Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Contactless optical coherence tomography of the eyes of freestanding individuals with a robotic scanner

Abstract

Clinical systems for optical coherence tomography (OCT) are used routinely to diagnose and monitor patients with a range of ocular diseases. They are large tabletop instruments operated by trained staff, and require mechanical stabilization of the head of the patient for positioning and motion reduction. Here we report the development and performance of a robot-mounted OCT scanner for the autonomous contactless imaging, at safe distances, of the eyes of freestanding individuals without the need for operator intervention or head stabilization. The scanner uses robotic positioning to align itself with the eye to be imaged, as well as optical active scanning to locate the pupil and to attenuate physiological eye motion. We show that the scanner enables the acquisition of OCT volumetric datasets, comparable in quality to those of clinical tabletop systems, that resolve key anatomic structures relevant for the management of common eye conditions. Robotic OCT scanners may enable the diagnosis and monitoring of patients with eye conditions in non-specialist clinics.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: OCT system and scan heads for active tracking.
Fig. 2: Accuracy, precision and transient response for anterior and retinal active-tracking scan heads.
Fig. 3: Anterior imaging results in freestanding individuals.
Fig. 4: Volumetric imaging with and without active tracking in a freestanding individual.
Fig. 5: Autonomous anterior segment results in freestanding individuals.
Fig. 6: Autonomous retinal-imaging results in freestanding individuals with undilated eyes.

Data availability

The main data supporting the results in this work are available within the paper and its Supplementary Information. The raw data acquired during the study are available from the corresponding author on reasonable request, subject to approval from the Duke University Medical Center Institutional Review Board.

Code availability

The custom software developed for this research is described in refs. 33,52. This software is available from the authors upon reasonable request.

References

  1. Huang, D. et al. Optical coherence tomography. Science 254, 1178–1181 (1991).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  2. Izatt, J. A. et al. Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography. JAMA Ophthalmol. 112, 1584–1589 (1994).

    CAS  Google Scholar 

  3. Hee, M. R. et al. Optical coherence tomography of the human retina. JAMA Ophthalmol. 113, 325–332 (1995).

    CAS  Google Scholar 

  4. Puliafito, C. A. et al. Imaging of macular diseases with optical coherence tomography. Ophthalmology 102, 217–229 (1995).

    CAS  PubMed  Article  Google Scholar 

  5. Virgili, G. et al. Optical coherence tomography (OCT) for detection of macular oedema in patients with diabetic retinopathy. Cochrane Database Syst. Rev. 1, CD008081 (2015).

    PubMed  Google Scholar 

  6. Miguel, A. I. M., Silva, A. B. & Azevedo, L. F. Diagnostic performance of optical coherence tomography angiography in glaucoma: a systematic review and meta-analysis. Br. J. Ophthalmol. 103, 1677–1684 (2019).

    PubMed  Article  Google Scholar 

  7. Carrasco-Zevallos, O. M. et al. Review of intraoperative optical coherence tomography: technology and applications. Biomed. Opt. Express 8, 1607–1637 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  8. Ehlers, J. P. et al. The DISCOVER study 3-year results: feasibility and usefulness of microscope-integrated intraoperative OCT during ophthalmic surgery. Ophthalmology 125, 1014–1027 (2018).

    PubMed  Article  Google Scholar 

  9. American Academy of Ophthalmology-Preferred Practice Patterns Retina/Vitreous Panel, Hoskins Center for Quality Eye Care. Age-Related Macular Degeneration PPP (American Academy of Ophthalmology, 2015).

  10. Schmidt-Erfurth, U., Klimscha, S., Waldstein, S. & Bogunović, H. A view of the current and future role of optical coherence tomography in the management of age-related macular degeneration. Eye 31, 26–44 (2017).

    CAS  PubMed  Article  Google Scholar 

  11. American Academy of Ophthalmology-Preferred Practice Patterns Retina/Vitreous Panel, Hoskins Center for Quality Eye Care. Diabetic Retinopathy PPP (American Academy of Ophthalmology, 2017).

  12. Schuman, J. S., Puliafito, C. A., Fujimoto, J. G. & Duker, J. S. Optical Coherence Tomography of Ocular Diseases 3rd edn (Slack, 2012).

  13. American Academy of Ophthalmology Cornea/External Disease Preferred Practice Patterns Panel, Hoskins Center for Quality Eye Care. Corneal Edema and Opacification PPP (American Academy of Ophthalmology, 2013).

  14. Radhakrishnan, S. et al. Real-time optical coherence tomography of the anterior segment at 1310 nm. Arch. Ophthalmol. 119, 1179–1185 (2001).

    CAS  PubMed  Article  Google Scholar 

  15. Jung, W. et al. Handheld optical coherence tomography scanner for primary care diagnostics. IEEE Trans. Biomed. Eng. 58, 741–744 (2011).

    PubMed  Article  Google Scholar 

  16. Lu, C. D. et al. Handheld ultrahigh speed swept source optical coherence tomography instrument using a MEMS scanning mirror. Biomed. Opt. Express 5, 293–311 (2013).

    PubMed  PubMed Central  Article  Google Scholar 

  17. Nankivil, D. et al. Handheld, rapidly switchable, anterior/posterior segment swept source optical coherence tomography probe. Biomed. Opt. Express 6, 4516–4528 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  18. LaRocca, F. et al. In vivo cellular-resolution retinal imaging in infants and children using an ultracompact handheld probe. Nat. Photon. 10, 580–584 (2016).

    CAS  Article  Google Scholar 

  19. Yang, J., Liu, L., Campbell, J. P., Huang, D. & Liu, G. Handheld optical coherence tomography angiography. Biomed. Opt. Express 8, 2287–2300 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  20. Viehland, C. et al. Ergonomic handheld OCT angiography probe optimized for pediatric and supine imaging. Biomed. Opt. Express 10, 2623–2638 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  21. Song, S. et al. Development of a clinical prototype of a miniature hand-held optical coherence tomography probe for prematurity and pediatric ophthalmic imaging. Biomed. Opt. Express 10, 2383–2398 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  22. Spaide, R. F., Fujimoto, J. G. & Waheed, N. K. Image artifacts in optical coherence angiography. Retina 35, 2163–2180 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  23. Ricco, S., Chen, M., Ishikawa, H., Wollstein, G. & Schuman, J. Correcting motion artifacts in retinal spectral domain optical coherence tomography via image registration. In International Conference on Medical Image Computing and Computer-Assisted Intervention (eds Yang, G. Z. et al.) 100–107 (Springer, 2009).

  24. Kraus, M. F. et al. Motion correction in optical coherence tomography volumes on a per A-scan basis using orthogonal scan patterns. Biomed. Opt. Express 3, 1182–1199 (2012).

    PubMed  PubMed Central  Article  Google Scholar 

  25. Lu, W. et al. Deep learning-based automated classification of multi-categorical abnormalities from optical coherence tomography images. Transl. Vis. Sci. Technol. 7, 41 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  26. Loo, J., Fang, L., Cunefare, D., Jaffe, G. J. & Farsiu, S. Deep longitudinal transfer learning-based automatic segmentation of photoreceptor ellipsoid zone defects on optical coherence tomography images of macular telangiectasia type 2. Biomed. Opt. Express 9, 2681–2698 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  27. dos Santos, V. A. et al. CorneaNet: Fast segmentation of cornea OCT scans of healthy and keratoconic eyes using deep learning. Biomed. Opt. Express 10, 622–641 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  28. De Fauw, J. et al. Clinically applicable deep learning for diagnosis and referral in retinal disease. Nat. Med. 24, 1342–1350 (2018).

    PubMed  Article  CAS  Google Scholar 

  29. Asaoka, R. et al. Using deep learning and transfer learning to accurately diagnose early-onset glaucoma from macular optical coherence tomography images. Am. J. Ophthalmol. 198, 136 – 145 (2019).

    PubMed  Article  Google Scholar 

  30. Bruce, B. B. et al. Nonmydriatic ocular fundus photography in the emergency department. N. Engl. J. Med. 364, 387–389 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  31. Bruce, B. B. et al. Feasibility of nonmydriatic ocular fundus photography in the emergency department: phase I of the FOTO-ED study. Acad. Emerg. Med. 18, 928–933 (2011).

    PubMed  PubMed Central  Article  Google Scholar 

  32. Drexler, W. et al. Optical coherence tomography today: speed, contrast, and multimodality. J. Biomed. Opt. 19, 071412 (2014).

    PubMed  Article  Google Scholar 

  33. Draelos, M. et al. Automatic optical coherence tomography imaging of stationary and moving eyes with a robotically-aligned scanner. In 2019 International Conference on Robotics and Automation 8897–8903 (IEEE, 2019).

  34. Van Buskirk, E. M. The anatomy of the limbus. Eye 3, 101–108 (1989).

    PubMed  Article  Google Scholar 

  35. MacLachlan, C. & Howland, H. C. Normal values and standard deviations for pupil diameter and interpupillary distance in subjects aged 1 month to 19 years. Ophthalmic Physiol. Opt. 22, 175–182 (2002).

    PubMed  Article  Google Scholar 

  36. Schröder, S., Chashchina, E., Janunts, E., Cayless, A. & Langenbucher, A. Reproducibility and normal values of static pupil diameters. Eur. J. Ophthalmol. 28, 150–156 (2018).

    PubMed  Article  Google Scholar 

  37. Herndon, L. W. et al. Central corneal thickness in normal, glaucomatous, and ocular hypertensive eyes. Arch. Ophthalmol. 115, 1137–1141 (1997).

    CAS  PubMed  Article  Google Scholar 

  38. La Rosa, F. A., Gross, R. L. & Orengo-Nania, S. Central corneal thickness of Caucasians and African Americans in glaucomatous and nonglaucomatous populations. Arch. Ophthalmol. 119, 23–27 (2001).

    PubMed  Google Scholar 

  39. Yap, T. E., Archer, T. J., Gobbe, M. & Reinstein, D. Z. Comparison of central corneal thickness between fourier-domain OCT, very high-frequency digital ultrasound, and Scheimpflug imaging systems. J. Refract. Surg. 32, 110–116 (2016).

    PubMed  Article  Google Scholar 

  40. Buehl, W., Stojanac, D., Sacu, S., Drexler, W. & Findl, O. Comparison of three methods of measuring corneal thickness and anterior chamber depth. Am. J. Ophthalmol. 141, 7–12 (2006).

    PubMed  Article  Google Scholar 

  41. Lam, A. K. C., Chan, R. & Pang, P. C. K. The repeatability and accuracy of axial length and anterior chamber depth measurements from the IOLMaster. Ophthalmic Physiol. Opt. 21, 477–483 (2001).

    CAS  PubMed  Article  Google Scholar 

  42. Fotedar, R. et al. Distribution of axial length and ocular biometry measured using partial coherence laser interferometry (IOL Master) in an older white population. Ophthalmology 117, 417–423 (2010).

    PubMed  Article  Google Scholar 

  43. Sánchez-Tocino, H., Alvarez-Vidal, A., Maldonado, M. J., Moreno-Montañés, J. & García-Layana, A. Retinal thickness study with optical coherence tomography in patients with diabetes. Invest. Ophthalmol. Vis. Sci. 43, 1588–1594 (2002).

    PubMed  Google Scholar 

  44. Goebel, W. & Kretzchmar-Gross, T. Retinal thickness in diabetic retinopathy: a study using optical coherence tomography (OCT). Retina 22, 759–767 (2002).

    PubMed  Article  Google Scholar 

  45. Alamouti, B. & Funk, J. Retinal thickness decreases with age: an OCT study. Br. J. Ophthalmol. 87, 899–901 (2003).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  46. Ko, F. et al. Association of retinal nerve fiber layer thinning with current and future cognitive decline: a study using optical coherence tomography. JAMA Neurol. 75, 1198–1205 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  47. Mutlu, U. et al. Association of retinal neurodegeneration on optical coherence tomography with dementia: a population-based study. JAMA Neurol. 75, 1256–1263 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  48. Qian, R. et al. Characterization of long working distance optical coherence tomography for imaging of pediatric retinal pathology. Transl. Vis. Sci. Technol. 6, 12 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  49. Pircher, M., Baumann, B., Götzinger, E., Sattmann, H. & Hitzenberger, C. K. Simultaneous SLO/OCT imaging of the human retina with axial eye motion correction. Opt. Express 15, 16922–16932 (2007).

    PubMed  Article  Google Scholar 

  50. Mecê, P., Scholler, J., Groux, K. & Boccara, C. High-resolution in-vivo human retinal imaging using full-field OCT with optical stabilization of axial motion. Biomed. Opt. Express 11, 492–504 (2020).

    PubMed  Article  Google Scholar 

  51. Wojtkowski, M., Leitgeb, R., Kowalczyk, A., Bajraszewski, T. & Fercher, A. F. In vivo human retinal imaging by Fourier domain optical coherence tomography. J. Biomed. Opt. 7, 457–463 (2002).

    PubMed  Article  Google Scholar 

  52. Viehland, C. et al. Enhanced volumetric visualization for real time 4D intraoperative ophthalmic swept-source OCT. Biomed. Opt. Express 7, 1815–1829 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  53. Carrasco-Zevallos, O. et al. Pupil tracking optical coherence tomography for precise control of pupil entry position. Biomed. Opt. Express 6, 3405–3419 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  54. Escudero-Sanz, I. & Navarro, R. Off-axis aberrations of a wide-angle schematic eye model. J. Opt. Soc. Am. A 16, 1881–1891 (1999).

    CAS  Article  Google Scholar 

  55. Bradski, G. The OpenCV Library. Dr Dobbs J. Softw. Tools 25, 120–125 (2000).

    Google Scholar 

  56. Zadeh, A., Lim, Y. C., Baltrušaitis, T. & Morency, L. Convolutional experts constrained local model for 3D facial landmark detection. In 2017 IEEE International Conference on Computer Vision Workshops 2519–2528 (IEEE, 2017).

  57. Atchison, D. A. Optical models for human myopic eyes. Vis. Res. 46, 2236 – 2250 (2006).

    Google Scholar 

  58. Tan, C. S. & Sadda, S. R. The role of central reading centers–current practices and future directions. Indian J. Ophthalmol. 63, 404–405 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the Duke Coulter Translational Partnership and by National Eye Institute grants F30-EY027280, R01-EY029302 and U01-EY028079.

Author information

Authors and Affiliations

Authors

Contributions

M.D. and P.O. designed and assembled the scan heads and robotic system. R.M. designed and assembled the reference arm. R.Q., C.V. and R.M. optimized the OCT system. M.D., C.V. and R.M. determined optical safety exposure limits. A.N.K. obtained bioethics approval and consented participants. M.D. and P.O. performed the experiments. M.D. analysed the data and drafted the manuscript. P.O., R.Q., R.M., K.H., A.N.K. and J.A.I. revised the manuscript. K.H., A.N.K. and J.A.I. supervised the project.

Corresponding author

Correspondence to Mark Draelos.

Ethics declarations

Competing interests

J.A.I. is an inventor on OCT-related patents filed by Duke University and licensed by Leica Microsystems, Carl Zeiss Meditec and St Jude Medical. J.A.I. has additional financial interests (including royalty and milestone payments) in these companies. R.M. and A.N.K. are inventors on OCT-related patents filed by Duke University and licensed by Leica Microsystems. M.D., P.O., R.M., A.N.K. and J.A.I. are inventors on provisional patent application US62/798,052 filed by Duke University that concerns the robotic OCT system presented in this manuscript. R.Q., C.V. and K.H. declare no competing interests.

Additional information

Peer review information Nature Biomedical Engineering thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary figures.

Reporting Summary

Supplementary Video 1

Robotic arm following the participant to keep the eye centred within the working range for optical active tracking.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Draelos, M., Ortiz, P., Qian, R. et al. Contactless optical coherence tomography of the eyes of freestanding individuals with a robotic scanner. Nat Biomed Eng 5, 726–736 (2021). https://doi.org/10.1038/s41551-021-00753-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41551-021-00753-6

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing