Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Biomaterial-induced conversion of quiescent cardiomyocytes into pacemaker cells in rats

Abstract

Pacemaker cells can be differentiated from stem cells or transdifferentiated from quiescent mature cardiac cells via genetic manipulation. Here we show that the exposure of rat quiescent ventricular cardiomyocytes to a silk-fibroin hydrogel activates the direct conversion of the quiescent cardiomyocytes to pacemaker cardiomyocytes by inducing the ectopic expression of the vascular endothelial cell-adhesion glycoprotein cadherin. The silk-fibroin-induced pacemaker cells exhibited functional and morphological features of genuine sinoatrial-node cardiomyocytes in vitro, and pacemaker cells generated via the injection of silk fibroin in the left ventricles of rats functioned as a surrogate in situ sinoatrial node. Biomaterials with suitable surface structure, mechanics and biochemistry could facilitate the scalable production of biological pacemakers for human use.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: SF-treated cardiomyocytes recapitulate membrane clock characteristics of genuine SANs.
Fig. 2: SF-treated cardiomyocytes recapitulate calcium clock characteristics of genuine SANs.
Fig. 3: Distinct structural features of SF-treated cardiomyocytes.
Fig. 4: The adhesion molecule Cdh5 underlies the mechanisms of pacemaker cell conversion.
Fig. 5: The upstream and downstream regulation of Cdh5.
Fig. 6: An in-situ surrogate SAN with biological pacemaker activities in rat ventricles.
Fig. 7: Persistence of the pacemaker phenotype.

Similar content being viewed by others

Zixuan Zhao, Xinyi Chen, … Hanry Yu

Data availability

The main data supporting the results in this study are available within the paper and its Supplementary Information. The analysed datasets generated during the study are too large to be all publicly shared. A subset of the data, including source data and the data used to make the figures, are available from figshare with the identifier https://doi.org/10.6084/m9.figshare.14198261. More data are also available for research purposes from the corresponding authors on reasonable request. The dataset of the whole-transcriptome analysis (Fig. 4a) is available from the Sequence Read Archive (SRA) via the accession code PRJNA691697.

References

  1. Epstein, A. E. et al. 2012 ACCF/AHA/HRS focused update incorporated into the ACCF/AHA/HRS 2008 guidelines for device-based therapy of cardiac rhythm abnormalities: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines and the Heart Rhythm Society. Circulation 127, e283–e352 (2013).

    Article  PubMed  Google Scholar 

  2. Cingolani, E., Goldhaber, J. I. & Marban, E. Next-generation pacemakers: from small devices to biological pacemakers. Nat. Rev. Cardiol. 15, 139–150 (2018).

    Article  PubMed  Google Scholar 

  3. Protze, S. I. et al. Sinoatrial node cardiomyocytes derived from human pluripotent cells function as a biological pacemaker. Nat. Biotechnol. 35, 56–68 (2017).

    Article  CAS  PubMed  Google Scholar 

  4. Kapoor, N., Liang, W., Marban, E. & Cho, H. C. Direct conversion of quiescent cardiomyocytes to pacemaker cells by expression of Tbx18. Nat. Biotechnol. 31, 54–62 (2013).

    Article  CAS  PubMed  Google Scholar 

  5. Hu, Y. F., Dawkins, J. F., Cho, H. C., Marban, E. & Cingolani, E. Biological pacemaker created by minimally invasive somatic reprogramming in pigs with complete heart block. Sci. Transl. Med. 6, 245ra94 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Munshi, N. V. & Olson, E. N. Translational medicine. Improving cardiac rhythm with a biological pacemaker. Science 345, 268–269 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Fox, I. J. et al. Stem cell therapy. Use of differentiated pluripotent stem cells as replacement therapy for treating disease. Science 345, 1247391 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Bongianino, R. & Priori, S. G. Gene therapy to treat cardiac arrhythmias. Nat. Rev. Cardiol. 12, 531–546 (2015).

    Article  CAS  PubMed  Google Scholar 

  9. Rosen, M. R. Gene therapy and biological pacing. N. Engl. J. Med. 371, 1158–1159 (2014).

    Article  CAS  PubMed  Google Scholar 

  10. Hou, P. et al. Pluripotent stem cells induced from mouse somatic cells by small-molecule compounds. Science 341, 651–654 (2013).

    Article  CAS  PubMed  Google Scholar 

  11. Paoletti, C., Divieto, C. & Chiono, V. Impact of biomaterials on differentiation and reprogramming approaches for the generation of functional cardiomyocytes. Cells 7, 114 (2018).

    Article  CAS  PubMed Central  Google Scholar 

  12. Yang, M. C. et al. The cardiomyogenic differentiation of rat mesenchymal stem cells on silk fibroin-polysaccharide cardiac patches in vitro. Biomaterials 30, 3757–3765 (2009).

    Article  CAS  PubMed  Google Scholar 

  13. Chopra, A. et al. Reprogramming cardiomyocyte mechanosensing by crosstalk between integrins and hyaluronic acid receptors. J. Biomech. 45, 824–831 (2012).

    Article  PubMed  Google Scholar 

  14. Li, Y. et al. Tissue-engineered 3-dimensional (3D) microenvironment enhances the direct reprogramming of fibroblasts into cardiomyocytes by microRNAs. Sci. Rep. 6, 38815 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Smith, A. W. et al. Direct reprogramming of mouse fibroblasts to cardiomyocyte-like cells using Yamanaka factors on engineered poly(ethylene glycol) (PEG) hydrogels. Biomaterials 34, 6559–6571 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Shinagawa, Y., Satoh, H. & Noma, A. The sustained inward current and inward rectifier K+ current in pacemaker cells dissociated from rat sinoatrial node. J. Physiol. 523, 593–605 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. DiFrancesco, D. The role of the funny current in pacemaker activity. Circ. Res. 106, 434–446 (2010).

    Article  CAS  PubMed  Google Scholar 

  18. Maltsev, V. A. & Lakatta, E. G. Dynamic interactions of an intracellular Ca2+ clock and membrane ion channel clock underlie robust initiation and regulation of cardiac pacemaker function. Cardiovasc. Res. 77, 274–284 (2008).

    Article  CAS  PubMed  Google Scholar 

  19. Lakatta, E. G., Maltsev, V. A. & Vinogradova, T. M. A coupled SYSTEM of intracellular Ca2+ clocks and surface membrane voltage clocks controls the timekeeping mechanism of the heart’s pacemaker. Circ. Res. 106, 659–673 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Vinogradova, T. M. et al. High basal protein kinase A-dependent phosphorylation drives rhythmic internal Ca2+ store oscillations and spontaneous beating of cardiac pacemaker cells. Circ. Res. 98, 505–514 (2006).

    Article  CAS  PubMed  Google Scholar 

  21. Boyett, M. R. et al. Sophisticated architecture is required for the sinoatrial node to perform its normal pacemaker function. J. Cardiovasc. Electrophysiol. 14, 104–106 (2003).

    Article  PubMed  Google Scholar 

  22. ten Velde, I. et al. Spatial distribution of connexin43, the major cardiac gap junction protein, visualizes the cellular network for impulse propagation from sinoatrial node to atrium. Circ. Res. 76, 802–811 (1995).

    Article  PubMed  Google Scholar 

  23. Verheijck, E. E. et al. Electrophysiological features of the mouse sinoatrial node in relation to connexin distribution. Cardiovasc. Res. 52, 40–50 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. Wang, W. E. et al. Dedifferentiation, proliferation, and redifferentiation of adult mammalian cardiomyocytes after ischemic injury. Circulation 136, 834–848 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  25. D’Uva, G. et al. ERBB2 triggers mammalian heart regeneration by promoting cardiomyocyte dedifferentiation and proliferation. Nat. Cell Biol. 17, 627–638 (2015).

    Article  PubMed  CAS  Google Scholar 

  26. Jopling, C. et al. Zebrafish heart regeneration occurs by cardiomyocyte dedifferentiation and proliferation. Nature 464, 606–609 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chen, X. et al. Single-cell transcriptome and epigenomic reprogramming of cardiomyocyte-derived cardiac progenitor cells. Sci. Data 3, 160079 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Guo, M., Breslin, J. W., Wu, M. H., Gottardi, C. J. & Yuan, S. Y. VE-cadherin and beta-catenin binding dynamics during histamine-induced endothelial hyperpermeability. Am. J. Physiol. Cell Physiol. 294, C977–C984 (2008).

    Article  CAS  PubMed  Google Scholar 

  29. Lagendijk, A. K. et al. Live imaging molecular changes in junctional tension upon VE-cadherin in zebrafish. Nat. Commun. 8, 1402 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Gottardi, C. J. & Gumbiner, B. M. Distinct molecular forms of beta-catenin are targeted to adhesive or transcriptional complexes. J. Cell Biol. 167, 339–349 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kwon, C. et al. A regulatory pathway involving Notch1/beta-catenin/Isl1 determines cardiac progenitor cell fate. Nat. Cell Biol. 11, 951–957 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Liu, C. et al. Control of beta-catenin phosphorylation/degradation by a dual-kinase mechanism. Cell 108, 837–847 (2002).

    Article  CAS  PubMed  Google Scholar 

  33. David, M. D. et al. Signalling by neurotrophins and hepatocyte growth factor regulates axon morphogenesis by differential beta-catenin phosphorylation. J. Cell Sci. 121, 2718–2730 (2008).

    Article  CAS  PubMed  Google Scholar 

  34. Lin, L. et al. Beta-catenin directly regulates Islet1 expression in cardiovascular progenitors and is required for multiple aspects of cardiogenesis. Proc. Natl Acad. Sci. USA 104, 9313–9318 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Norden, J., Greulich, F., Rudat, C., Taketo, M. M. & Kispert, A. Wnt/beta-catenin signaling maintains the mesenchymal precursor pool for murine sinus horn formation. Circ. Res. 109, e42–e50 (2011).

    Article  CAS  PubMed  Google Scholar 

  36. Schuijers, J., Mokry, M., Hatzis, P., Cuppen, E. & Clevers, H. Wnt-induced transcriptional activation is exclusively mediated by TCF/LEF. EMBO J. 33, 146–156 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Watanabe, K. et al. Integrative ChIP-seq/microarray analysis identifies a CTNNB1 target signature enriched in intestinal stem cells and colon cancer. PLoS ONE 9, e92317 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Bakker, M. L. et al. T-box transcription factor TBX3 reprogrammes mature cardiac myocytes into pacemaker-like cells. Cardiovasc. Res. 94, 439–449 (2012).

    Article  CAS  PubMed  Google Scholar 

  39. Le Bras, A. et al. HIF-2alpha specifically activates the VE-cadherin promoter independently of hypoxia and in synergy with Ets-1 through two essential ETS-binding sites. Oncogene 26, 7480–7489 (2007).

    Article  PubMed  CAS  Google Scholar 

  40. Costa, G. et al. SOX7 regulates the expression of VE-cadherin in the haemogenic endothelium at the onset of haematopoietic development. Development 139, 1587–1598 (2012).

    Article  CAS  PubMed  Google Scholar 

  41. Prandini, M. H. et al. The human VE-cadherin promoter is subjected to organ-specific regulation and is activated in tumour angiogenesis. Oncogene 24, 2992–3001 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Opthof, T. et al. Functional and morphological organization of the guinea-pig sinoatrial node compared with the rabbit sinoatrial node. J. Mol. Cell. Cardiol. 17, 549–564 (1985).

    Article  CAS  PubMed  Google Scholar 

  43. Opthof, T., de Jonge, B., Masson-Pevet, M., Jongsma, H. J. & Bouman, L. N. Functional and morphological organization of the cat sinoatrial node. J. Mol. Cell. Cardiol. 18, 1015–1031 (1986).

    Article  CAS  PubMed  Google Scholar 

  44. Bleeker, W. K., Mackaay, A. J., Masson-Pevet, M., Bouman, L. N. & Becker, A. E. Functional and morphological organization of the rabbit sinus node. Circ. Res. 46, 11–22 (1980).

    Article  CAS  PubMed  Google Scholar 

  45. Sahara, M., Santoro, F. & Chien, K. R. Programming and reprogramming a human heart cell. EMBO J. 34, 710–738 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lin, B. et al. Modulating cell fate as a therapeutic strategy. Cell Stem Cell 23, 329–341 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kong, Y. P. et al. A systems mechanobiology model to predict cardiac reprogramming outcomes on different biomaterials. Biomaterials 181, 280–292 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wu, X. et al. Cardiomyocyte contractile status is associated with differences in fibronectin and integrin interactions. Am. J. Physiol. Heart Circ. Physiol. 298, H2071–H2081 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Brancaccio, M. et al. Integrin signalling: the tug-of-war in heart hypertrophy. Cardiovasc. Res. 70, 422–433 (2006).

    Article  CAS  PubMed  Google Scholar 

  50. Gluck, J. M. et al. Biochemical and biomechanical properties of the pacemaking sinoatrial node extracellular matrix are distinct from contractile left ventricular matrix. PLoS ONE 12, e0185125 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Happe, C. L. & Engler, A. J. Mechanical forces reshape differentiation cues that guide cardiomyogenesis. Circ. Res. 118, 296–310 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Christoffels, V. M., Smits, G. J., Kispert, A. & Moorman, A. F. Development of the pacemaker tissues of the heart. Circ. Res. 106, 240–254 (2010).

    Article  CAS  PubMed  Google Scholar 

  53. Long, J., Kim, H., Kim, D., Lee, J. B. & Kim, D. H. A biomaterial approach to cell reprogramming and differentiation. J. Mater. Chem. B 5, 2375–2379 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kundu, B., Rajkhowa, R., Kundu, S. C. & Wang, X. Silk fibroin biomaterials for tissue regenerations. Adv. Drug Deliv. Rev. 65, 457–470 (2013).

    Article  CAS  PubMed  Google Scholar 

  55. Kizana, E. et al. Gene transfer of connexin43 mutants attenuates coupling in cardiomyocytes: novel basis for modulation of cardiac conduction by gene therapy. Circ. Res. 100, 1597–1604 (2007).

    Article  CAS  PubMed  Google Scholar 

  56. Chung, T. W., Lo, H. Y., Chou, T. H., Chen, J. H. & Wang, S. S. Promoting cardiomyogenesis of hBMSC with a forming self-assembly hBMSC microtissues/HA-GRGD/SF-PCL cardiac patch is mediated by the synergistic functions of HA-GRGD. Macromol. Biosci. 17, 1600173 (2017).

    Article  CAS  Google Scholar 

  57. Lo, H. Y., Huang, A. L., Lee, P. C., Chung, T. W. & Wang, S. S. Morphological transformation of hBMSC from 2D monolayer to 3D microtissue on low-crystallinity silk-fibroin-PCL patch with promotion of cardiomyogenesis. J. Tissue Eng. Regen. Med. 12, e1852–e1864 (2018).

    Article  CAS  PubMed  Google Scholar 

  58. Partlow, B. P. et al. Highly tunable elastomeric silk biomaterials. Adv. Funct. Mater. 24, 4615–4624 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Bryan, N., Rhodes, N. P. & Hunt, J. A. Derivation and performance of an entirely autologous injectable hydrogel delivery system for cell-based therapies. Biomaterials 30, 180–188 (2009).

    Article  CAS  PubMed  Google Scholar 

  60. Weng, C. H. et al. Pleiotropic effects of myocardial MMP-9 inhibition to prevent ventricular arrhythmia. Sci. Rep. 6, 38894 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Trapnell, C. et al. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat. Protoc. 7, 562–578 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Motayagheni, N. Modified Langendorff technique for mouse heart cannulation: improved heart quality and decreased risk of ischemia. MethodsX 4, 508–512 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Sung, Y. L. et al. Effects of long-term exercise on arrhythmogenesis in aged hypertensive rats. Comput. Biol. Med. 102, 390–395 (2018).

    Article  PubMed  Google Scholar 

  64. Chen, C. W., Kuo, T. B., Chen, C. Y. & Yang, C. C. Reduced capacity of autonomic and baroreflex control associated with sleep pattern in spontaneously hypertensive rats with a nondipping profile. J. Hypertens. 35, 558–570 (2017).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank E. Marbán for reviewing the manuscript, W.-C. Wang for bioinformatics analysis, W.-H. Hsu for technical assistance, S.-C. Chou for flow cytometry analysis and the MiaoLi District Agriculture Research and Extension Station (Council of Agriculture, MiaoLi, Taiwan) for providing cocoons, which are also available for experimental reproduction by others. This work was supported by the Taipei Veterans General Hospital (V107C-029, VGHUST-107-G5-1-2, VGH108C-019, VN108-12, V110C-039), the Ministry of Science and Technology (105-2633-B-075-002, 107-2628-B-075-003, 108-2628-B-075-003, 107-2221-E-010-005-MY3, 110-2628-B-075-015), the National Health Research Institutes (NHRI-EX108-10513SC) and Academia Sinica (AS-TM-109-01-05, AS-TM-110-01-01). We also thank the National RNAi Core Facility at Academia Sinica in Taiwan for providing services, and C.-M. J. Hu for providing PEG-DA.

Author information

Authors and Affiliations

Authors

Contributions

C.-H. Weng, P.-C.C. and J.-D.L. performed Ca2+ experiments, immunostaining, PCR and in vivo experiments. A.-S.L. and C.-C.C. performed the electrophysiological study in in vitro cardiomyocytes. Y.-N.T., S.-L.C., Y.-L.S. and S.-F.L. performed the Langendorff-perfused whole-heart study. R.-B.Y. and Y.-C.L. performed the experiments of Cdh5 promoter assay and shRNAs. T.B.J.K. and C.-H. Wu performed telemetry monitoring of rats. Y.-F.H. and T.-W.C. designed the project, performed the statistical analyses and wrote the manuscript. Y.F.H. performed the in vivo electrophysiological study of rats. H.-Y.L. and T.-W.C. prepared the biomaterial and performed its characterization. S.-A.C. contributed to revising the manuscript.

Corresponding authors

Correspondence to Yu-Feng Hu or Tze-Wen Chung.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Biomedical Engineering thanks the anonymous reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary figures and tables, and captions for the supplementary videos and supplementary datasets.

Reporting Summary

Supplementary Video 1

Spontaneous whole-cell Ca2+ oscillations from control ventricular cardiomyocytes.

Supplementary Video 2

Spontaneous whole-cell Ca2+ oscillations from silk-fibroin ventricular cardiomyocytes.

Supplementary Video 3

Impulse propagation in a control rat heart by optical mapping.

Supplementary Video 4

Impulse propagation in a silk-fibroin-injected rat heart by optical mapping.

Supplementary Data 1

Differential gene expressions in Fig. 4a.

Supplementary Data 2

Canonical pathway analysis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, YF., Lee, AS., Chang, SL. et al. Biomaterial-induced conversion of quiescent cardiomyocytes into pacemaker cells in rats. Nat. Biomed. Eng 6, 421–434 (2022). https://doi.org/10.1038/s41551-021-00812-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41551-021-00812-y

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research