Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Reversal of RNA toxicity in myotonic dystrophy via a decoy RNA-binding protein with high affinity for expanded CUG repeats

Abstract

Myotonic dystrophy type 1 (DM1) is an RNA-dominant disease whose pathogenesis stems from the functional loss of muscleblind-like RNA-binding proteins (RBPs), which causes the formation of alternative-splicing defects. The loss of functional muscleblind-like protein 1 (MBNL1) results from its nuclear sequestration by mutant transcripts containing pathogenic expanded CUG repeats (CUGexp). Here we show that an RBP engineered to act as a decoy for CUGexp reverses the toxicity of the mutant transcripts. In vitro, the binding of the RBP decoy to CUGexp in immortalized muscle cells derived from a patient with DM1 released sequestered endogenous MBNL1 from nuclear RNA foci, restored MBNL1 activity, and corrected the transcriptomic signature of DM1. In mice with DM1, the local or systemic delivery of the RBP decoy via an adeno-associated virus into the animals’ skeletal muscle led to the long-lasting correction of the splicing defects and to ameliorated disease pathology. Our findings support the development of decoy RBPs with high binding affinities for expanded RNA repeats as a therapeutic strategy for myotonic dystrophies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: MBNL1Δ corrects alternative-splicing defects and overall transcriptome of DM1 patient-derived muscle cells.
Fig. 2: MBNL1∆ binding to CUGexp displaces endogenous MBNL1 from RNA foci and reduces CUGexp-RNA levels in DM1 patient-derived muscle cells.
Fig. 3: MBNL1∆ forms less stable CUGexp-RNA complexes than MBNL1.
Fig. 4: Intramuscular expression of MBNL1Δ using AAV vectors has no deleterious effect in WT mice.
Fig. 5: Intramuscular injection of AAV-MBNL1∆ corrects splicing defects and myotonia in HSALR mice.
Fig. 6: Long-term correction of DM1-associated defects in MBNL1∆-treated HSALR mice.
Fig. 7: Systemic treatment with AAV-MBNL1Δ improves myotonia, splicing defects and decreases CUGexp-RNA levels in HSALR mice.

Similar content being viewed by others

Data availability

The main data supporting the results in this study are available within the paper and its Supplementary Information. NGS data are available at the GEO repository (GSE189516). The raw and analysed datasets generated during the study are available for research purposes from the corresponding authors on reasonable request. Source data are provided with this paper.

References

  1. Lukong, K. E., Chang, K., Khandjian, E. W. & Richard, S. RNA-binding proteins in human genetic disease. Trends Genet. 24, 416–425 (2008).

    Article  CAS  PubMed  Google Scholar 

  2. Lin, X. et al. Failure of MBNL1-dependent post-natal splicing transitions in myotonic dystrophy. Hum. Mol. Genet. 15, 2087–2097 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Kanadia, R. N. et al. A muscleblind knockout model for myotonic dystrophy. Science 302, 1978–1980 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. Brook, J. D. et al. Molecular basis of myotonic dystrophy: expansion of a trinucleotide (CTG) repeat at the 3’ end of a transcript encoding a protein kinase family member. Cell 69, 385 (1992).

    CAS  PubMed  Google Scholar 

  5. Taneja, K. L., McCurrach, M., Schalling, M., Housman, D. & Singer, R. H. Foci of trinucleotide repeat transcripts in nuclei of myotonic dystrophy cells and tissues. J. Cell Biol. 128, 995–1002 (1995).

    Article  CAS  PubMed  Google Scholar 

  6. Miller, J. W. et al. Recruitment of human muscleblind proteins to (CUG)(n) expansions associated with myotonic dystrophy. EMBO J. 19, 4439–4448 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lee, K.-Y. et al. Compound loss of muscleblind-like function in myotonic dystrophy. EMBO Mol. Med. 5, 1887–1900 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Nakamori, M. et al. Splicing biomarkers of disease severity in myotonic dystrophy. Ann. Neurol. 74, 862–872 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Mankodi, A. et al. Expanded CUG repeats trigger aberrant splicing of ClC-1 chloride channel pre-mRNA and hyperexcitability of skeletal muscle in myotonic dystrophy. Mol. Cell 10, 35–44 (2002).

    Article  CAS  PubMed  Google Scholar 

  10. Savkur, R. S., Philips, A. V. & Cooper, T. A. Aberrant regulation of insulin receptor alternative splicing is associated with insulin resistance in myotonic dystrophy. Nat. Genet. 29, 40–47 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. Fugier, C. et al. Misregulated alternative splicing of BIN1 is associated with T tubule alterations and muscle weakness in myotonic dystrophy. Nat. Med. 17, 720–725 (2011).

    Article  CAS  PubMed  Google Scholar 

  12. Rau, F. et al. Abnormal splicing switch of DMD’s penultimate exon compromises muscle fibre maintenance in myotonic dystrophy. Nat. Commun. 6, 7205 (2015).

    Article  PubMed  Google Scholar 

  13. Freyermuth, F. et al. Splicing misregulation of SCN5A contributes to cardiac-conduction delay and heart arrhythmia in myotonic dystrophy. Nat. Commun. 7, 11067 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wheeler, T. M. et al. Reversal of RNA dominance by displacement of protein sequestered on triplet repeat RNA. Science 325, 336–339 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wheeler, T. M. et al. Targeting nuclear RNA for in vivo correction of myotonic dystrophy. Nature 488, 111–115 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Klein, A. F. et al. Peptide-conjugated oligonucleotides evoke long-lasting myotonic dystrophy correction in patient-derived cells and mice. J. Clin. Invest. 129, 4739–4744 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Warf, M. B., Nakamori, M., Matthys, C. M., Thornton, C. A. & Berglund, J. A. Pentamidine reverses the splicing defects associated with myotonic dystrophy. Proc. Natl Acad. Sci. USA 106, 18551–18556 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. García-López, A., Llamusí, B., Orzáez, M., Pérez-Payá, E. & Artero, R. D. In vivo discovery of a peptide that prevents CUG-RNA hairpin formation and reverses RNA toxicity in myotonic dystrophy models. Proc. Natl Acad. Sci. USA 108, 11866–11871 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Angelbello, A. J. et al. Precise small-molecule cleavage of an r(CUG) repeat expansion in a myotonic dystrophy mouse model. Proc. Natl Acad. Sci. USA 116, 7799–7804 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Nakamori, M., Taylor, K., Mochizuki, H., Sobczak, K. & Takahashi, M. P. Oral administration of erythromycin decreases RNA toxicity in myotonic dystrophy. Ann. Clin. Transl. Neurol. 3, 42–54 (2016).

    Article  CAS  PubMed  Google Scholar 

  21. Batra, R. et al. Elimination of toxic microsatellite repeat expansion RNA by RNA-targeting Cas9. Cell 170, 899–912.e10 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Batra, R. et al. The sustained expression of Cas9 targeting toxic RNAs reverses disease phenotypes in mouse models of myotonic dystrophy type 1. Nat. Biomed. Eng. 5, 157–168 (2021).

    Article  CAS  PubMed  Google Scholar 

  23. Zhang, N., Bewick, B., Xia, G., Furling, D. & Ashizawa, T. A CRISPR-Cas13a based strategy that tracks and degrades toxic RNA in myotonic dystrophy type 1. Front. Genet. 11, 594576 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kanadia, R. N. et al. Reversal of RNA missplicing and myotonia after muscleblind overexpression in a mouse poly(CUG) model for myotonic dystrophy. Proc. Natl Acad. Sci. USA 103, 11748–11753 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hale, M. A. et al. An engineered RNA binding protein with improved splicing regulation. Nucleic Acids Res. 46, 3152–3168 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Konieczny, P., Stepniak-Konieczna, E. & Sobczak, K. MBNL proteins and their target RNAs, interaction and splicing regulation. Nucleic Acids Res. 42, 10873–10887 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kanadia, R. N. et al. Developmental expression of mouse muscleblind genes Mbnl1, Mbnl2 and Mbnl3. Gene Expr. Patterns 3, 459–462 (2003).

    Article  CAS  PubMed  Google Scholar 

  28. Fardaei, M. et al. Three proteins, MBNL, MBLL and MBXL, co-localize in vivo with nuclear foci of expanded-repeat transcripts in DM1 and DM2 cells. Hum. Mol. Genet. 11, 805–814 (2002).

    Article  CAS  PubMed  Google Scholar 

  29. Chen, G. et al. Altered levels of the splicing factor muscleblind modifies cerebral cortical function in mouse models of myotonic dystrophy. Neurobiol. Dis. 112, 35–48 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chamberlain, C. M. & Ranum, L. P. W. Mouse model of muscleblind-like 1 overexpression: skeletal muscle effects and therapeutic promise. Hum. Mol. Genet. 21, 4645–4654 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Yadava, R. S. et al. MBNL1 overexpression is not sufficient to rescue the phenotypes in a mouse model of RNA toxicity. Hum. Mol. Genet. 28, 2330–2338 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Shukla, T. N., Song, J. & Campbell, Z. T. Molecular entrapment by RNA: an emerging tool for disrupting protein-RNA interactions in vivo. RNA Biol. 17, 417–424 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Tran, H. et al. Analysis of exonic regions involved in nuclear localization, splicing activity, and dimerization of Muscleblind-like-1 isoforms. J. Biol. Chem. 286, 16435–16446 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Grammatikakis, I., Goo, Y.-H., Echeverria, G. V. & Cooper, T. A. Identification of MBNL1 and MBNL3 domains required for splicing activation and repression. Nucleic Acids Res. 39, 2769–2780 (2011).

    Article  CAS  PubMed  Google Scholar 

  35. Warf, M. B. & Berglund, J. A. MBNL binds similar RNA structures in the CUG repeats of myotonic dystrophy and its pre-mRNA substrate cardiac troponin T. RNA 13, 2238–2251 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wagner, S. D. et al. Dose-dependent regulation of alternative splicing by MBNL proteins reveals biomarkers for myotonic dystrophy. PLoS Genet. 12, e1006316 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Arandel, L. et al. Immortalized human myotonic dystrophy muscle cell lines to assess therapeutic compounds. Dis. Model. Mech. 10, 487–497 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Jain, A. & Vale, R. D. RNA phase transitions in repeat expansion disorders. Nature 546, 243–247 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zincarelli, C., Soltys, S., Rengo, G. & Rabinowitz, J. E. Analysis of AAV serotypes 1–9 mediated gene expression and tropism in mice after systemic injection. Mol. Ther. 16, 1073–1080 (2008).

    Article  CAS  PubMed  Google Scholar 

  40. Tanner, M. K., Tang, Z. & Thornton, C. A. Targeted splice sequencing reveals RNA toxicity and therapeutic response in myotonic dystrophy. Nucleic Acids Res. 49, 2240–2254 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wang, E. T. et al. Transcriptome-wide regulation of pre-mRNA splicing and mRNA localization by muscleblind proteins. Cell 150, 710–724 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wheeler, T. M., Lueck, J. D., Swanson, M. S., Dirksen, R. T. & Thornton, C. A. Correction of ClC-1 splicing eliminates chloride channelopathy and myotonia in mouse models of myotonic dystrophy. J. Clin. Invest. 117, 3952–3957 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Sznajder, J. et al. Mechanistic determinants of MBNL activity. Nucleic Acids Res. 44, 10326–10342 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. François, V. et al. Selective silencing of mutated mRNAs in DM1 by using modified hU7-snRNAs. Nat. Struct. Mol. Biol. 18, 85–87 (2011).

    Article  PubMed  CAS  Google Scholar 

  45. Liquori, C. L. et al. Myotonic dystrophy type 2 caused by a CCTG expansion in intron 1 of ZNF9. Science 293, 864–867 (2001).

    Article  CAS  PubMed  Google Scholar 

  46. Sellier, C. et al. rbFOX1/MBNL1 competition for CCUG RNA repeats binding contributes to myotonic dystrophy type 1/type 2 differences. Nat. Commun. 9, 2009 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Daughters, R. S. et al. RNA gain-of-function in spinocerebellar ataxia type 8. PLoS Genet. 5, e1000600 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Rudnicki, D. D. et al. Huntington’s disease—like 2 is associated with CUG repeat-containing RNA foci. Ann. Neurol. 61, 272–282 (2007).

    Article  CAS  PubMed  Google Scholar 

  49. Swinnen, B., Robberecht, W. & van den Bosch, L. RNA toxicity in non-coding repeat expansion disorders. EMBO J. 39, e101112 (2020).

    Article  CAS  PubMed  Google Scholar 

  50. Chaouch, S. et al. Immortalized skin fibroblasts expressing conditional MyoD as a renewable and reliable source of converted human muscle cells to assess therapeutic strategies for muscular dystrophies: validation of an exon-skipping approach to restore dystrophin in Duchenne muscular dystrophy cells. Hum. Gene Ther. 20, 784–790 (2009).

    Article  CAS  PubMed  Google Scholar 

  51. Snyder, R. O. et al. Efficient and stable adeno-associated virus-mediated transduction in the skeletal muscle of adult immunocompetent mice. Hum. Gene Ther. 8, 1891–1900 (1997).

    Article  CAS  PubMed  Google Scholar 

  52. Moulay, G. et al. Alternative splicing of clathrin heavy chain contributes to the switch from coated pits to plaques. J. Cell Biol. 219, e201912061 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Cooper, T. A. Muscle-specific splicing of a heterologous exon mediated by a single muscle-specific splicing enhancer from the cardiac troponin T gene. Mol. Cell. Biol. 18, 4519–4525 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Laurent, F.-X. et al. New function for the RNA helicase p68/DDX5 as a modifier of MBNL1 activity on expanded CUG repeats. Nucleic Acids Res. 40, 3159–3171 (2012).

    Article  CAS  PubMed  Google Scholar 

  55. Klein, A. F., Arandel, L., Marie, J. & Furling, D. FISH protocol for myotonic dystrophy type 1 cells. Methods Mol. Biol. 2056, 203–215 (2020).

    Article  CAS  PubMed  Google Scholar 

  56. Byron, M., Hall, L. L. & Lawrence, J. B. A multifaceted FISH approach to study endogenous RNAs and DNAs in native nuclear and cell structures. Curr. Protoc. Hum. Genet. Chapter 4, Unit 4.15 (2013).

    PubMed  Google Scholar 

  57. Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).

    CAS  PubMed  Google Scholar 

  58. Bolte, S. & Cordelières, F. P. A guided tour into subcellular colocalization analysis in light microscopy. J. Microsc. 224, 213–232 (2006).

    Article  CAS  PubMed  Google Scholar 

  59. Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. J. 17, 10–12 (2011).

    Article  Google Scholar 

  60. Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).

    CAS  PubMed  Google Scholar 

  61. Anders, S., Pyl, P. T. & Huber, W. HTSeq—a Python framework to work with high-throughput sequencing data. Bioinformatics 31, 166–169 (2015).

    Article  CAS  PubMed  Google Scholar 

  62. Di Tommaso, P. et al. Nextflow enables reproducible computational workflows. Nat. Biotechnol. 11, 316–319 (2017).

    Article  CAS  Google Scholar 

  63. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Shen, S. et al. rMATS: robust and flexible detection of differential alternative splicing from replicate RNA-seq data. Proc. Natl Acad. Sci. USA 111, E5593–E5601 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Chen, J., Bardes, E. E., Aronow, B. J. & Jegga, A. G. ToppGene Suite for gene list enrichment analysis and candidate gene prioritization. Nucleic Acids Res. 37, W305–W311 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Hourdé, C. et al. Sustained peripheral arterial insufficiency durably impairs normal and regenerating skeletal muscle function. J. Physiol. Sci. 56, 361–367 (2006).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from ANR (Agence National de la Recherche), AFM (Association Francaise contre les Myopathies) and Association Institut de Myologie. M.M. was supported by the DIM biotherapies, Paris Ile-de-France Region. We thank I. Holt and G. Morris (CIND, RJAH Orthopeadic Hospital, UK) as well as The Muscular Dystrophy Association Monoclonal Antibody Resource for the MBNL1 (MB1a) antibody; T. Cooper for the 960 CTG construct; C. Thornton for the MBNL1 polyclonal antibody and the HSALR mouse model; the iVector facility of the Institut du Cerveau; the human cell immortalization facility and the AAV facility of the Myology Institute, the Penn Vector Core -Gene Therapy Program- University of Pennsylvania (Philadelphia) for providing the pAAV2/9 plasmid (p5E18-VD29); and B. Cadot, S. Ziyyat-Benkhelifa, L. Julien, A. Jollet, C. Neuillet and V. Allamand for their help.

Author information

Authors and Affiliations

Authors

Contributions

L.A. and M.M. conducted most of the experiments. F.R. performed FRAP experiments, J.M and A.F.K. performed LLPS experiments, and M.N., A.F.K., A.S., J.M., A.C., H.T., C.L. and L.B. supported some experiments. M.C. and S.B. produced lentiviral vectors, A.F. and M.L. measured the muscle force, and M.P-E., M.K. and N.N. performed RNA-seq analysis. N.S. and D.F. supervised the project and wrote the manuscript.

Corresponding authors

Correspondence to Nicolas Sergeant or Denis Furling.

Ethics declarations

Competing interests

The method described in this paper is the subject of a patent application (PCT/EP2015/058111). The authors declare no other competing financial interest.

Peer review

Peer review information

Nature Biomedical Engineering thanks Gene Yeo and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Intramuscular injection of AAV-GFP-MBNL1 corrects splicing defects in HSALR mice but has deleterious effects in WT mice.

(a) Correction of Atp2a1 exon 22, Clcn1 exon 7a and Mbnl1 exon 5 alternative splicing assessed by RT-PCR in Gastrocnemius of HSALR mice after local intramuscular injection of AAV9-GFP-MBNL1 (1 × 1011 vg, n = 3) and compared to saline vehicle-injected contralateral muscle or muscle from WT mice (n = 4). Data analysed by one-way ANOVA followed by Tukey’s test (****p < 0.0001). (b) Hematoxylin and Eosin (HE) staining performed on GA muscle sections of WT mice injected with AAV9-GFP-MBNL1 vectors (1×1011 vg) or saline for 2 or 3 weeks. (c) Expression of Myog and Myh8 measured by RT-qPCR in FVB muscles injected with AAV9-GFP-MBNL1 or saline for 2 weeks.

Extended Data Fig. 2 Intramuscular injection of AAV-GFP has no effect on DM1 splicing events regulated by MBNL1.

(a) Representative Western blot and quantification of MBNL1 protein level in WT Gastrocnemius muscles five weeks after intramuscular injection of AAV9-GFP (1×1011 vg; n = 4) or saline. Data analyzed by unpaired Student’s t-test (ns: not significant). (b) Splicing profiles of Clcn1 exon 7a and Atp2a1 exon 22 assessed by RT-PCR in WT mice five weeks after intramuscular injection of AAV9-GFP (1×1011 vg) compared to saline vehicle-injected contralateral muscles or muscles form HSALR mice (n = 3-6). Data analyzed by one-way ANOVA followed by Tukey’s test (****p < 0.0001). (c) Modulation of 23 DM1-misspliced events regulated by MBNL1 in GA muscles of WT mice injected with AAV9-GFP-MBNL1∆ or AAV9-GFP compared to saline vehicle-injected contralateral muscles or muscles form HSALR mice (n = 3).

Extended Data Fig. 3 Local and systemic administration of AAV-V5-MBNL1∆ corrects splicing defects in muscles of HSALR mice.

(a) Correction of Atp2a1 exon 22, Clcn1 exon 7a and Mbnl1 exon 5 alternative splicing assessed by RT-PCR in Gastrocnemius of HSALR mice after local intramuscular injection of AAV9-V5-MBNL1∆ (n = 3-4, upper panel) or AAV9-MBNL1∆ (n = 3, lower panel) and compared to saline vehicle-injected contralateral muscle or muscle from WT mice (n = 4). Data analyzed by one-way ANOVA followed by Tukey’s test (****p < 0.0001). (b) Correction of Atp2a1 exon 22 and Mbnl1 exon 5 alternative splicing misregulation in Gastrocnemius (GA) and Quadriceps (QUA) muscles of HSALR mice following systemic MBNL1∆ treatment (n = 5) compared to saline-injected HSALR (n = 4) and WT mice (n = 3). Data analyzed by one-way ANOVA followed by Tukey’s test (****p < 0.0001). (c) Levels of MBNL1 proteins assessed by Western blot in GA muscles of MBNL1∆-treated HSALR mice (n = 4) and saline-injected HSALR or WT mice (n = 3). Data analyzed by one-way ANOVA followed by Tukey’s test (ns: not significant).

Extended Data Fig. 4 Analysis of DM1 splicing events in heart, liver and kidney of HSALR mice treated systemically with AAV-MBNL1∆.

(a) Splicing profiles of Scn5a exon 6b, Mbnl1 exon 5, Dmd exon 78 and Mbnl2 exon 5 in heart following systemic injection of AAV-V5-MBNLΔ or saline vehicle in HSALR mice (n = 5-6) and compared to WT mice injected with saline vehicle (n = 3) (b) Splicing profiles of Mbnl1 exon 5 and Mbnl2 exon 5 in kidney (K) and liver (L) assessed by RT-PCR following systemic injection of AAV-V5-MBNLΔ or saline vehicle in HSALR mice (n = 3-4), and compared to WT mice injected with saline vehicle (n = 2-3). Data analyzed by one-way ANOVA followed by Tukey’s test (ns = not significant).

Supplementary information

Supplementary Information

Supplementary figures, tables and video captions.

Reporting Summary

Peer Review File

Supplementary Table 1

Differential alternative-splicing events (|∆Psi| > 0.2; adjusted P < 0.05) inferred by analysis of RNA-seq data using rMTAS in WT vs DM1 cells and WT vs MBNL1Δ-treated DM1 cells.

Supplementary Table 2

Differential gene expression (|log2FC| > 1; adjusted P < 0.05) inferred by analysis of RNA-seq data using DESeq2 in WT vs DM1 cells and WT vs MBNL1Δ-treated DM1 cells.

Supplementary Table 3

Differential alternative-splicing events (|∆Psi| > 0.2; adjusted P < 0.05) inferred by analysis of RNA-seq data using rMTAS in saline vs AAV9-GFP-MBNL1Δ-treated WT gastrocnemius muscles and saline vs AAV9-GFP-treated WT gastrocnemius muscles.

Supplementary Table 4

List of primers and siRNA.

Supplementary Video 1

Representative video showing RNA droplets formed by fluorescently labelled (CUG)46 RNA repeats.

Supplementary Video 2

Representative video showing CUGexp-RNA/MBNL1 condensates.

Supplementary Video 3

Representative video showing CUGexp-RNA/MBNL1∆ condensates.

Source data

Source Data Extended Data Fig

Full gel/blot scans for the relevant main figures and Extended Data figures.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arandel, L., Matloka, M., Klein, A.F. et al. Reversal of RNA toxicity in myotonic dystrophy via a decoy RNA-binding protein with high affinity for expanded CUG repeats. Nat Biomed Eng 6, 207–220 (2022). https://doi.org/10.1038/s41551-021-00838-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41551-021-00838-2

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research