Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Delivery of local anaesthetics by a self-assembled supramolecular system mimicking their interactions with a sodium channel

Abstract

Site-1 sodium channel blockers (S1SCBs) act as potent local anaesthetics, but they can cause severe systemic toxicity. Delivery systems can be used to reduce the toxicity, but the hydrophilicity of S1SCBs makes their encapsulation challenging. Here, we report a self-assembling delivery system for S1SCBs whose design is inspired by the specific interactions of S1SCBs with two peptide sequences on the sodium channel. Specifically, the peptides were modified with hydrophobic domains so that they could assemble into nanofibres that facilitated specific binding with the S1SCBs tetrodotoxin, saxitoxin and dicarbamoyl saxitoxin. Injection of S1SCB-carrying nanofibres at the sciatic nerves of rats led to prolonged nerve blockade and to reduced systemic toxicity, with benign local-tissue reaction. The strategy of mimicking a molecular binding site via supramolecular interactions may be applicable more broadly to the design of drug delivery systems for receptor-mediated drugs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: S1SCBs and peptide selection.
Fig. 2: Nanostructures of the self-assembled MP pairs.
Fig. 3: Nanostructures and TTX release kinetics from self-assembled MPs with variations in the hydrophilic domain.
Fig. 4: Schematic of competitive binding of TTX by the TAMCP and by MP pairs.
Fig. 5: In vivo effects of formulations.
Fig. 6: Tissue reaction to formulations.

Similar content being viewed by others

Data availability

The main data supporting the results in this study are available within the paper and its Supplementary Information. The raw and analysed datasets generated during the study are available for research purposes from the corresponding author upon reasonable request.

References

  1. McAlvin, J. B., Reznor, G., Shankarappa, S. A., Stefanescu, C. F. & Kohane, D. S. Local toxicity from local anesthetic polymeric microparticles. Anesth. Analg. 116, 794–803 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Santamaria, C. M., Woodruff, A., Yang, R. & Kohane, D. S. Drug delivery systems for prolonged duration local anesthesia. Mater. Today 20, 22–31 (2017).

    Article  CAS  Google Scholar 

  3. Kohane, D. S. et al. A re-examination of tetrodotoxin for prolonged duration local anesthesia. Anesthesiology 89, 119–131 (1998).

    Article  CAS  PubMed  Google Scholar 

  4. Lahaye, L. A. & Butterworth, J. F. IV Site-1 sodium channel blockers as local anesthetics: will neosaxitoxin supplant the need for continuous nerve blocks? Anesthesiology 123, 741–742 (2015).

    Article  PubMed  Google Scholar 

  5. Adams, H., Blair, M. Jr & Takman, B. The local anesthetic activity of saxitoxin alone and with vasoconstrictor and local anesthetic agents. Arch. Int. Pharmacodyn. Ther. 224, 275–282 (1976).

    CAS  PubMed  Google Scholar 

  6. Padera, R., Bellas, E., Tse, J. Y., Hao, D. & Kohane, D. S. Local myotoxicity from sustained release of bupivacaine from microparticles. Anesthesiology 108, 921–928 (2008).

    Article  CAS  PubMed  Google Scholar 

  7. Neal, J. M., Salinas, F. V. & Choi, D. S. Local anesthetic-induced myotoxicity after continuous adductor canal block. Reg. Anesth. Pain Med. 41, 723–727 (2016).

    Article  CAS  PubMed  Google Scholar 

  8. Hofmann, P. et al. The myotoxic effect of bupivacaine and ropivacaine on myotubes in primary mouse cell culture and an immortalized cell line. Anesth. Analg. 117, 634–640 (2013).

    Article  CAS  PubMed  Google Scholar 

  9. Kohane, D. S. et al. The local anesthetic properties and toxicity of saxitonin homologues for rat sciatic nerve block in vivo. Reg. Anesth. Pain Med. 25, 52–59 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. Kohane, D. S. et al. Prolonged duration local anesthesia from tetrodotoxin-enhanced local anesthetic microspheres. Pain 104, 415–421 (2003).

    Article  CAS  PubMed  Google Scholar 

  11. Rwei, A. Y. et al. Repeatable and adjustable on-demand sciatic nerve block with phototriggerable liposomes. Proc. Natl Acad. Sci. USA 112, 15719–15724 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhan, C. et al. Ultrasensitive phototriggered local anesthesia. Nano Lett. 17, 660–665 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Thalhammer, J., Vladimirova, M., Bershadsky, B. & Strichartz, G. Neurologic evaluation of the rat during sciatic nerve block with lidocaine. Anesthesiology 82, 1013–1025 (1995).

    Article  CAS  PubMed  Google Scholar 

  14. Zhan, C. et al. Phototriggered local anesthesia. Nano Lett. 16, 177–181 (2016).

    Article  CAS  PubMed  Google Scholar 

  15. Rwei, A. Y., Zhan, C., Wang, B. & Kohane, D. S. Multiply repeatable and adjustable on-demand phototriggered local anesthesia. J. Control. Release 251, 68–74 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Stoetzer, C. et al. Tetrodotoxin-sensitive α-subunits of voltage-gated sodium channels are relevant for inhibition of cardiac sodium currents by local anesthetics. Naunyn Schmiedebergs Arch. Pharmacol. 389, 625–636 (2016).

    Article  CAS  PubMed  Google Scholar 

  17. Nau, C., Wang, S.-Y. & Wang, G. K. Point mutations at L1280 in Nav1.4 channel D3-S6 modulate binding affinity and stereoselectivity of bupivacaine enantiomers. Mol. Pharmacol. 63, 1398–1406 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. Lipkind, G. M. & Fozzard, H. A. A structural model of the tetrodotoxin and saxitoxin binding site of the Na+ channel. Biophys. J. 66, 1–13 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kaneko, Y., Matsumoto, G. & Hanyu, Y. TTX resistivity of Na+ channel in newt retinal neuron. Biochem. Biophys. Res. Commun. 240, 651–656 (1997).

    Article  CAS  PubMed  Google Scholar 

  20. Choudhary, G., Yotsu-Yamashita, M., Shang, L., Yasumoto, T. & Dudley, S. C. Jr Interactions of the C-11 hydroxyl of tetrodotoxin with the sodium channel outer vestibule. Biophys. J. 84, 287–294 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chen, S.-F., Cölfen, H., Antonietti, M. & Yu, S.-H. Ethanol assisted synthesis of pure and stable amorphous calcium carbonate nanoparticles. Chem. Comm. 49, 9564–9566 (2013).

    Article  CAS  PubMed  Google Scholar 

  22. Bender, M. The use of light scattering for determining particle size and molecular weight and shape. J. Chem. Educ. 29, 15 (1952).

    Article  CAS  Google Scholar 

  23. Wasielewski, M. R. Self-assembly strategies for integrating light harvesting and charge separation in artificial photosynthetic systems. Acc. Chem. Res. 42, 1910–1921 (2009).

    Article  CAS  PubMed  Google Scholar 

  24. Chen, R. & Chung, S.-H. Mechanism of tetrodotoxin block and resistance in sodium channels. Biochem. Biophys. Res. Commun. 446, 370–374 (2014).

    Article  CAS  PubMed  Google Scholar 

  25. Lee, C. H. & Ruben, P. C. Interaction between voltage-gated sodium channels and the neurotoxin, tetrodotoxin. Channels 2, 407–412 (2008).

    Article  PubMed  Google Scholar 

  26. Tikhonov, D. B. & Zhorov, B. S. Predicting structural details of the sodium channel pore basing on animal toxin studies. Front. Pharmacol. 9, 880 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Shen, H. et al. Structural basis for the modulation of voltage-gated sodium channels by animal toxins. Science 362, eaau2596 (2018).

    Article  PubMed  CAS  Google Scholar 

  28. Ji, T. et al. Peptide assembly integration of fibroblast‐targeting and cell‐penetration features for enhanced antitumor drug delivery. Adv. Mater. 27, 1865–1873 (2015).

    Article  CAS  PubMed  Google Scholar 

  29. Ji, T. et al. Designing liposomes to suppress extracellular matrix expression to enhance drug penetration and pancreatic tumor therapy. ACS Nano 11, 8668–8678 (2017).

    Article  CAS  PubMed  Google Scholar 

  30. Ji, T. et al. Transformable peptide nanocarriers for expeditious drug release and effective cancer therapy via cancer‐associated fibroblast activation. Angew. Chem. 128, 1062–1067 (2016).

    Article  Google Scholar 

  31. Israelachvili, J. N. Intermolecular and Surface Forces (Academic Press, 2011).

  32. Trent, A., Marullo, R., Lin, B., Black, M. & Tirrell, M. Structural properties of soluble peptide amphiphile micelles. Soft Matter 7, 9572–9582 (2011).

    Article  CAS  Google Scholar 

  33. Wang, H., Feng, Z. & Xu, B. Supramolecular assemblies of peptides or nucleopeptides for gene delivery. Theranostics 9, 3213–3222 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hendricks, M. P., Sato, K., Palmer, L. C. & Stupp, S. I. Supramolecular assembly of peptide amphiphiles. Acc. Chem. Res. 50, 2440–2448 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hartgerink, J. D., Beniash, E. & Stupp, S. I. Self-assembly and mineralization of peptide–amphiphile nanofibers. Science 294, 1684–1688 (2001).

    Article  CAS  PubMed  Google Scholar 

  36. Ortony, J. H. et al. Internal dynamics of a supramolecular nanofibre. Nat. Mater. 13, 812–816 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Micsonai, A. et al. Accurate secondary structure prediction and fold recognition for circular dichroism spectroscopy. Proc. Natl Acad. Sci. USA 112, E3095–E3103 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Greenfield, N. J. Using circular dichroism spectra to estimate protein secondary structure. Nat. Protoc. 1, 2876–2890 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ellett, L. J. & Johanssen, V. A. In Prions: Methods and Protocols (ed. Lawson, V. A.) 27–34 (Springer, 2017).

  40. Feldman, C. R., Brodie, E. D. & Pfrender, M. E. Constraint shapes convergence in tetrodotoxin-resistant sodium channels of snakes. Proc. Natl. Acad. Sci. USA 109, 4556–4561 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kawatsu, K., Hamano, Y., Yoda, T., Terano, Y. & Shibata, T. Rapid and highly sensitive enzyme immunoassay for quantitative determination of tetrodotoxin. Jpn. J. Med. Sci. Biol. 50, 133–150 (1997).

    Article  CAS  PubMed  Google Scholar 

  42. Moczydlowski, E., Mahar, J. & Ravindran, A. Multiple saxitoxin-binding sites in bullfrog muscle: tetrodotoxin-sensitive sodium channels and tetrodotoxin-insensitive sites of unknown function. Mol. Pharmacol. 33, 202–211 (1988).

    CAS  PubMed  Google Scholar 

  43. Ciolino, J. B. et al. A drug-eluting contact lens. Invest. Ophthalmol. Vis. Sci. 50, 3346–3352 (2009).

    Article  PubMed  Google Scholar 

  44. Lomonte, B. et al. Comparative study of the cytolytic activity of myotoxic phospholipases A2 on mouse endothelial (tEnd) and skeletal muscle (C2C12) cells in vitro. Toxicon 37, 145–158 (1999).

    Article  CAS  PubMed  Google Scholar 

  45. Slotkin, T. A., MacKillop, E. A., Ryde, I. T., Tate, C. A. & Seidler, F. J. Screening for developmental neurotoxicity using PC12 cells: comparisons of organophosphates with a carbamate, an organochlorine, and divalent nickel. Environ. Health Perspect. 115, 93–101 (2007).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Support for this work was provided by NIH R35 GM131728 (to D.S.K.) and by the Anaesthesia Research Distinguished Trailblazer Award (to T.J. and Y.L.).

Author information

Authors and Affiliations

Authors

Contributions

T.J., Y.L. and D.S.K. designed the experiments. T.J., Y.L., X.D., A.Y.R., A.O. W.Z. and C.Z. performed the experiments. T.J., Y.L., X.D., A.Y.R., S.H., M.M. and D.S.K. analysed the data. T.J., Y.L., S.H. and D.S.K. wrote the paper.

Corresponding author

Correspondence to Daniel S. Kohane.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Biomedical Engineering thanks Matthew Webber and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Peptide concentration-dependent release kinetics, and nanostructures.

a) Release kinetics of ϕFFF-P1P2 + TTX formulations with TTX and different concentrations of peptides. The TTX concentration was 62.6 μM in each group. Data are means ± SD; n = 4. *p < 0.05, **p < 0.01. b) Data from panel (a) at 12 h to show relationship between peptide concentration and release of TTX. Data are mean ± SD; n = 4. *p < 0.01 vs. ϕFFF-P1P2 concentration at 62.6 µM. c) Representative TEM images showing the effect of the concentration of ϕFFF-P1P2 on morphology. The dashed red circles and yellow arrows indicated aggregations. Scale bar: 100 nm.

Extended Data Fig. 2 Laser scanning confocal microscopy of the fluorescence of Alexa- ϕFFF-P1P2 and Alexa-P1P2 injected at the sciatic nerve in rats.

Representative images are of sciatic nerves and surrounding tissues collected 15 min and 24 h after injection. Red: Alexa647, indicating formulations; blue: HOECHST33342, indicating nuclei.

Extended Data Fig. 3 In vivo data for saxitoxin, free and in ϕFFF-P1P2 (ϕFFF-P1P2 + STX).

a) Duration of sensory nerve blocks. Data are means ± SD; n = 4. b) Thermal latency in the uninjected (contralateral) extremity in the first 5 h. In both panels, the ϕFFF-P1P2 concentration was 626.4 μM, and the ratio of ϕFFF-P1: ϕFFF-P2 = 1:1. The STX concentration is as shown in the figures. Data are means ± SD; n = 4.

Extended Data Fig. 4 Tissue reaction to STX and dcSTX formulations 14 days after administration.

Scale bar for H&E-stained sections: 100 μm; for toluidine blue stained sections: 25 μm.

Supplementary information

Supplementary Information

Supplementary discussion, figures and tables.

Reporting Summary

Source data

Source Data Fig. 2

Source data.

Source Data Fig. 3

Source data.

Source Data Fig. 5

Source data.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ji, T., Li, Y., Deng, X. et al. Delivery of local anaesthetics by a self-assembled supramolecular system mimicking their interactions with a sodium channel. Nat Biomed Eng 5, 1099–1109 (2021). https://doi.org/10.1038/s41551-021-00793-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41551-021-00793-y

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research