Abstract
The functions of cilia—antenna-like organelles associated with a spectrum of disease states—are poorly understood, particularly in human cells. Here we show that human pluripotent stem cells (hPSCs) edited via CRISPR to knock out the kinesin-2 subunits KIF3A or KIF3B can be used to model ciliopathy phenotypes and to reveal ciliary functions at the tissue scale. KIF3A–/– and KIF3B–/– hPSCs lacked cilia, yet remained robustly self-renewing and pluripotent. Tissues and organoids derived from these hPSCs displayed phenotypes that recapitulated defective neurogenesis and nephrogenesis, polycystic kidney disease (PKD) and other features of the ciliopathy spectrum. We also show that human cilia mediate a critical switch in hedgehog signalling during organoid differentiation, and that they constitutively release extracellular vesicles containing signalling molecules associated with ciliopathy phenotypes. The capacity of KIF3A–/– and KIF3B–/– hPSCs to reveal endogenous mechanisms underlying complex ciliary phenotypes may facilitate the discovery of candidate therapeutics.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
HIF-1α promotes kidney organoid vascularization and applications in disease modeling
Stem Cell Research & Therapy Open Access 19 November 2023
-
Tau tubulin kinase 1 and 2 regulate ciliogenesis and human pluripotent stem cells–derived neural rosettes
Scientific Reports Open Access 09 August 2023
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$99.00 per year
only $8.25 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout








Data availability
The main data supporting the results in this study are available within the paper and its Supplementary Information. Complete RNA-seq data are available from the NCBI GEO repository under the accession code GSE196807. The raw and analysed datasets generated during the study are too large and complex to be publicly shared (numerous cell lines, replicates, images, blots and experiments, maintained and analysed in specialized file formats and with unique identifiers), yet they are available for research purposes from the corresponding author on reasonable request. Source data are provided with this paper.
Code availability
Cellprofiler and RNA analysis pipelines are available on request from the corresponding author.
Change history
24 May 2022
A Correction to this paper has been published: https://doi.org/10.1038/s41551-022-00901-6
References
Sedar, A. W. & Porter, K. R. The fine structure of cortical components of Paramecium multimicronucleatum. J. Biophys. Biochem Cytol. 1, 583–604 (1955).
Sorokin, S. P. Reconstructions of centriole formation and ciliogenesis in mammalian lungs. J. Cell Sci. 3, 207–230 (1968).
McGrath, J., Somlo, S., Makova, S., Tian, X. & Brueckner, M. Two populations of node monocilia initiate left-right asymmetry in the mouse. Cell 114, 61–73 (2003).
Kozminski, K. G., Johnson, K. A., Forscher, P. & Rosenbaum, J. L. A motility in the eukaryotic flagellum unrelated to flagellar beating. Proc. Natl Acad. Sci. USA 90, 5519–5523 (1993).
Orozco, J. T. et al. Movement of motor and cargo along cilia. Nature 398, 674 (1999).
He, M., Agbu, S. & Anderson, K. V. Microtubule motors drive hedgehog signaling in primary cilia. Trends Cell Biol. 27, 110–125 (2017).
Otto, E. A. et al. Mutations in invs encoding inversin cause nephronophthisis type 2, linking renal cystic disease to the function of primary cilia and left-right axis determination. Nat. Genet. 34, 413–420 (2003).
Nachury, M. V. et al. A core complex of bbs proteins cooperates with the gtpase rab8 to promote ciliary membrane biogenesis. Cell 129, 1201–1213 (2007).
Ansley, S. J. et al. Basal body dysfunction is a likely cause of pleiotropic bardet-biedl syndrome. Nature 425, 628–633 (2003).
Kim, S. et al. Nde1-mediated inhibition of ciliogenesis affects cell cycle re-entry. Nat. Cell Biol. 13, 351–360 (2011).
Rash, J. E., Shay, J. W. & Biesele, J. J. Cilia in cardiac differentiation. J. Ultrastruct. Res. 29, 470–484 (1969).
Schraml, P. et al. Sporadic clear cell renal cell carcinoma but not the papillary type is characterized by severely reduced frequency of primary cilia. Mod. Pathol. 22, 31–36 (2009).
Wong, S. Y. et al. Primary cilia can both mediate and suppress hedgehog pathway-dependent tumorigenesis. Nat. Med. 15, 1055–1061 (2009).
Han, Y. G. et al. Dual and opposing roles of primary cilia in medulloblastoma development. Nat. Med. 15, 1062–1065 (2009).
Marszalek, J. R., Ruiz-Lozano, P., Roberts, E., Chien, K. R. & Goldstein, L. S. Situs inversus and embryonic ciliary morphogenesis defects in mouse mutants lacking the kif3a subunit of kinesin-ii. Proc. Natl Acad. Sci. USA 96, 5043–5048 (1999).
Nonaka, S. et al. Randomization of left-right asymmetry due to loss of nodal cilia generating leftward flow of extraembryonic fluid in mice lacking kif3b motor protein. Cell 95, 829–837 (1998).
Murcia, N. S. et al. The oak ridge polycystic kidney (orpk) disease gene is required for left-right axis determination. Development 127, 2347–2355 (2000).
Lin, F. et al. Kidney-specific inactivation of the kif3a subunit of kinesin-ii inhibits renal ciliogenesis and produces polycystic kidney disease. Proc. Natl Acad. Sci. USA 100, 5286–5291 (2003).
Chi, L. et al. Kif3a controls murine nephron number via gli3 repressor, cell survival, and gene expression in a lineage-specific manner. PLoS ONE 8, e65448 (2013).
Marszalek, J. R. et al. Genetic evidence for selective transport of opsin and arrestin by kinesin-ii in mammalian photoreceptors. Cell 102, 175–187 (2000).
Moyer, J. H. et al. Candidate gene associated with a mutation causing recessive polycystic kidney disease in mice. Science 264, 1329–1333 (1994).
Pazour, G. J. et al. The intraflagellar transport protein, ift88, is essential for vertebrate photoreceptor assembly and maintenance. J. Cell Biol. 157, 103–113 (2002).
Tammachote, R. et al. Ciliary and centrosomal defects associated with mutation and depletion of the meckel syndrome genes mks1 and mks3. Hum. Mol. Genet 18, 3311–3323 (2009).
Frank, V. et al. Mutations in nek8 link multiple organ dysplasia with altered hippo signalling and increased c-myc expression. Hum. Mol. Genet 22, 2177–2185 (2013).
Thomson, J. A. et al. Embryonic stem cell lines derived from human blastocysts. Science 282, 1145–1147 (1998).
Takahashi, K. et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131, 861–872 (2007).
Kiprilov, E. N. et al. Human embryonic stem cells in culture possess primary cilia with hedgehog signaling machinery. J. Cell Biol. 180, 897–904 (2008).
Freedman, B. S. et al. Reduced ciliary polycystin-2 in induced pluripotent stem cells from polycystic kidney disease patients with pkd1 mutations. J. Am. Soc. Nephrol. 24, 1571–1586 (2013).
Barabino, A. et al. Deregulation of neuro-developmental genes and primary cilium cytoskeleton anomalies in iPSC retinal sheets from human syndromic ciliopathies. Stem Cell Rep. 14, 357–373 (2020).
Jinek, M. et al. A programmable dual-rna-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816–821 (2012).
Mali, P. et al. RNA-guided human genome engineering via cas9. Science 339, 823–826 (2013).
Freedman, B. S. et al. Modelling kidney disease with CRISPR-mutant kidney organoids derived from human pluripotent epiblast spheroids. Nat. Commun. 6, 8715 (2015).
Davidson, K. C. et al. Wnt/beta-catenin signaling promotes differentiation, not self-renewal, of human embryonic stem cells and is repressed by oct4. Proc. Natl Acad. Sci. USA 109, 4485–4490 (2012).
Lam, A. Q. et al. Rapid and efficient differentiation of human pluripotent stem cells into intermediate mesoderm that forms tubules expressing kidney proximal tubular markers. J. Am. Soc. Nephrol. 25, 1211–1225 (2014).
Sumi, T., Tsuneyoshi, N., Nakatsuji, N. & Suemori, H. Defining early lineage specification of human embryonic stem cells by the orchestrated balance of canonical wnt/beta-catenin, activin/nodal and bmp signaling. Development 135, 2969–2979 (2008).
Cantagrel, V. et al. Mutations in the cilia gene arl13b lead to the classical form of joubert syndrome. Am. J. Hum. Genet. 83, 170–179 (2008).
Higginbotham, H. et al. Arl13b-regulated cilia activities are essential for polarized radial glial scaffold formation. Nat. Neurosci. 16, 1000–1007 (2013).
Ma, M., Tian, X., Igarashi, P., Pazour, G. J. & Somlo, S. Loss of cilia suppresses cyst growth in genetic models of autosomal dominant polycystic kidney disease. Nat. Genet. 45, 1004–1012 (2013).
Taguchi, A. et al. Redefining the in vivo origin of metanephric nephron progenitors enables generation of complex kidney structures from pluripotent stem cells. Cell Stem Cell 14, 53–67 (2014).
Takasato, M. et al. Kidney organoids from human ips cells contain multiple lineages and model human nephrogenesis. Nature 526, 564–568 (2015).
Wang, B., Fallon, J. F. & Beachy, P. A. Hedgehog-regulated processing of gli3 produces an anterior/posterior repressor gradient in the developing vertebrate limb. Cell 100, 423–434 (2000).
Humke, E. W., Dorn, K. V., Milenkovic, L., Scott, M. P. & Rohatgi, R. The output of hedgehog signaling is controlled by the dynamic association between Suppressor of Fused and the Gli proteins. Genes Dev. 24, 670–682 (2010).
Kim, Y. K. et al. Gene-edited human kidney organoids reveal mechanisms of disease in podocyte development. Stem Cells 35, 2366–2378 (2017).
Cruz, N. M. et al. Organoid cystogenesis reveals a critical role of microenvironment in human polycystic kidney disease. Nat. Mater. 16, 1112–1119 (2017).
Harder, J. L. et al. Organoid single-cell profiling identifies a transcriptional signature of glomerular disease. JCI Insight 4, e122697 (2019).
Goodrich, L. V., Johnson, R. L., Milenkovic, L., McMahon, J. A. & Scott, M. P. Conservation of the hedgehog/patched signaling pathway from flies to mice: induction of a mouse patched gene by hedgehog. Genes Dev. 10, 301–312 (1996).
Marigo, V. & Tabin, C. J. Regulation of patched by sonic hedgehog in the developing neural tube. Proc. Natl Acad. Sci. USA 93, 9346–9351 (1996).
Dessaud, E. et al. Interpretation of the sonic hedgehog morphogen gradient by a temporal adaptation mechanism. Nature 450, 717–720 (2007).
Huangfu, D. et al. Hedgehog signalling in the mouse requires intraflagellar transport proteins. Nature 426, 83–87 (2003).
Corbit, K. C. et al. Vertebrate smoothened functions at the primary cilium. Nature 437, 1018–1021 (2005).
Pazour, G. J. et al. Chlamydomonas ift88 and its mouse homologue, polycystic kidney disease gene tg737, are required for assembly of cilia and flagella. J. Cell Biol. 151, 709–718 (2000).
Yoder, B. K., Hou, X. & Guay-Woodford, L. M. The polycystic kidney disease proteins, polycystin-1, polycystin-2, polaris, and cystin, are co-localized in renal cilia. J. Am. Soc. Nephrol. 13, 2508–2516 (2002).
Phua, S. C. et al. Dynamic remodeling of membrane composition drives cell cycle through primary cilia excision. Cell 168, 264–279 e215 (2017).
Nager, A. R. et al. An actin network dispatches ciliary gpcrs into extracellular vesicles to modulate signaling. Cell 168, 252–263.e14 (2017).
Scholey, J. M. Kinesin-2: a family of heterotrimeric and homodimeric motors with diverse intracellular transport functions. Annu. Rev. Cell Dev. Biol. 29, 443–469 (2013).
Cogne, B. et al. Mutations in the kinesin-2 motor kif3b cause an autosomal-dominant ciliopathy. Am. J. Hum. Genet. 106, 893–904 (2020).
Glass, N. R. et al. Multivariate patterning of human pluripotent cells under perfusion reveals critical roles of induced paracrine factors in kidney organoid development. Sci. Adv. 6, eaaw2746 (2020).
Wu, H. et al. Comparative analysis and refinement of human psc-derived kidney organoid differentiation with single-cell transcriptomics. Cell Stem Cell 23, 869–881.e8 (2018).
Subramanian, A. et al. Single cell census of human kidney organoids shows reproducibility and diminished off-target cells after transplantation. Nat. Commun. 10, 5462 (2019).
D’Cruz, R., Stronks, K., Rowan, C. J. & Rosenblum, N. D. Lineage-specific roles of hedgehog-gli signaling during mammalian kidney development. Pediatr. Nephrol. 35, 725–731 (2020).
Mak, S. K. et al. Small molecules greatly improve conversion of human-induced pluripotent stem cells to the neuronal lineage. Stem Cells Int. 2012, 140427 (2012).
Kriks, S. et al. Dopamine neurons derived from human ES cells efficiently engraft in animal models of Parkinson’s disease. Nature 480, 547–551 (2011).
Morizane, R. et al. Nephron organoids derived from human pluripotent stem cells model kidney development and injury. Nat. Biotechnol. 33, 1193–1200 (2015).
Barr, M. M. & Sternberg, P. W. A polycystic kidney-disease gene homologue required for male mating behaviour in C. elegans. Nature 401, 386–389 (1999).
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).
Acknowledgements
We thank S. Shankland, J. Himmelfarb, H. Ruohola-Baker, C. Murry, D. Beier, D. Doherty, J. Scott and M. Bothwell (UW) for helpful discussions; C. Vishy, S. Qi and members of the Freedman and Fu laboratories for assistance with experiments. Studies were supported by an Institute for Stem Cell and Regenerative Medicine Innovation Pilot Award; Lara Nowak-Macklin Research Fund; NIH Awards R01DK117914 (B.S.F.), UG3TR003288 (J.H. and B.S.F.), UG3TR002158 (J.H.), UC2DK126006 (S.S. and B.S.F.), K25HL135432 (H.F.) and U01DK127553 (B.S.F.); the Northwest Kidney Centers; and start-up funds from the University of Washington. Figure 8a was created with Biorender.com.
Author information
Authors and Affiliations
Contributions
N.M.C., R.R., J.L.M.-F., C.T., H.F. and B.S.F. generated and characterized kinesin-2 knockout hPSCs and derived tissues. N.M.C., R.R., H.F. and B.S.F. designed the experiments. B.S.F. wrote the manuscript with revisions from all authors.
Corresponding author
Ethics declarations
Competing interests
B.S.F. is an inventor on patents and patent applications for kidney organoid generation and disease modelling (US10815460B2, United States, 2020-10-27; US2021290632A1, United States, 2021-09-23). The other authors declare no competing interests.
Peer review
Peer review information
Nature Biomedical Engineering thanks Maxence Nachury and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Extended data
Extended Data Fig. 1 Kinesin-2 is dispensable for hPSC morphology and epiblast spheroid formation.
a, Confocal immunofluorescence images of acetylated a-tubulin (AcTub) and DNA in representative fields of undifferentiated control and KIF3A-/- hPSCs. Orthogonal (top) and volume (bottom) views are shown. b, Phase contrast images of representative control and KIF3A-/- epiblast spheroids. c, Quantification (mean ± s.e.m.) of lumen area as percentage of the spheroid area. d-e, Confocal sections showing immunofluorescence for pluripotency, polarity, and ciliary markers in spheroids. A midbody is seen in a KIF3A-/- spheroid (arrow), but not cilia. Scale bars, 25 µm.
Extended Data Fig. 2 Kinesin-2 knockout hPSCs establish a renewable source of diverse human cell types lacking cilia.
a, Neuroepithelial (AcTub), endodermal (α-fetoprotein, AFP), and mesodermal (smooth muscle α-actin, SMA) lineages in EBs. Zoom shows magnification of dashed boxed area with AcTub and DNA intensities increased for clarity. Scale bar, 50 µm. b, Images and c, quantification of pigmented EBs. Scale bar, 500 µm. Knockout (KO) represent pooled data from both KIF3A-/- and KIF3B-/- EBs (mean ± s.e.m., n ≥ 9 independent biological replicates per condition from a total of 8 distinct cell lines). d, Representative images and e, quantification of OCT4 and BRY immunofluorescence intensities in hPSCs after treatment with increasing doses of CHIR99021 in mTeSR1 for 48 hours. Each dot represents a single cell. Data are pooled from three separate experiments. bpp, bits per pixel (raw intensity). Scale bars, 50 µm.
Extended Data Fig. 3 Kinesin-2 knockout tumors exhibit differentiation defects.
a, Representative photographs of whole, unfixed growths retrieved from immunodeficient animals at the same time point. Growths are sliced through their centers to reveal the internal surface. b, A second set of tumors, photographed intact after retrieval from the animals. c-e, Quantification of tissue subtypes within teratomas as a fraction of total area (mean ± s.e.m., n ≥ 5 independent biological replicates per condition from a total of 14 distinct cell lines). f, Ratio of area occupied by SOX2+ cells in TUJ1+ patches of teratoma sections (mean ± s.e.m., n ≥ 4 independent biological replicates per condition from a total of 6 distinct cell lines; *, p = 0.0391).
Extended Data Fig. 4 Hedgehog switching is defective in kinesin-2 knockout organoid cultures.
a, Quantification of SOX2 + area per 96-well of kidney organoid cultures (mean ± s.e.m., n ≥ 3 independent biological replicates per condition from a total of 11 distinct cell lines). b, Wide-field immunofluorescence images of kidney organoid differentiations in a representative 96-well plate. The three left wells contain control cell lines and the three right wells contain KIF3A-/- cell lines. Zoom of boxed regions is shown below each of the wells. Each kidney organoid contains distal tubular (ECAD), proximal tubular (LTL), and podocyte (NPHS1) epithelial cells. Arrow indicates a cluster of ECAD+ cells without proximal tubule and podocyte segments. c, Heatmap of the expression level of genes differentially expressed as a combined function of KIF3A or KIF3B loss in hPSCs (FDR < 0.2). Gene names and labels at right refer to genes associated with enriched gene ontology processes as a function of KIF3B-/- loss in hPSCs in Fig. 4a. d, Representative GLI3 immunoblot of control, KIF3A-/-, and KIF3B-/- undifferentiated hPSCs, with e, band intensity quantification (mean ± s.e.m., n ≥ 3 independent biological replicates per condition from a total of 11 distinct cell lines). f, Band intensity quantification of the blot shown in Fig. 4e, comparing cultures on day 0 to day 18. g, Immunoblot of GLI3 in kidney organoid cultures on days 7, 11, and 18 of differentiation. 3A and 3B indicate KIF3A-/- and KIF3B-/- mutants, respectively. h, Schematic of organoid microdissection (left), with immunoblot of GLI3 on day 18 of differentiation in lysates of whole wells (w), microdissected organoids (o), or remnant stroma (s). i, GLI1 immunoblot of the samples shown in Fig. 4e, comparing cultures on day 0 to day 18.
Supplementary information
Supplementary Information
Supplementary figures and tables.
Supplementary Video 1
KIF3B–/– cyst grown for several months in suspension culture and transferred into a 250 ml flask.
Supplementary Video 2
Volumetric reconstruction of the lower portion of a cyst derived from KIF3A–/– kidney organoids, showing proximal tubules (LTL, green) and dividing cells (pH3, red), with all nuclei labelled in blue (DAPI).
Source data
Source Data for Fig. 1
Unprocessed western blots.
Source Data for Fig. 4
Unprocessed western blots.
Source Data for Fig. 5
Unprocessed western blots.
Source Data for Fig. 7
Unprocessed western blots.
Source Data for Extended Data Fig. 4
Unprocessed western blots.
Rights and permissions
About this article
Cite this article
Cruz, N.M., Reddy, R., McFaline-Figueroa, J.L. et al. Modelling ciliopathy phenotypes in human tissues derived from pluripotent stem cells with genetically ablated cilia. Nat. Biomed. Eng 6, 463–475 (2022). https://doi.org/10.1038/s41551-022-00880-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41551-022-00880-8
This article is cited by
-
HIF-1α promotes kidney organoid vascularization and applications in disease modeling
Stem Cell Research & Therapy (2023)
-
Tau tubulin kinase 1 and 2 regulate ciliogenesis and human pluripotent stem cells–derived neural rosettes
Scientific Reports (2023)
-
Context-specific regulation of extracellular vesicle biogenesis and cargo selection
Nature Reviews Molecular Cell Biology (2023)