Ultrasound pulses have been used to modulate a liver–brain autonomic nerve pathway to prevent or reverse the onset of hyperglycaemia in models of diabetes in several species. The ion channel TRPA1 was shown to be essential in transducing the ultrasound stimuli within the metabolic control circuit.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Functional nanoparticle-enabled non-genetic neuromodulation
Journal of Nanobiotechnology Open Access 07 September 2023
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 /Â 30Â days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$99.00 per year
only $8.25 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout

References
Tyler, W. J. et al. Remote excitation of neuronal circuits using low-intensity, low frequency ultrasound. PLoS ONE 3, e3511 (2008). Reports initial evidence that ultrasound could elicit nerve activity in brain tissue.
Cotero, V. et al. Non-invasive sub-organ ultrasound stimulation for targeted neuromodulation. Nat. Commun. 10, 952 (2019). Study showing that ultrasound pulses elicit specific physiological responses from anatomical targets or cultures containing peripheral nerves.
Gigltiotti, J. C. et al. Ultrasound prevents renal ischemia-reperfusion injury by stimulating the splenic cholinergic anti-inflammatory pathway. J. Am. Soc. Nephrol. 24, 1451–1460 (2013). Paper showing that whole-organ ultrasound stimulation affects organ-specific physiological functions.
Zachs, D. P. et al. Noninvasive ultrasound stimulation of the spleen to treat inflammatory arthritis. Nat. Commun. 10, 951 (2019). This paper also shows that whole-organ ultrasound stimulation affects organ-specific functions in a disease model.
Yoo, S. et al. Focused ultrasound excites cortical neurons via mechanosensitive calcium accumulation and ion channel amplification. Nat. Commun. 13, 493 (2022). Study confirming the effect of ultrasound on cultured neurons, and the importance of mechanosensitive calcium channels.
Duque, M. et al. Sonogenetic control of mammalian cells using exogenous transient receptor potential A1 channels. Nat. Commun. 13, 600 (2022). Study demonstrating that TRPA1 expression confers ultrasound sensitivity to mammalian cells.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
This is a summary of: Cotero, V. et al. Stimulation of the hepatoportal nerve plexus with focused ultrasound restores glucose homoeostasis in diabetic mice, rats and swine. Nat. Biomed. Eng. https://doi.org/10.1038/s41551-022-00870-w (2022).
Rights and permissions
About this article
Cite this article
Therapeutic ultrasound modulates autonomic nerve pathways in diabetes. Nat. Biomed. Eng 6, 681–682 (2022). https://doi.org/10.1038/s41551-022-00878-2
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41551-022-00878-2
This article is cited by
-
Functional nanoparticle-enabled non-genetic neuromodulation
Journal of Nanobiotechnology (2023)