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Machine learning in translation
In machine learning applied to healthcare, challenges with the data stand between feasibility testing and clinically 
robust deployments.

Last year, a team from Google Health 
found out just how difficult it is to 
move machine-learning algorithms 

from early validation to clinical feasibility to 
real-world deployment. During prospective 
assessment in several clinics in Thailand 
of the feasibility and performance of a 
deep-learning system for the detection of 
diabetic retinopathy1, the team documented, 
through interviews with nurses and 
technicians on the ground, the many 
sociological and environmental factors 
that affect the system’s performance, the 
implementation workflow around it, and 
the experience of the patients. In particular, 
the system classified a larger-than-expected 
proportion of the retinal images as 
‘ungradable’, owing to blurring or darkening 
caused by poor lighting during the 
eye-screening check-up.

To perform robustly in real-world 
settings, machine-learning solutions must 
therefore consider, from early design to 
deployment, how clinical staff and the 
patients interact with the technology, 
and how the technology integrates with 
patient-care workflows. However, even 
algorithms well designed for eventual 
clinical testing and deployment can stumble 
on their way to eventual clinical impact, 
owing to challenges related to the availability 
of high-quality, annotated and structured 
data for algorithm training and validation, 
as well as of data that are representative 
of the real-world conditions in which the 
algorithms will be deployed.

Foremost, large and high-quality 
clinical datasets that are well annotated are 
difficult to come by, especially in countries 
where operational and regulatory silos 

raise barriers to data sharing and sustain 
inefficiencies in collaborative care and 
care delivery (including most countries 
that are members of the Organisation for 
Economic Co-operation and Development2). 
Necessary privacy restrictions and 
considerations of intellectual property also 
constrain the data that can be shared and 
accessed. Moreover, the data, codes and 
hyperparameters used to build, optimize 
and test machine-learning models are often 
not thoroughly reported or accessible3. In 
this regard, the recently developed artificial 
intelligence extensions of the Consolidated 
Standards of Reporting Trials (CONSORT)4, 
Standard Protocol Items: Recommendations 
for Interventional Trials (SPIRIT)5, and 
Standards for Reporting of Diagnostic 
Accuracy Studies (STARD)6 guidelines, 
and for medical imaging the Checklist for 
Artificial Intelligence in Medical Imaging 
(CLAIM) best-practice guide7, should help 
increase the credibility and reproducibility 
of machine-learning studies.

The scarcity of data can be compensated 
for algorithmically, via generative adversarial 
networks (GANs) that create synthetic 
data. GANs are deep-learning architectures 
that mimic a zero-sum game for training 
a generator network so that it creates new 
datasets that mirror the data distribution 
of a real dataset by ‘competing’ with a 
discriminator network that determines 
whether the generated data belong to the 
real dataset. Datasets generated by GANs 
can also sidestep patient-privacy limitations 
to sharing. However, as discussed by Faisal 
Mahmood and colleagues in a Comment 
in this issue, the use of synthetic data calls 
for regulatory standards, as synthetic data 

can also be exploited to circumvent patient 
privacy (by using the trained GANs to 
‘recover’ samples from the training dataset), 
can amplify biases, and are particularly 
prone to authenticity issues.

GANs can also be used alongside 
federated learning — a technique for the 
decentralized training of machine-learning 
models. In federated learning, the data stay 
siloed while the model is trained locally (for 
example, at each healthcare institution or 
in each device at the ‘edge’ of the ‘federated’ 
data network). Federated learning and 
GANs can increase the performance 
and robustness of machine-learning 
algorithms by augmenting the training 
and validation datasets in size, diversity 
(by gathering data from a more diverse 
set of institutions, geographies, patient 
populations, or devices), and quality 
(by transforming datasets across data 
distributions and even data types, as in 
the generation of volumetric tomographic 
X-ray images from a single projection view8 
and of computed-tomography images from 
magnetic resonance images9). In fact, as 
shown by Hadi Shafiee and co-authors in 
this issue of Nature Biomedical Engineering, 
adversarial learning (a variation of the GAN 
strategy lacking a generator and with a 
discriminator that is lax about shifts in the 
data distribution) allows for the effective 
training of machine-learning models from 
low-quality images (such as noisy photos 
from smartphone-based systems) that 
can be cheaply acquired and are largely 
unannotated. Additionally, algorithms 
for dimensionality reduction, such as the 
general and data-driven approach reported 
by Md Tauhidul Islam and Lei Xing in this 

Fig. 1 | Retinal images with overlaid saliency maps indicating areas relevant to the prediction, by machine-learning models, of chronic kidney disease  
(early, advanced and severe; three leftmost images) and type-2 diabetes (with or without diabetic retinopathy; two rightmost images). Images reproduced 
with permission from the Article by Kang Zhang and co-authors.
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issue, can be used to denoise data  
and to project data onto a lower number  
of dimensions to aid interpretability  
and visualization.

When big data are available yet cannot 
be efficiently processed, interpretable 
weakly supervised deep-learning methods 
leveraging attention-based learning (a 
technique for enhancing the most relevant 
parts in datasets) can be used to more 
efficiently process big data, as Faisal 
Mahmood and colleagues demonstrate with 
a model for the classification of whole-slide 
images annotated only with slide-level labels 
(rather than labels for pixels, patches, or 
regions of interest in the images). When 
abundant raw datasets are available — for 
example, videos of medical ultrasound — 
and can be processed, using all available 
raw data (rather than hand-crafted 
measurements derived from the data) 
to train machine-learning models can 
substantially improve their performance, as 
Brandon Fornwalt and colleagues show for 
the prediction of all-cause mortality within 
one year from echocardiography videos.

However, clinical data are often 
heterogeneous (in quality, completeness, 
or acquisition frequency, for example) 

and unstructured (in format), and hence 
raw datasets usually need to be ‘cleaned 
up’ and processed before they can be 
fed to machine-learning systems. This 
is exemplified by an Article by Guangyu 
Wang and colleagues describing a modular 
deep-learning pipeline for the automated 
processing of chest X-ray images to identify 
and discriminate viral, non-viral and 
COVID-19 pneumonia and to assess disease 
severity. The pipeline included steps for the 
detection of anatomical landmarks, image 
registration, and the segmentation of lung 
lesions; and it was validated, retrospectively 
and prospectively, across patient cohorts  
and geographies.

Prospective assessment of the 
performance of machine-learning models 
is a necessary step before their actual 
deployment for routine clinical use. 
Model performance can be deteriorated 
(on deployment, but also over time) by 
myriad factors — in particular, changes in 
the incidence of the disease and in patient 
demographics, and alterations in clinical 
workflows and data-acquisition equipment 
— that affect the distribution of the data 
fed into the models. Such ‘domain shifts’ 
can be accounted for via regular auditing 

and by model re-training and updating. 
Population-based prospective assessment 
is also a test of whether the performance of 
models can be generalized across settings, 
such as smartphone-based photography and 
multi-ethnic patient cohorts, as Kang Zhang 
and colleagues show for the detection of 
chronic kidney disease and type-2 diabetes 
with deep-learning algorithms trained with 
large datasets of retinal images (Fig. 1)  
acquired with standard fundus cameras. 
The performance of the algorithms will 
now need to be tested for robustness in 
real-world settings and eventually monitored 
after deployment. ❐
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