Med. 6, e10201 (2021).

    Article  CAS  PubMed  Google Scholar 

  45. Breton, M. D. et al. Addingheart rate signal to a control-to-range artificial pancreas system improves the protection against hypoglycemia during exercise in type 1 diabetes. Diabetes Technol. Ther. 16, 506–511 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Peyser, T., Dassau, E., Breton, M. & Skyler, J. S. The artificial pancreas: current status and future prospects in the management of diabetes. Ann. N. Y. Acad. Sci. 1311, 102–123 (2014).

    Article  CAS  PubMed  Google Scholar 

  47. Koppes, L. L. J., Dekker, J. M., Hendriks, H. F. J., Bouter, L. M. & Heine, R. J. Moderate alcohol consumption lowers the risk of type 2 diabetes. Diabetes Care 28, 719–725 (2005).

    Article  PubMed  Google Scholar 

  48. Jones, T. E. et al. Plasma lactate as a marker of metabolic health: implications of elevated lactate for impairment of aerobic metabolism in the metabolic syndrome. Surgery 166, 861–866 (2019).

    Article  PubMed  Google Scholar 

  49. Wolf, A. et al. Evaluation of continuous lactate monitoring systems within a heparinized in vivo porcine model intravenously and subcutaneously. Biosensors 8, 122 (2018).

    Article  CAS  PubMed Central  Google Scholar 

  50. Elflein, J. Statista. Diabetes - Statistics & Facts (2021);

  51. Jung, K. A Wearable Alcohol Biosensor (National Institute on Alcohol Abuse and Alcoholism,); (accessed November 15, 2021)

Download references


This work is supported by the Center for Wearable Sensors (CWS) at the University of California San Diego and the NIH National Institute of Neurological Disorders and Stroke (Grant Number R21 NS114764 - 01A1). We thank W. Shipley for his support in mechanical characterization of this study.

Author information

Authors and Affiliations



F.T., H.T., B.W. and J.K. contributed equally to this work. F.T., H.T., B.W. and J.K. conceived the original project, designed and performed experiments, analysed data, and participated in the figure design and writing of the manuscript. R.P. contributed to the app design and development; A.F., R.A., P.W., N.H. and Z.P. performed the integrated device and sensor fabrications; H.H.-T. contributed to the mechanical stability experiments; C.B. contributed to the electronics design and development; F.Z. and Z.L. performed the cytotoxicity and biocompatibility studies; K.M., A.B. and L.Y. performed the sensor preparations and characterizations. J.W. and P.P.M. conceived the original project, designed the experiments, analysed data, participated in the figure design and manuscript writing, and provided guidance to the project.

Corresponding authors

Correspondence to Patrick P. Mercier or Joseph Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Biomedical Engineering thanks Pawan Jolly, Nicolas Voelcker and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary figures, tables and video captions.

Reporting Summary

Supplementary Video 1

Wearable device assembly and its placement on the arm of a participant.

Supplementary Video 2

Demonstration of the sensor app.

Source data

SD for Figs. 3,4

Source data for Figs. 3 and 4.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tehrani, F., Teymourian, H., Wuerstle, B. et al. An integrated wearable microneedle array for the continuous monitoring of multiple biomarkers in interstitial fluid. Nat. Biomed. Eng 6, 1214–1224 (2022).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing