Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Conditional immortalization of human atrial myocytes for the generation of in vitro models of atrial fibrillation

Abstract

The lack of a scalable and robust source of well-differentiated human atrial myocytes constrains the development of in vitro models of atrial fibrillation (AF). Here we show that fully functional atrial myocytes can be generated and expanded one-quadrillion-fold via a conditional cell-immortalization method relying on lentiviral vectors and the doxycycline-controlled expression of a recombinant viral oncogene in human foetal atrial myocytes, and that the immortalized cells can be used to generate in vitro models of AF. The method generated 15 monoclonal cell lines with molecular, cellular and electrophysiological properties resembling those of primary atrial myocytes. Multicellular in vitro models of AF generated using the immortalized atrial myocytes displayed fibrillatory activity (with activation frequencies of 6–8 Hz, consistent with the clinical manifestation of AF), which could be terminated by the administration of clinically approved antiarrhythmic drugs. The conditional cell-immortalization method could be used to generate functional cell lines from other human parenchymal cells, for the development of in vitro models of human disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Generation and selection of hiAM monoclones.
Fig. 2: Characterization of the hiAM phenotype during proliferation and after 12 days of differentiation.
Fig. 3: Characterization of differentiated hiAM and hESC-AM transcriptomes.
Fig. 4: Electrophysiological characteristics of differentiated hiAMs.
Fig. 5: Robustness and effect of cryopreservation on hiAM differentiation capacity.
Fig. 6: hESC-AM-based and hiAM-based atrial arrhythmia models.
Fig. 7: Effects of antiarrhythmic drugs in the hiAM-based atrial arrhythmia model.

Similar content being viewed by others

Data availability

The main data supporting the results in this study are available within the paper and its Supplementary Information. Certain raw and analysed datasets generated during the study are too large to be publicly shared, but they are available for research purposes from the corresponding author on reasonable request. The RNA-sequencing data are available at the NCBI’s Gene Expression Omnibus (GEO) under GEO accession numbers GSE156824 and GSE178473. The whole-genome-sequencing data are available under BioProject accession number PRJNA760786.

References

  1. Robinson, N. B. et al. The current state of animal models in research: a review. Int. J. Surg. 72, 9–13 (2019).

    Article  PubMed  Google Scholar 

  2. Ruijtenberg, S. & van den Heuvel, S. Coordinating cell proliferation and differentiation: antagonism between cell cycle regulators and cell type-specific gene expression. Cell Cycle 15, 196–212 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Thomson, J. A. et al. Embryonic stem cell lines derived from human blastocysts. Science 282, 1145–1147 (1998).

    Article  CAS  PubMed  Google Scholar 

  4. Takahashi, K. et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131, 861–872 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. Yu, J. et al. Induced pluripotent stem cell lines derived from human somatic cells. Science 318, 1917–1920 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. Kim, J., Koo, B. K. & Knoblich, J. A. Human organoids: model systems for human biology and medicine. Nat. Rev. Mol. Cell Biol. https://doi.org/10.1038/s41580-020-0259-3 (2020).

  7. Liu, J. et al. Generation and primary characterization of iAM-1, a versatile new line of conditionally immortalized atrial myocytes with preserved cardiomyogenic differentiation capacity. Cardiovasc. Res. 114, 1848–1859 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Liu, J. et al. Conditionally immortalized brown preadipocytes can switch between proliferative and differentiated states. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1864, 158511 (2019).

    Article  CAS  PubMed  Google Scholar 

  9. Deuschle, U., Meyer, W. K. & Thiesen, H. J. Tetracycline-reversible silencing of eukaryotic promoters. Mol. Cell. Biol. 15, 1907–1914 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Szulc, J., Wiznerowicz, M., Sauvain, M. O., Trono, D. & Aebischer, P. A versatile tool for conditional gene expression and knockdown. Nat. Methods 3, 109–116 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. Chugh, S. S. et al. Worldwide epidemiology of atrial fibrillation: a Global Burden of Disease 2010 Study. Circulation 129, 837–847 (2014).

    Article  PubMed  Google Scholar 

  12. Kim, M. H., Johnston, S. S., Chu, B. C., Dalal, M. R. & Schulman, K. L. Estimation of total incremental health care costs in patients with atrial fibrillation in the United States. Circ. Cardiovasc. Qual. Outcomes 4, 313–320 (2011).

    Article  PubMed  Google Scholar 

  13. Nattel, S., Heijman, J., Zhou, L. & Dobrev, D. Molecular basis of atrial fibrillation pathophysiology and therapy: a translational perspective. Circ. Res. 127, 51–72 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Heijman, J., Guichard, J. B., Dobrev, D. & Nattel, S. Translational challenges in atrial fibrillation. Circ. Res. 122, 752–773 (2018).

    Article  CAS  PubMed  Google Scholar 

  15. Kirchhof, P. The future of atrial fibrillation management: integrated care and stratified therapy. Lancet 390, 1873–1887 (2017).

    Article  PubMed  Google Scholar 

  16. van Gorp, P. R. R., Trines, S. A., Pijnappels, D. A. & de Vries, A. A. F. Multicellular in vitro models of cardiac arrhythmias: focus on atrial fibrillation. Front. Cardiovasc. Med. 7, 43 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Salva, M. Z. et al. Design of tissue-specific regulatory cassettes for high-level rAAV-mediated expression in skeletal and cardiac muscle. Mol. Ther. 15, 320–329 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. Huttenbach, Y., Ostrowski, M. L., Thaller, D. & Kim, H. S. Cell proliferation in the growing human heart: MIB-1 immunostaining in preterm and term infants at autopsy. Cardiovasc. Pathol. 10, 119–123 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Cui, Y. et al. Single-cell transcriptome analysis maps the developmental track of the human heart. Cell Rep. 26, 1934–1950.e5 (2019).

    Article  CAS  PubMed  Google Scholar 

  20. Consortium, G. T. The genotype-tissue expression (GTEx) project. Nat. Genet. 45, 580–585 (2013).

    Article  CAS  Google Scholar 

  21. Baker, M. Reproducibility: respect your cells! Nature 537, 433–435 (2016).

    Article  CAS  PubMed  Google Scholar 

  22. Narayan, S. M., Shivkumar, K., Krummen, D. E., Miller, J. M. & Rappel, W. J. Panoramic electrophysiological mapping but not electrogram morphology identifies stable sources for human atrial fibrillation: stable atrial fibrillation rotors and focal sources relate poorly to fractionated electrograms. Circ. Arrhythm. Electrophysiol. 6, 58–67 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Balouch, M. et al. Impact of rotor temperospatial stability on acute and one-year atrial fibrillation ablation outcomes. Clin. Cardiol. 40, 383–389 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Laksman, Z. et al. Modeling atrial fibrillation using human embryonic stem cell-derived atrial tissue. Sci. Rep. 7, 5268 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Sanders, P. et al. Spectral analysis identifies sites of high-frequency activity maintaining atrial fibrillation in humans. Circulation 112, 789–797 (2005).

    Article  PubMed  Google Scholar 

  26. Schuessler, R. B. et al. Spatial and temporal stability of the dominant frequency of activation in human atrial fibrillation. J. Electrocardiol. 39, S7–S12 (2006).

    Article  PubMed  Google Scholar 

  27. Yoshida, K. et al. Left atrial pressure and dominant frequency of atrial fibrillation in humans. Heart Rhythm 8, 181–187 (2011).

    Article  PubMed  Google Scholar 

  28. January, C. T. et al. 2014 AHA/ACC/HRS guideline for the management of patients with atrial fibrillation: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and the Heart Rhythm Society. J. Am. Coll. Cardiol. 64, e1–e76 (2014).

    Article  PubMed  Google Scholar 

  29. Kirchhof, P. et al. 2016 ESC guidelines for the management of atrial fibrillation developed in collaboration with EACTS. Eur. Heart J. 37, 2893–2962 (2016).

    Article  PubMed  Google Scholar 

  30. Hindricks, G. et al. 2020 ESC guidelines for the diagnosis and management of atrial fibrillation developed in collaboration with the European Association of Cardio-Thoracic Surgery (EACTS). Eur. Heart J. https://doi.org/10.1093/eurheartj/ehaa612 (2020).

  31. Sanguinetti, M. C. & Jurkiewicz, N. K. Two components of cardiac delayed rectifier K+ current. Differential sensitivity to block by class III antiarrhythmic agents. J. Gen. Physiol. 96, 195–215 (1990).

    Article  CAS  PubMed  Google Scholar 

  32. Melgari, D., Zhang, Y., El Harchi, A., Dempsey, C. E. & Hancox, J. C. Molecular basis of hERG potassium channel blockade by the class Ic antiarrhythmic flecainide. J. Mol. Cell. Cardiol. 86, 42–53 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Davidson, M. M. et al. Novel cell lines derived from adult human ventricular cardiomyocytes. J. Mol. Cell. Cardiol. 39, 133–147 (2005).

    Article  CAS  PubMed  Google Scholar 

  34. Goldman, B. I., Amin, K. M., Kubo, H., Singhal, A. & Wurzel, J. Human myocardial cell lines generated with SV40 temperature-sensitive mutant tsA58. In Vitro Cell. Dev. Biol. Anim. 42, 324–331 (2006).

    Article  CAS  PubMed  Google Scholar 

  35. Schwach, V. et al. A COUP-TFII human embryonic stem cell reporter line to identify and select atrial cardiomyocytes. Stem Cell Rep. 9, 1765–1779 (2017).

    Article  CAS  Google Scholar 

  36. Ban, K., Bae, S. & Yoon, Y. S. Current strategies and challenges for purification of cardiomyocytes derived from human pluripotent stem cells. Theranostics 7, 2067–2077 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lee, J. H., Protze, S. I., Laksman, Z., Backx, P. H. & Keller, G. M. Human pluripotent stem cell-derived atrial and ventricular cardiomyocytes develop from distinct mesoderm populations. Cell Stem Cell 21, 179–194.e4 (2017).

    Article  CAS  PubMed  Google Scholar 

  38. Argenziano, M. et al. Electrophysiologic characterization of calcium handling in human induced pluripotent stem cell-derived atrial cardiomyocytes. Stem Cell Rep. 10, 1867–1878 (2018).

    Article  CAS  Google Scholar 

  39. Branco, M. A. et al. Transcriptomic analysis of 3D cardiac differentiation of human induced pluripotent stem cells reveals faster cardiomyocyte maturation compared to 2D culture. Sci. Rep. 9, 9229 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Buikema, J. W. et al. Wnt activation and reduced cell-cell contact synergistically induce massive expansion of functional human iPSC-derived cardiomyocytes. Cell Stem Cell 27, 50–63.e5 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Devalla, H. D. et al. Atrial-like cardiomyocytes from human pluripotent stem cells are a robust preclinical model for assessing atrial-selective pharmacology. EMBO Mol. Med. 7, 394–410 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Voigt, N. et al. Enhanced sarcoplasmic reticulum Ca2+ leak and increased Na+-Ca2+ exchanger function underlie delayed afterdepolarizations in patients with chronic atrial fibrillation. Circulation 125, 2059–2070 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Voigt, N. et al. Cellular and molecular mechanisms of atrial arrhythmogenesis in patients with paroxysmal atrial fibrillation. Circulation 129, 145–156 (2014).

    Article  CAS  PubMed  Google Scholar 

  44. Heijman, J. et al. Atrial myocyte NLRP3/CaMKII nexus forms a substrate for post-operative atrial fibrillation. Circ. Res. https://doi.org/10.1161/CIRCRESAHA.120.316710 (2020).

  45. Nakanishi, H. et al. Geometrical patterning and constituent cell heterogeneity facilitate electrical conduction disturbances in a human induced pluripotent stem cell-based platform: an in vitro disease model of atrial arrhythmias. Front. Physiol. 10, 818 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Goldfracht, I. et al. Generating ring-shaped engineered heart tissues from ventricular and atrial human pluripotent stem cell-derived cardiomyocytes. Nat. Commun. 11, 75 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Harrild, D. & Henriquez, C. A computer model of normal conduction in the human atria. Circ. Res. 87, E25–E36 (2000).

    CAS  PubMed  Google Scholar 

  48. Valderrabano, M. Influence of anisotropic conduction properties in the propagation of the cardiac action potential. Prog. Biophys. Mol. Biol. 94, 144–168 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Salvage, S. C. et al. Multiple targets for flecainide action: implications for cardiac arrhythmogenesis. Br. J. Pharmacol. 175, 1260–1278 (2018).

    Article  CAS  PubMed  Google Scholar 

  50. Lemme, M. et al. Atrial-like engineered heart tissue: an in vitro model of the human atrium. Stem Cell Rep. 11, 1378–1390 (2018).

    Article  CAS  Google Scholar 

  51. Zhao, Y. et al. A platform for generation of chamber-specific cardiac tissues and disease modeling. Cell 176, 913–927.e18 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Lee, A. et al. 3D bioprinting of collagen to rebuild components of the human heart. Science 365, 482–487 (2019).

    Article  CAS  PubMed  Google Scholar 

  53. Yu, H. & Wang, Z. Cardiomyocyte-derived exosomes: biological functions and potential therapeutic implications. Front. Physiol. 10, 1049 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Chang, T. H., Ray, F. A., Thompson, D. A. & Schlegel, R. Disregulation of mitotic checkpoints and regulatory proteins following acute expression of SV40 large T antigen in diploid human cells. Oncogene 14, 2383–2393 (1997).

    Article  CAS  PubMed  Google Scholar 

  55. Goette, A. et al. EHRA/HRS/APHRS/SOLAECE expert consensus on atrial cardiomyopathies: definition, characterization, and clinical implication. Heart Rhythm 14, e3–e40 (2017).

    Article  PubMed  Google Scholar 

  56. DuBridge, R. B. et al. Analysis of mutation in human cells by using an Epstein-Barr virus shuttle system. Mol. Cell. Biol. 7, 379–387 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Chen, S., Zhou, Y., Chen, Y. & Gu, J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34, i884–i890 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Patro, R., Duggal, G., Love, M. I., Irizarry, R. A. & Kingsford, C. Salmon provides fast and bias-aware quantification of transcript expression. Nat. Methods 14, 417–419 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Love, M. I. et al. Tximeta: reference sequence checksums for provenance identification in RNA-seq. PLoS Comput. Biol. 16, e1007664 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Stuart, T. et al. Comprehensive integration of single-cell data. Cell 177, 1888–1902.e21 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    PubMed  PubMed Central  Google Scholar 

  62. Birket, M. J. et al. Contractile defect caused by mutation in MYBPC3 revealed under conditions optimized for human PSC-cardiomyocyte function. Cell Rep. 13, 733–745 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Barry, P. H. & Lynch, J. W. Liquid junction potentials and small cell effects in patch-clamp analysis. J. Membr. Biol. 121, 101–117 (1991).

    Article  CAS  PubMed  Google Scholar 

  64. Verkerk, A. O. et al. Patch-clamp recordings of action potentials from human atrial myocytes: optimization through dynamic clamp. Front. Pharmacol. 12, 649414 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Casini, S. et al. Absence of functional Nav1.8 channels in non-diseased atrial and ventricular cardiomyocytes. Cardiovasc. Drugs Ther. 33, 649–660 (2019).

    Article  CAS  PubMed  Google Scholar 

  66. van den Berg, N. W. E. et al. PREventive left atrial appenDage resection for the predICtion of fuTure atrial fibrillation: design of the PREDICT AF study. J. Cardiovasc. Med. 20, 752–761 (2019).

    Article  Google Scholar 

Download references

Acknowledgements

We thank J. Liu (LUMC, Leiden, the Netherlands) for constructing plasmid pLV.iMHCK7.SV40-LT-WT and producing LV.iMHCK7.SV40-LT-WT particles, T. v. Herwaarden (LUMC, Leiden, the Netherlands) for collecting human foetal atrial tissue, B. Klein (LUMC, Leiden, the Netherlands) for donating the SV40 LT-encoding plasmid pAT153.SV40ori, S. Hauschka (University of Washington, Seattle, WA) for providing the construct +aMHCKChCAT encoding the MHCK7 promoter, D. Trono (Swiss Federal Institute of Technology Lausanne, Lausanne, Switzerland) for making available the LV shuttle plasmid pLVET-tTR-KRAB, C. Jost (LUMC, Leiden, the Netherlands) for assistance with interpretation and annotation of transmission electron microscopy data and U. Ravens (University of Freiburg, Freiburg, Germany) for useful discussions.This publication received financial support from the LUMC Executive Board (PhD fellowship to N.H.) and from the Leiden Regenerative Medicine Platform Holding (LRMPH project 8212/41235 to A.A.F.d.V.). Additional support was provided by the research programme ‘More Knowledge with Fewer Animals’ (MKMD, project 114022503, to A.A.F.d.V.), which is (partly) financed by the Netherlands Organisation for Health Research and Development (ZonMw) and by the Dutch Society for the Replacement of Animal Testing (dsRAT).

Author information

Authors and Affiliations

Authors

Contributions

N.H., D.A.P. and A.A.F.d.V. conceived the study, interpreted results and wrote the manuscript. N.H. generated and characterized the hiAM lines with the assistance of S.O.D, J.Z. and L.J.S.L. M.W.V., A.O.V. and M.R.R. performed and analysed patch-clamping experiments. V.S., C.C.F. and R.P. generated hESC-AM layers and assisted with the associated analyses. R.R.S. and G.J.C.V. performed the comparative transcriptome analyses of the different cell types and tissues. A.A.M. generated and interpreted transmission electron microscopy data. W.E.C. performed the flow cytometric ploidy analysis. M.J.T.H.G. provided human foetal atrial material. D.D. assisted in the design and interpretation of the arrhythmia studies. T.J.v.B., R.J.M.K. and M.J.S. provided clinical input to the study. All authors refined the manuscript.

Corresponding author

Correspondence to Antoine A. F. de Vries.

Ethics declarations

Competing interests

M.J.S., D.A.P. and A.A.F.d.V. are inventors of a patent application (US16/480,280, ‘Conditionally immortalized cells and methods for their preparation’) related to this work. R.P. is a cofounder of Pluriomics (Ncardia) and River Biomedics. D.D. is a member of the scientific advisory boards of OMEICOS Therapeutics and Acesion Pharma. All other authors declare no competing interests.

Additional information

Peer review information Nature Biomedical Engineering thanks Lior Gepstein and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Main Supplementary Information

Supplementary methods, results, discussion, references, figures, tables and video captions.

Reporting Summary

Video 1

Contractions of hfAMs and hiAMs.

Video 2

Optical voltage mapping of hESC-AM and hiAM layers.

Video 3

Induction of reentrant activity in hESC-AM and hiAM layers.

Video 4

hiAM arrhythmic activity with varying degrees of complexity.

Video 5

Effects of antiarrhythmic drugs on reentrant activity in hiAM layers.

Data 1

Differentially expressed genes: hiAM D0 vs D12.

Data 2

Differentially expressed genes: hiAM vs hESC-AM.

Data 3

Individual (raw) data points and P values.

Data 4

Uncropped western blots.

Peer Review File

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harlaar, N., Dekker, S.O., Zhang, J. et al. Conditional immortalization of human atrial myocytes for the generation of in vitro models of atrial fibrillation. Nat. Biomed. Eng 6, 389–402 (2022). https://doi.org/10.1038/s41551-021-00827-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41551-021-00827-5

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing