Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Amelioration of post-traumatic osteoarthritis via nanoparticle depots delivering small interfering RNA to damaged cartilage


The progression of osteoarthritis is associated with inflammation triggered by the enzymatic degradation of extracellular matrix in injured cartilage. Here we show that a locally injected depot of nanoparticles functionalized with an antibody targeting type II collagen and carrying small interfering RNA targeting the matrix metalloproteinase 13 gene (Mmp13), which breaks down type II collagen, substantially reduced the expression of MMP13 and protected cartilage integrity and overall joint structure in acute and severe mouse models of post-traumatic osteoarthritis. MMP13 inhibition suppressed clusters of genes associated with tissue restructuring, angiogenesis, innate immune responses and proteolysis. We also show that intra-articular injections of the nanoparticles led to greater reductions in disease progression than either a single injection or weekly injections of the steroid methylprednisolone. Sustained drug retention by targeting collagen in the damaged extracellular matrix of osteoarthritic cartilage may also be an effective strategy for the treatment of osteoarthritis with other disease-modifying drugs.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Synthesis of mAbCII-siNPs.
Fig. 2: Characterization of in vitro chemico-physical, gene silencing and cartilage retention of mAbCII-siNPs relative to bare and mAbCtrl-functionalized siNPs.
Fig. 3: mAbCII-siNP/siMMP13 is retained locally and potently silences Mmp13 expression relative to bare and mAbCtrl-functionalized siNPs in the knee joints of a short-term mouse model of PTOA.
Fig. 4: Long-term Mmp13 silencing reduces MMP13 protein levels in cartilage and synovium and protects mechanically loaded joints from OA progression.
Fig. 5: mAbCII-siNP/siMMP13 treatment provides whole-knee-joint protection by reducing synovial thickening, osteophyte formation and meniscal mineralization.
Fig. 6: Mmp13 silencing by mAbCII-siNP/siMMP13 treatment globally impacts gene-expression patterns in mechanically loaded PTOA joints.
Fig. 7: Clinical gold standard steroid treatment with methylprednisolone does not provide DMOAD effects in a long-term PTOA mouse model, unlike mAbCII-siNP/siMMP13 treatment.

Data availability

The main data supporting the results in this study are available within the paper and its Supplementary Information. Raw and normalized nanoString datasets are available at the Gene Expression Omnibus under accession identifier GSE171031. The remaining raw and analysed datasets from the study are too large to be publicly shared, but they are available for research purposes from the corresponding author on reasonable request.


  1. 1.

    Loeser, R. F. Osteoarthritis year in review 2013: biology. Osteoarthr. Cartil. 21, 1436–1442 (2013).

    CAS  Article  Google Scholar 

  2. 2.

    Tanamas, S. et al. Does knee malalignment increase the risk of development and progression of knee osteoarthritis? A systematic review. Arthritis Care Res. 61, 459–467 (2009).

    Article  Google Scholar 

  3. 3.

    Richette, P. et al. Benefits of massive weight loss on symptoms, systemic inflammation and cartilage turnover in obese patients with knee osteoarthritis. Ann. Rheum. Dis. 70, 139–144 (2011).

    CAS  Article  Google Scholar 

  4. 4.

    Valdes, A. M. & Spector, T. D. Genetic epidemiology of hip and knee osteoarthritis. Nat. Rev. Rheumatol. 7, 23–32 (2011).

    Article  Google Scholar 

  5. 5.

    Issa, S. & Sharma, L. Epidemiology of osteoarthritis: an update. Curr. Rheumatol. Rep. 8, 7–15 (2006).

    Article  Google Scholar 

  6. 6.

    Lee, A. S. et al. A current review of molecular mechanisms regarding osteoarthritis and pain. Gene 527, 440–447 (2013).

    CAS  PubMed Central  Article  PubMed  Google Scholar 

  7. 7.

    Zhang, Y. & Jordan, J. M. Epidemiology of osteoarthritis. Clin. Geriatr. Med. 26, 355–369 (2010).

    PubMed Central  Article  PubMed  Google Scholar 

  8. 8.

    Brophy, R. H., Gray, B. L., Nunley, R. M., Barrack, R. L. & Clohisy, J. C. Total knee arthroplasty after previous knee surgery. J. Bone Jt. Surg. Am. 96A, 801–805 (2014).

    Article  Google Scholar 

  9. 9.

    Brown, T. D., Johnston, R. C., Saltzman, C. L., Marsh, J. L. & Buckwalter, J. A. Posttraumatic osteoarthritis: a first estimate of incidence, prevalence, and burden of disease. J. Orthop. Trauma 20, 739–744 (2006).

    Article  Google Scholar 

  10. 10.

    Young, I. C. et al. A novel compressive stress-based osteoarthritis-like chondrocyte system. Exp. Biol. Med. 242, 1062–1071 (2017).

    CAS  Article  Google Scholar 

  11. 11.

    Martin, J. & Buckwalter, J. Post-traumatic osteoarthritis: the role of stress induced chondrocyte damage. Biorheology 43, 517–521 (2006).

    CAS  Google Scholar 

  12. 12.

    McAlindon, T. E. et al. OARSI guidelines for the non-surgical management of knee osteoarthritis. Osteoarthr. Cartil. 22, 363–388 (2014).

    CAS  Article  Google Scholar 

  13. 13.

    McAlindon, T. E. et al. Effect of intra-articular triamcinolone vs saline on knee cartilage volume and pain in patients with knee osteoarthritis: a randomized clinical trial. JAMA 317, 1967–1975 (2017).

    CAS  PubMed Central  Article  PubMed  Google Scholar 

  14. 14.

    Wijn, S. R. W., Rovers, M. M., van Tienen, T. G. & Hannink, G. Intra-articular corticosteroid injections increase the risk of requiring knee arthroplasty. Bone Jt. J. 102-B, 586–592 (2020).

    Article  Google Scholar 

  15. 15.

    Wernecke, C., Braun, H. J. & Dragoo, J. L. The effect of intra-articular corticosteroids on articular cartilage: a systematic review. Orthop. J. Sports Med. 3, 2325967115581163 (2015).

    PubMed Central  Article  PubMed  Google Scholar 

  16. 16.

    Wang, M. et al. MMP13 is a critical target gene during the progression of osteoarthritis. Arthritis Res. Ther. 15, R5 (2013).

    CAS  PubMed Central  Article  PubMed  Google Scholar 

  17. 17.

    Krzeski, P. et al. Development of musculoskeletal toxicity without clear benefit after administration of PG-116800, a matrix metalloproteinase inhibitor, to patients with knee osteoarthritis: a randomized, 12-month, double-blind, placebo-controlled study. Arthritis Res. Ther. 9, R109 (2007).

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  18. 18.

    Molina, J. R. et al. A phase I and pharmacokinetic study of the selective, non-peptidic inhibitor of matrix metalloproteinase BAY 12-9566 in combination with etoposide and carboplatin. Anticancer Drugs 16, 997–1002 (2005).

    CAS  Article  Google Scholar 

  19. 19.

    Clutterbuck, A. L., Asplin, K. E., Harris, P., Allaway, D. & Mobasheri, A. Targeting matrix metalloproteinases in inflammatory conditions. Curr. Drug Targets 10, 1245–1254 (2009).

    CAS  Article  Google Scholar 

  20. 20.

    Liu, J. & Khalil, R. A. Matrix metalloproteinase inhibitors as investigational and therapeutic tools in unrestrained tissue remodeling and pathological disorders. Prog. Mol. Biol. Transl. Sci. 148, 355–420 (2017).

    CAS  PubMed Central  Article  PubMed  Google Scholar 

  21. 21.

    Settle, S. et al. Cartilage degradation biomarkers predict efficacy of a novel, highly selective matrix metalloproteinase 13 inhibitor in a dog model of osteoarthritis: confirmation by multivariate analysis that modulation of type II collagen and aggrecan degradation peptides parallels pathologic changes. Arthritis Rheum. 62, 3006–3015 (2010).

    CAS  Article  Google Scholar 

  22. 22.

    Cai, H. et al. Assessment of the renal toxicity of novel anti-inflammatory compounds using cynomolgus monkey and human kidney cells. Toxicology 258, 56–63 (2009).

    CAS  Article  Google Scholar 

  23. 23.

    Sterner, B. et al. The effect of polymer size and charge of molecules on permeation through synovial membrane and accumulation in hyaline articular cartilage. Eur. J. Pharm. Biopharm. 101, 126–136 (2016).

    CAS  Article  Google Scholar 

  24. 24.

    Larsen, C. et al. Intra-articular depot formulation principles: role in the management of postoperative pain and arthritic disorders. J. Pharm. Sci. 97, 4622–4654 (2008).

    CAS  Article  Google Scholar 

  25. 25.

    Evans, C. H., Kraus, V. B. & Setton, L. A. Progress in intra-articular therapy. Nat. Rev. Rheumatol. 10, 11–22 (2013).

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  26. 26.

    Simkin, P. A. Synovial perfusion and synovial fluid solutes. Ann. Rheum. Dis. 54, 424–428 (1995).

    CAS  PubMed Central  Article  PubMed  Google Scholar 

  27. 27.

    Rothenfluh, D. A., Bermudez, H., O’Neil, C. P. & Hubbell, J. A. Biofunctional polymer nanoparticles for intra-articular targeting and retention in cartilage. Nat. Mater. 7, 248–254 (2008).

    CAS  Article  Google Scholar 

  28. 28.

    Zhou, F. et al. Silk fibroin-chondroitin sulfate scaffold with immuno-inhibition property for articular cartilage repair. Acta Biomater. 63, 64–75 (2017).

    CAS  Article  Google Scholar 

  29. 29.

    Hayder, M. et al. A phosphorus-based dendrimer targets inflammation and osteoclastogenesis in experimental arthritis. Sci. Transl. Med. 3, 81ra35 (2011).

    Article  CAS  Google Scholar 

  30. 30.

    Chen, K. & Chen, X. Integrin targeted delivery of chemotherapeutics. Theranostics 1, 189–200 (2011).

    CAS  PubMed Central  Article  PubMed  Google Scholar 

  31. 31.

    Hoy, S. M. Patisiran: first global approval. Drugs 78, 1625–1631 (2018).

    CAS  Article  Google Scholar 

  32. 32.

    de Paula Brandão, P. R., Titze-de-Almeida, S. S. & Titze-de-Almeida, R. Leading RNA interference therapeutics part 2: silencing delta-aminolevulinic acid synthase 1, with a focus on givosiran. Mol. Diagnosis Ther. 24, 61–68 (2019).

    Article  CAS  Google Scholar 

  33. 33.

    Nelson, C. E. et al. Balancing cationic and hydrophobic content of PEGylated siRNA polyplexes enhances endosome escape, stability, blood circulation time, and bioactivity in vivo. ACS Nano 7, 8870–8880 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Beavers, K. R., Nelson, C. E. & Duvall, C. L. MiRNA inhibition in tissue engineering and regenerative medicine. Adv. Drug Deliv. Rev. 88, 123–137 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Sarett, S. M. et al. Hydrophobic interactions between polymeric carrier and palmitic acid-conjugated siRNA improve PEGylated polyplex stability and enhance in vivo pharmacokinetics and tumor gene silencing. Biomaterials 97, 122–132 (2016).

    CAS  PubMed Central  Article  PubMed  Google Scholar 

  36. 36.

    Jackson, M. A. et al. Zwitterionic nanocarrier surface chemistry improves siRNA tumor delivery and silencing activity relative to polyethylene glycol. ACS Nano 11, 5680–5696 (2017).

    CAS  PubMed Central  Article  PubMed  Google Scholar 

  37. 37.

    Ruan, M. Z. et al. Proteoglycan 4 expression protects against the development of osteoarthritis. Sci. Transl. Med. 5, 176ra134 (2013).

    Article  CAS  Google Scholar 

  38. 38.

    Cho, H., Pinkhassik, E., David, V., Stuart, J. M. & Hasty, K. A. Detection of early cartilage damage using targeted nanosomes in a post-traumatic osteoarthritis mouse model. Nanomed. Nanotechnol. Biol. Med. 11, 939–946 (2015).

    CAS  Article  Google Scholar 

  39. 39.

    Werfel, T. A. et al. Selective mTORC2 inhibitor therapeutically blocks breast cancer cell growth and survival. Cancer Res. 78, 1845–1858 (2018).

    CAS  PubMed Central  Article  PubMed  Google Scholar 

  40. 40.

    Werfel, T. A. et al. Combinatorial optimization of PEG architecture and hydrophobic content improves ternary siRNA polyplex stability, pharmacokinetics, and potency in vivo. J. Control. Release 255, 12–26 (2017).

    CAS  PubMed Central  Article  PubMed  Google Scholar 

  41. 41.

    Kilchrist, K. V. et al. Gal8 visualization of endosome disruption predicts carrier-mediated biologic drug intracellular bioavailability. ACS Nano 13, 1136–1152 (2019).

    CAS  PubMed Central  PubMed  Google Scholar 

  42. 42.

    Jackson, M. A. et al. Dual carrier–cargo hydrophobization and charge ratio optimization improve the systemic circulation and safety of zwitterionic nano-polyplexes. Biomaterials 192, 245–259 (2019).

    CAS  Article  Google Scholar 

  43. 43.

    Griffin, D. J. et al. Effects of enzymatic treatments on the depth-dependent viscoelastic shear properties of articular cartilage. J. Orthop. Res. 32, 1652–1657 (2014).

    CAS  Article  Google Scholar 

  44. 44.

    Cho, H. et al. Theranostic immunoliposomes for osteoarthritis. Nanomedicine 10, 619–627 (2014).

    CAS  Article  Google Scholar 

  45. 45.

    Jasin, H. E., Noyori, K., Takagi, T. & Taurog, J. D. Characteristics of anti-type II collagen antibody binding to articular cartilage. Arthritis Rheum. 36, 651–659 (1993).

    CAS  Article  Google Scholar 

  46. 46.

    Poulet, B., Hamilton, R. W., Shefelbine, S. & Pitsillides, A. A. Characterizing a novel and adjustable noninvasive murine joint loading model. Arthritis Rheum. 63, 137–147 (2011).

    Article  Google Scholar 

  47. 47.

    Ko, F. C. et al. In vivo cyclic compression causes cartilage degeneration and subchondral bone changes in mouse tibiae. Arthritis Rheum. 65, 1569–1578 (2013).

    CAS  PubMed Central  Article  PubMed  Google Scholar 

  48. 48.

    Scanzello, C. R. & Goldring, S. R. The role of synovitis in osteoarthritis pathogenesis. Bone 51, 249–257 (2012).

    CAS  PubMed Central  Article  PubMed  Google Scholar 

  49. 49.

    Goldring, M. B. Articular cartilage degradation in osteoarthritis. HSS J. 8, 7–9 (2012).

    PubMed Central  Article  PubMed  Google Scholar 

  50. 50.

    Glasson, S. S., Chambers, M. G., Van Den Berg, W. B. & Little, C. B. The OARSI histopathology initiative—recommendations for histological assessments of osteoarthritis in the mouse. Osteoarthr. Cartil. 18, S17–S23 (2010).

    Article  Google Scholar 

  51. 51.

    Eichaker, L. R., Cho, H., Duvall, C. L., Werfel, T. A. & Hasty, K. A. Future nanomedicine for the diagnosis and treatment of osteoarthritis. Nanomedicine 9, 2203–2215 (2014).

    CAS  Article  Google Scholar 

  52. 52.

    O’Grady, K. P. et al. Drug-free ROS sponge polymeric microspheres reduce tissue damage from ischemic and mechanical injury. ACS Biomater. Sci. Eng. 4, 1251–1264 (2017).

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  53. 53.

    Sun, Y. & Mauerhan, D. R. Meniscal calcification, pathogenesis and implications. Curr. Opin. Rheumatol. 24, 152–157 (2012).

    CAS  Article  Google Scholar 

  54. 54.

    Blom, A. B. et al. Crucial role of macrophages in matrix metalloproteinase-mediated cartilage destruction during experimental osteoarthritis: involvement of matrix metalloproteinase 3. Arthritis Rheum. 56, 147–157 (2007).

    CAS  Article  Google Scholar 

  55. 55.

    Hügle, T. & Geurts, J. What drives osteoarthritis?—Synovial versus subchondral bone pathology. Rheumatology 56, 1461–1471 (2016).

    Google Scholar 

  56. 56.

    Goldring, S. R. Alterations in periarticular bone and cross talk between subchondral bone and articular cartilage in osteoarthritis. Ther. Adv. Musculoskelet. Dis. 4, 249–258 (2012).

    PubMed Central  Article  PubMed  Google Scholar 

  57. 57.

    Boileau, C., Tat, S. K., Pelletier, J. P., Cheng, S. & Martel-Pelletier, J. Diacerein inhibits the synthesis of resorptive enzymes and reduces osteoclastic differentiation/survival in osteoarthritic subchondral bone: a possible mechanism for a protective effect against subchondral bone remodelling. Arthritis Res. Ther. 10, R71 (2008).

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  58. 58.

    Punzi, L. et al. Post-traumatic arthritis: overview on pathogenic mechanisms and role of inflammation. RMD Open 2, e000279 (2016).

    PubMed Central  Article  PubMed  Google Scholar 

  59. 59.

    Christiansen, B. A. et al. Non-invasive mouse models of post-traumatic osteoarthritis. Osteoarthr. Cartil. 23, 1627–1638 (2015).

    CAS  Article  Google Scholar 

  60. 60.

    Almasry, S. M., Soliman, H. M., El-Tarhouny, S. A., Algaidi, S. A. & Ragab, E. M. Platelet rich plasma enhances the immunohistochemical expression of platelet derived growth factor and vascular endothelial growth factor in the synovium of the meniscectomized rat models of osteoarthritis. Ann. Anat. 197, 38–49 (2015).

    Article  Google Scholar 

  61. 61.

    Solomon, L. A., Bérubé, N. G. & Beier, F. Transcriptional regulators of chondrocyte hypertrophy. Birth Defects Res. C 84, 123–130 (2008).

    CAS  Article  Google Scholar 

  62. 62.

    Zhai, G., Doré, J. & Rahman, P. TGF-β signal transduction pathways and osteoarthritis. Rheumatol. Int. 35, 1283–1292 (2015).

    CAS  Article  Google Scholar 

  63. 63.

    Shen, J., Li, S. & Chen, D. TGF-β signaling and the development of osteoarthritis. Bone Res. (2014).

  64. 64.

    Lee, Y. H. et al. Enzyme-crosslinked gene-activated matrix for the induction of mesenchymal stem cells in osteochondral tissue regeneration. Acta Biomater. 63, 210–226 (2017).

    CAS  Article  Google Scholar 

  65. 65.

    John, T., Stahel, P. F., Morgan, S. J. & Schulze-Tanzil, G. Impact of the complement cascade on posttraumatic cartilage inflammation and degradation. Histol. Histopathol. 22, 781–790 (2007).

    CAS  Google Scholar 

  66. 66.

    Silawal, S., Triebel, J., Bertsch, T. & Schulze-Tanzil, G. Osteoarthritis and the complement cascade. Clin. Med. Insights Arthritis Musculoskelet. Disord. 11, 1179544117751430 (2018).

    PubMed Central  Article  PubMed  Google Scholar 

  67. 67.

    Lubbers, R., van Essen, M. F., van Kooten, C. & Trouw, L. A. Production of complement components by cells of the immune system. Clin. Exp. Immunol. 188, 183–194 (2017).

    CAS  PubMed Central  Article  PubMed  Google Scholar 

  68. 68.

    Takahashi, N. et al. Elucidation of IL-1/TGF-β interactions in mouse chondrocyte cell line by genome-wide gene expression. Osteoarthr. Cartil. 13, 426–438 (2005).

    CAS  Article  Google Scholar 

  69. 69.

    Klein-Wieringa, I. R. et al. Inflammatory cells in patients with endstage knee osteoarthritis: a comparison between the synovium and the infrapatellar fat pad. J. Rheumatol. 43, 771–778 (2016).

    Article  Google Scholar 

  70. 70.

    Wu, C. L., Harasymowicz, N. S., Klimak, M. A., Collins, K. H. & Guilak, F. The role of macrophages in osteoarthritis and cartilage repair. Osteoarthr. Cartil. (2020).

  71. 71.

    Mazur, C. M. et al. Osteocyte dysfunction promotes osteoarthritis through MMP13-dependent suppression of subchondral bone homeostasis. Bone Res. 7, 34 (2019).

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  72. 72.

    Goldring, S. R. & Goldring, M. B. in Kelley’s Textbook of Rheumatology 1–19.e16 (Elsevier, 2017).

  73. 73.

    Garg, N., Perry, L. & Deodhar, A. Intra-articular and soft tissue injections, a systematic review of relative efficacy of various corticosteroids. Clin. Rheumatol. 33, 1695–1706 (2014).

    Article  Google Scholar 

  74. 74.

    Cho, H., Walker, A., Williams, J. & Hasty, K. A. Study of osteoarthritis treatment with anti-inflammatory drugs: cyclooxygenase-2 inhibitor and steroids. BioMed. Res. Int. 2015, 595273 (2015).

    PubMed Central  PubMed  Google Scholar 

  75. 75.

    Hoshyar, N., Gray, S., Han, H. & Bao, G. The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction. Nanomed. 11, 673–692 (2016).

    CAS  Article  Google Scholar 

  76. 76.

    Terato, K. et al. Induction of arthritis with monoclonal antibodies to collagen. J. Immunol. 148, 2103–2108 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. 77.

    Evans, B. C. et al. Ex vivo red blood cell hemolysis assay for the evaluation of pH-responsive endosomolytic agents for cytosolic delivery of biomacromolecular drugs. J. Vis. Exp. 73, e50166 (2013).

    Google Scholar 

  78. 78.

    Polderman, J. A. et al. Adverse side effects of dexamethasone in surgical patients. Cochrane Database Syst. Rev. 11, CD011940 (2018).

    PubMed  PubMed Central  Google Scholar 

  79. 79.

    Orak, M. M. et al. Comparison of the effects of chronic intra-articular administration of tenoxicam, diclofenac, and methylprednisolone in healthy rats. Acta Orthop. Traumatol. Turc. 49, 438–446 (2015).

    PubMed  PubMed Central  Google Scholar 

  80. 80.

    Bolon, B. et al. Rodent preclinical models for developing novel antiarthritic molecules: comparative biology and preferred methods for evaluating efficacy. J. Biomed. Biotechnol. 2011, 569068 (2011).

    Article  Google Scholar 

  81. 81.

    Aigner, T. & Söder, S. Histopathologische Begutachtung der Gelenkdegeneration. Der. Pathol. 27, 431–438 (2006).

    CAS  Google Scholar 

Download references


The authors acknowledge the assistance of the Vanderbilt TPSR. The TPSR is supported by National Cancer Institute/National Insitutes for Health (NIH) Cancer Center Support Grant 2P30 CA068485-14. Dynamic light scattering was conducted at the Vanderbilt Institute of Nanoscale Sciences and Engineering. Bone analysis by microCT was supported in part by the NIH (S10RR027631-01). We thank C. B. Wiese, J. R. Johnson and R. Mernaugh for technical assistance. The VANTAGE core performed nanoString QC and hybridization, and is supported by the Vanderbilt Ingram Cancer Center (P30 CA68485), the Vanderbilt Vision Center (P30 EY08126) and NIH/National Centre for Research Resources (G20 RR030956). We thank the Department of Defense (DOD CDMRP OR130302), NIH (NIH R01 CA224241 and NIH R01 EB019409), NIH (NIGMS T32GM007347), the Veterans Association Merit Award BX004151, the National Science Foundation Graduate Research Fellowship Program (NSF GRF 2016212929), the Natural Sciences and Engineering Research Council of Canada (NSERC) and the Rheumatology Research Foundation (RRF) for support.

Author information




S.K.B., C.L.D., K.A.H., L.J.C. and J.M.C. designed the project and experiments. S.K.B. synthesized the polymers and conjugates and formulated nanoparticles for all experiments. S.K.B. and F.Y. conducted all animal experiments. S.K.B., M.A.J. and D.D.L. performed nanoparticle characterization. S.K.B., F.Y., J.M.C. and D.D.L. imaged and collected tissues. L.E.H. and H.C. conducted histology and immunohistochemistry, with L.E.H. performing blinded scoring of histology. S.K.B., C.L.D. and J.M.C. wrote the manuscript. All authors reviewed and commented on the manuscript.

Corresponding author

Correspondence to Craig L. Duvall.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Biomedical Engineering thanks Fergal O’Brien, Ahuva Nissim and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary figures and tables.

Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bedingfield, S.K., Colazo, J.M., Yu, F. et al. Amelioration of post-traumatic osteoarthritis via nanoparticle depots delivering small interfering RNA to damaged cartilage. Nat Biomed Eng 5, 1069–1083 (2021).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing