Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

In vivo tracking of unlabelled mesenchymal stromal cells by mannose-weighted chemical exchange saturation transfer MRI

Abstract

The tracking of the in vivo biodistribution of transplanted human mesenchymal stromal cells (hMSCs) relies on reporter genes or on the addition of exogenous imaging agents. However, reporter genes and exogenous labels may require bespoke manufacturing and regulatory processes if used in cell therapies, and the labels may alter the cells’ properties and are diluted on cellular division. Here we show that high-mannose N-linked glycans, which are abundantly expressed on the surface of hMSCs, can serve as a biomarker for the label-free tracking of transplanted hMSCs by mannose-weighted chemical exchange saturation transfer (CEST) magnetic resonance imaging (MRI). For live mice with luciferase-transfected hMSCs transplanted into their brains, post-mortem fluorescence staining with a mannose-specific lectin showed that increases in the CEST MRI signal, which correlated well with the bioluminescence intensity of viable hMSCs for 14 days, corresponded to the presence of mannose. In vitro, osteogenically differentiated hMSCs led to lower CEST MRI signal intensities owing to the concomitantly reduced expression of mannose. The label-free imaging of hMSCs may facilitate the development and testing of cell therapies.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Expression of HM N-glycans in different cell lines.
Fig. 2: CEST MRI properties of d-mannose with and without the presence of other metabolites.
Fig. 3: In vitro CEST MRI properties and HM expression levels of hMSCs and other cell types.
Fig. 4: In vivo MANw CEST MRI of transplanted hMSCs and other cell types.
Fig. 5: Serial in vivo MANw CEST MRI and post-mortem histological analysis of transplanted hMSCs.
Fig. 6: In vivo BLI and post-mortem anti-mannose staining of transplanted Luc-hMSCs.

Data availability

The main data supporting the results in this study are available within the paper and its Supplementary Information. The raw and analysed datasets generated during the study are too large to be publicly shared, but they are available for research purposes from the corresponding author on reasonable request.

Code availability

Custom-written MATLAB scripts, including codes for correcting B0 inhomogeneity and for image post-processing, are available at http://godzilla.kennedykrieger.org/CEST.

References

  1. Pittenger, M. F. et al. Multilineage potential of adult human mesenchymal stem cells. Science 284, 143–147 (1999).

    CAS  PubMed  Article  Google Scholar 

  2. Via, A. G., Frizziero, A. & Oliva, F. Biological properties of mesenchymal stem cells from different sources. Muscles Ligaments Tendons J. 2, 154–162 (2012).

  3. Mosna, F., Sensebe, L. & Krampera, M. Human bone marrow and adipose tissue mesenchymal stem cells: a user’s guide. Stem Cells Dev. 19, 1449–1470 (2010).

    CAS  PubMed  Article  Google Scholar 

  4. Hare, J. M. et al. Randomized comparison of allogeneic versus autologous mesenchymal stem cells for nonischemic dilated cardiomyopathy: POSEIDON-DCM trial. J. Am. Coll. Cardiol. 69, 526–537 (2017).

    PubMed  Article  Google Scholar 

  5. Lee, W. Y. & Wang, B. Cartilage repair by mesenchymal stem cells: clinical trial update and perspectives. J. Orthop. Translat. 9, 76–88 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  6. Abdi, R., Fiorina, P., Adra, C. N., Atkinson, M. & Sayegh, M. H. Immunomodulation by mesenchymal stem cells: a potential therapeutic strategy for type 1 diabetes. Diabetes 57, 1759–1767 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  7. Karussis, D. et al. Safety and immunological effects of mesenchymal stem cell transplantation in patients with multiple sclerosis and amyotrophic lateral sclerosis. Arch. Neurol. 67, 1187–1194 (2010).

    PubMed  PubMed Central  Article  Google Scholar 

  8. Lin, W. et al. Mesenchymal stem cells and cancer: clinical challenges and opportunities. BioMed. Res. Int. 2019, 2820853 (2019).

    PubMed  PubMed Central  Google Scholar 

  9. Minguell, J. J., Erices, A. & Conget, P. Mesenchymal stem cells. Exp. Biol. Med. 226, 507–520 (2001).

    CAS  Article  Google Scholar 

  10. Kolf, C. M., Cho, E. & Tuan, R. S. Mesenchymal stromal cells. Biology of adult mesenchymal stem cells: regulation of niche, self-renewal and differentiation. Arthritis Res. Ther. 9, 204 (2007).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  11. Karp, J. M. & Leng Teo, G. S. Mesenchymal stem cell homing: the devil is in the details. Cell Stem Cell 4, 206–216 (2009).

    CAS  PubMed  Article  Google Scholar 

  12. Madrigal, M., Rao, K. S. & Riordan, N. H. A review of therapeutic effects of mesenchymal stem cell secretions and induction of secretory modification by different culture methods. J. Transl. Med. 12, 260 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  13. Spaeth, E., Klopp, A., Dembinski, J., Andreeff, M. & Marini, F. Inflammation and tumor microenvironments: defining the migratory itinerary of mesenchymal stem cells. Gene Ther. 15, 730–738 (2008).

    CAS  PubMed  Article  Google Scholar 

  14. Leibacher, J. & Henschler, R. Biodistribution, migration and homing of systemically applied mesenchymal stem/stromal cells. Stem Cell Res. Ther. 7, 7 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  15. Nguyen, P. K., Riegler, J. & Wu, J. C. Stem cell imaging: from bench to bedside. Cell Stem Cell 14, 431–444 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  16. Bulte, J. W. M. & Daldrup-Link, H. E. Clinical tracking of cell transfer and cell transplantation: trials and tribulations. Radiology 289, 604–615 (2018).

    PubMed  Article  Google Scholar 

  17. Kraitchman, D. L. et al. Dynamic imaging of allogeneic mesenchymal stem cells trafficking to myocardial infarction. Circulation 112, 1451–1461 (2005).

    PubMed  PubMed Central  Article  Google Scholar 

  18. Kraitchman, D. L. et al. In vivo magnetic resonance imaging of mesenchymal stem cells in myocardial infarction. Circulation 107, 2290–2293 (2003).

    PubMed  Article  Google Scholar 

  19. Gaudet, J. M., Ribot, E. J., Chen, Y., Gilbert, K. M. & Foster, P. J. Tracking the fate of stem cell implants with fluorine-19 MRI. PLoS ONE 10, e0118544 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  20. Bulte, J. W. et al. Quantitative ‘hot spot’ imaging of transplanted stem cells using superparamagnetic tracers and magnetic particle imaging (MPI). Tomography 1, 91–97 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  21. Kim, T. et al. In vivo micro-CT imaging of human mesenchymal stem cells labeled with gold-poly-l-lysine nanocomplexes. Adv. Funct. Mater. 27, 1604213 (2017).

    PubMed  Article  CAS  Google Scholar 

  22. Gildehaus, F. J. et al. Impact of indium-111 oxine labelling on viability of human mesenchymal stem cells in vitro, and 3D cell-tracking using SPECT/CT in vivo. Mol. Imaging Biol. 13, 1204–1214 (2011).

    PubMed  Article  Google Scholar 

  23. Cromer Berman, S. M. et al. Cell motility of neural stem cells is reduced after SPIO-labeling, which is mitigated after exocytosis. Magn. Reson. Med. 69, 255–262 (2013).

    CAS  PubMed  Article  Google Scholar 

  24. Yang, J. X., Tang, W. L. & Wang, X. X. Superparamagnetic iron oxide nanoparticles may affect endothelial progenitor cell migration ability and adhesion capacity. Cytotherapy 12, 251–259 (2010).

    CAS  PubMed  Article  Google Scholar 

  25. Brenner, W. et al. 111In-labeled CD34+ hematopoietic progenitor cells in a rat myocardial infarction model. J. Nucl. Med. 45, 512–518 (2004).

    CAS  PubMed  Google Scholar 

  26. Kostura, L., Kraitchman, D. L., Mackay, A. M., Pittenger, M. F. & Bulte, J. W. Feridex labeling of mesenchymal stem cells inhibits chondrogenesis but not adipogenesis or osteogenesis. NMR Biomed. 17, 513–517 (2004).

    PubMed  Article  Google Scholar 

  27. Chen, Y. C. et al. The inhibitory effect of superparamagnetic iron oxide nanoparticle (Ferucarbotran) on osteogenic differentiation and its signaling mechanism in human mesenchymal stem cells. Toxicol. Appl. Pharmacol. 245, 272–279 (2010).

    CAS  PubMed  Article  Google Scholar 

  28. Henning, T. D. et al. The influence of ferucarbotran on the chondrogenesis of human mesenchymal stem cells. Contrast Media Mol. Imaging 4, 165–173 (2009).

    CAS  PubMed  Article  Google Scholar 

  29. Walczak, P., Kedziorek, D. A., Gilad, A. A., Barnett, B. P. & Bulte, J. W. Applicability and limitations of MR tracking of neural stem cells with asymmetric cell division and rapid turnover: the case of the shiverer dysmyelinated mouse brain. Magn. Reson. Med. 58, 261–269 (2007).

    CAS  PubMed  Article  Google Scholar 

  30. Terrovitis, J. et al. Magnetic resonance imaging overestimates ferumoxide-labeled stem cell survival after transplantation in the heart. Circulation 117, 1555–1562 (2008).

    PubMed  Article  Google Scholar 

  31. Kidd, S. et al. Direct evidence of mesenchymal stem cell tropism for tumor and wounding microenvironments using in vivo bioluminescent imaging. Stem Cells 27, 2614–2623 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  32. Bar-Shir, A. et al. Transforming thymidine into a magnetic resonance imaging probe for monitoring gene expression. J. Am. Chem. Soc. 135, 1617–1624 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  33. Keu, K. V. et al. Reporter gene imaging of targeted T cell immunotherapy in recurrent glioma. Sci. Transl. Med. 9, eaag2196 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  34. Marx, V. It’s free imaging - label-free, that is. Nat. Methods 16, 1209–1212 (2019).

    CAS  PubMed  Article  Google Scholar 

  35. Liu, G., Song, X., Chan, K. W. & McMahon, M. T. Nuts and bolts of chemical exchange saturation transfer MRI. NMR Biomed. 26, 810–828 (2013).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  36. Liang, Y. et al. Label-free imaging of gelatin-containing hydrogel scaffolds. Biomaterials 42, 144–150 (2015).

    CAS  PubMed  Article  Google Scholar 

  37. Liu, H. et al. Label-free CEST MRI detection of citicoline-liposome drug delivery in ischemic stroke. Theranostics 6, 1588–1600 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  38. Yuan, Y. et al. Furin-mediated intracellular self-assembly of olsalazine nanoparticles for enhanced magnetic resonance imaging and tumour therapy. Nat. Mater. 18, 1376–1383 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  39. An, H. J. et al. Extensive determination of glycan heterogeneity reveals an unusual abundance of high mannose glycans in enriched plasma membranes of human embryonic stem cells. Mol. Cell. Proteomics 11, M111.010660 (2013).

  40. Heiskanen, A. et al. Glycomics of bone marrow-derived mesenchymal stem cells can be used to evaluate their cellular differentiation stage. Glycoconj. J. 26, 367–384 (2009).

    CAS  PubMed  Article  Google Scholar 

  41. Hua, S. et al. Differentiation of cancer cell origin and molecular subtype by plasma membrane N-glycan profiling. J. Proteome Res. 13, 961–968 (2014).

  42. Park, D. et al. Characteristic changes in cell surface glycosylation accompany intestinal epithelial cell (IEC) differentiation: high mannose structures dominate the cell surface glycome of undifferentiated enterocytes. Mol. Cell. Proteomics 14, 2910–2921 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  43. Terashima, M., Iwasaki, N., Amano, M., Minami, A. & Nishimura, S. Alterations in N-glycans and the associated genes of enzymes on the N-glycan biosynthesis during neuronal differentiation in mouse embryonic stem cell-derived neural stem cells. ORS 2011 Annual Meeting Poster No. 1777 (ORS, 2011); http://www.ors.org/Transactions/57/1777.pdf

  44. Amano, M. et al. Threshold in stage-specific embryonic glycotypes uncovered by a full portrait of dynamic N-glycan expression during cell differentiation. Mol. Cell. Proteomics 9, 523–537 (2010).

  45. Wildburger, N. C. et al. Integrated transcriptomic and gGlycomic profiling of glioma stem cell xenografts. J. Proteome Res. 14, 3932–3939 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  46. Song, X. et al. Label-free in vivo molecular imaging of underglycosylated mucin-1 expression in tumour cells. Nat. Commun. 6, 6719 (2015).

    CAS  PubMed  Article  Google Scholar 

  47. Potter, B. A., Hughey, R. P. & Weisz, O. A. Role of N- and O-glycans in polarized biosynthetic sorting. Am. J. Physiol. Cell Physiol. 290, C1–C10 (2006).

  48. Chan, K. W. et al. Natural d-glucose as a biodegradable MRI contrast agent for detecting cancer. Magn. Reson. Med. 68, 1764–1773 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  49. Walker-Samuel, S. et al. In vivo imaging of glucose uptake and metabolism in tumors. Nat. Med. 19, 1067–1072 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  50. Xu, X. et al. Dynamic glucose-enhanced (DGE) MRI: translation to human scanning and first results in glioma patients. Tomography 1, 105–114 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  51. de Vries, I. J. et al. Magnetic resonance tracking of dendritic cells in melanoma patients for monitoring of cellular therapy. Nat. Biotechnol. 23, 1407–1413 (2005).

    PubMed  Article  CAS  Google Scholar 

  52. Ahrens, E. T., Helfer, B. M., O’Hanlon, C. F. & Schirda, C. Clinical cell therapy imaging using a perfluorocarbon tracer and fluorine-19 MRI. Magn. Reson. Med. 72, 1696–1701 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  53. Haacke, E. M., Brown, R. W., Thompson, M. R. & Venkateson, R. Magnetic Resonance Imaging: Physical Principles and Sequence Design (Wiley-Liss, 1999).

  54. Liu, G. et al. PARACEST MRI with improved temporal resolution. Magn. Reson. Med. 61, 399–408 (2009).

    PubMed  PubMed Central  Article  Google Scholar 

  55. Ruiz-Cabello, J. et al. In vivo ‘hot spot’ MR imaging of neural stem cells using fluorinated nanoparticles. Magn. Reson. Med. 60, 1506–1511 (2008).

    PubMed  PubMed Central  Article  Google Scholar 

  56. Vinogradov, E. et al. On-resonance low B1 pulses for imaging of the effects of PARACEST agents. J. Magn. Reson. 176, 54–63 (2005).

    CAS  PubMed  Article  Google Scholar 

  57. Yadav, N. N. et al. Detection of rapidly exchanging compounds using on-resonance frequency-labeled exchange (FLEX) transfer. Magn. Reson. Med. 68, 1048–1055 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  58. Xu, X. et al. GlucoCEST imaging with on-resonance variable delay multiple pulse (onVDMP) MRI. Magn. Reson. Med. 81, 47–56 (2019).

    CAS  PubMed  Article  Google Scholar 

  59. Wang, J. et al. Magnetic resonance imaging of glucose uptake and metabolism in patients with head and neck cancer. Sci. Rep. 6, 30618 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  60. Hamouda, H. et al. N-glycosylation profile of undifferentiated and adipogenically differentiated human bone marrow mesenchymal stem cells: towards a next generation of stem cell markers. Stem Cells Dev. 22, 3100–3113 (2013).

  61. Caplan, A. I. Mesenchymal stem cells: time to change the name! Stem Cells Transl. Med. 6, 1445–1451 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  62. Hilgenberg, L. G. W. & Smith, M. A. Preparation of dissociated mouse cortical neuron cultures. J. Vis. Exp. 10, 562–562 (2007).

  63. Mujtaba, T. et al. Lineage-restricted neural precursors can be isolated from both the mouse neural tube and cultured ES cells. Dev. Biol. 214, 113–127 (1999).

    CAS  PubMed  Article  Google Scholar 

  64. Charan, J. & Kantharia, N. D. How to calculate sample size in animal studies? J. Pharm. Pharmacother. 4, 303–306 (2013).

    Article  Google Scholar 

Download references

Acknowledgements

This project was supported by the Pearl and Yueh-Heng Yang Foundation, NIH R56 NS098520 (J.W.M.B.) and NIH P41 EB024495 (J.W.M.B). We thank C. Chen for providing mNeurons.

Author information

Authors and Affiliations

Authors

Contributions

Y.Y., C.W. and J.W.M.B. conceived the project, designed the experiments and wrote the manuscript with input from all authors; Y.Y. and C.W. performed cell culture, histology, flow cytometry, BLI and MRI studies; S.K. performed post-mortem immunohistology; J.Z. assisted with cell and animal studies; Z.H. and G.L. assisted with CEST MRI of metabolites and image data processing; D.R.A. assisted with cell cultures; and P.W. provided guidance with histological analysis.

Corresponding author

Correspondence to Jeff W. M. Bulte.

Ethics declarations

Competing interests

P.W. is founder and shareholder of IntraART LLC and Ti-Com LLC. This potential competing interest is managed by the University of Maryland, Baltimore. J.W.M.B. is a paid consultant to NovaDip Biosciences SA, NanomediGene LLC and SuperBranche. These arrangements have been reviewed and approved by the Johns Hopkins University in accordance with its conflict-of-interest policies. The other authors declare no competing interests.

Peer review

Peer review information

Nature Biomedical Engineering thanks Kevin Brindle, Andre Martins and Mor Mishkovsky for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yuan, Y., Wang, C., Kuddannaya, S. et al. In vivo tracking of unlabelled mesenchymal stromal cells by mannose-weighted chemical exchange saturation transfer MRI. Nat. Biomed. Eng 6, 658–666 (2022). https://doi.org/10.1038/s41551-021-00822-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41551-021-00822-w

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing