Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Toward higher-performance bionic limbs for wider clinical use

Abstract

Most prosthetic limbs can autonomously move with dexterity, yet they are not perceived by the user as belonging to their own body. Robotic limbs can convey information about the environment with higher precision than biological limbs, but their actual performance is substantially limited by current technologies for the interfacing of the robotic devices with the body and for transferring motor and sensory information bidirectionally between the prosthesis and the user. In this Perspective, we argue that direct skeletal attachment of bionic devices via osseointegration, the amplification of neural signals by targeted muscle innervation, improved prosthesis control via implanted muscle sensors and advanced algorithms, and the provision of sensory feedback by means of electrodes implanted in peripheral nerves, should all be leveraged towards the creation of a new generation of high-performance bionic limbs. These technologies have been clinically tested in humans, and alongside mechanical redesigns and adequate rehabilitation training should facilitate the wider clinical use of bionic limbs.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Advanced bionic limb technologies.
Fig. 2: Osseointegrated implant in a transhumeral amputee.
Fig. 3: Approaches for neuromuscular interfacing, and their mapping into commands for driving externally powered prostheses.
Fig. 4: Chronically implantable electromyography systems.
Fig. 5: Nerve implant for stimulating afferent fibres to restore sensation.
Fig. 6: Invasive technologies for interfacing bioscreens.

References

  1. 1.

    Cordella, F. et al. Literature review on needs of upper limb prosthesis users. Front. Neurosci. 10, 209 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  2. 2.

    Webster, J. B. et al. Prosthetic fitting, use, and satisfaction following lower-limb amputation: a prospective study. J. Rehabil. Res. Dev. 49, 1493–1504 (2012).

    PubMed  Article  Google Scholar 

  3. 3.

    Biddiss, E., Beaton, D. & Chau, T. Consumer design priorities for upper limb prosthetics. Disabil. Rehabil. Assist. Technol. 2, 346–357 (2007).

    PubMed  Article  Google Scholar 

  4. 4.

    Kyberd, P. J. & Hill, W. Survey of upper limb prosthesis users in Sweden, the United Kingdom and Canada. Prosthet. Orthot. Int. 35, 234–241 (2011).

    PubMed  Article  Google Scholar 

  5. 5.

    Pylatiuk, C., Schulz, S. & Döderlein, L. Results of an internet survey of myoelectric prosthetic hand users. Prosthet. Orthot. Int. 31, 362–370 (2007).

    PubMed  Article  Google Scholar 

  6. 6.

    Jang, C. H. et al. A survey on activities of daily living and occupations of upper extremity amputees. Ann. Rehabil. Med. 35, 907–921 (2011).

    PubMed  PubMed Central  Article  Google Scholar 

  7. 7.

    Fogelberg, D. J., Allyn, K. J., Smersh, M. & Maitland, M. E. What people want in a prosthetic foot. J. Prosthet. Orthot. 28, 145–151 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  8. 8.

    Villa, C. et al. Cross-slope and level walking strategies during swing in individuals with lower limb amputation. Arch. Phys. Med. Rehabil. 98, 1149–1157 (2017).

    PubMed  Article  Google Scholar 

  9. 9.

    Meulenbelt, H., Geertzen, J., Jonkman, M. & Dijkstra, P. Skin problems of the stump in lower limb amputees: 1. A clinical study. Acta Derm. Venereol. 91, 173–177 (2011).

    PubMed  Article  Google Scholar 

  10. 10.

    The Amputee Statistical Database for the United Kingdom 2004/05 (NHS Scotland Information Services Division, 2005); http://www.limbless-statistics.org

  11. 11.

    Dillingham, T. R., Pezzin, L. E., MacKenzie, E. J. & Burgess, A. R. Use and satisfaction with prosthetic devices among persons with trauma-related amputations: a long-term outcome study. Am. J. Phys. Med. Rehabil. 80, 563–571 (2001).

    CAS  PubMed  Article  Google Scholar 

  12. 12.

    Koc, E. et al. Skin problems in amputees: a descriptive study. Int. J. Dermatol. 47, 463–466 (2008).

    PubMed  Article  Google Scholar 

  13. 13.

    Ding, Z., Jarvis, H. L., Bennett, A. N., Baker, R. & Bull, A. M. Higher knee contact forces might underlie increased osteoarthritis rates in high functioning amputees: a pilot study. J. Orthop. Res. 39, 850–860 (2021).

    CAS  PubMed  Article  Google Scholar 

  14. 14.

    Daly, W., Voo, L., Rosenbaum-Chou, T., Arabian, A. & Boone, D. Socket pressure and discomfort in upper-limb prostheses: a preliminary study. JPO J. Prosthet. Orthot. 26, 99–106 (2014).

    Article  Google Scholar 

  15. 15.

    Biddiss, E. A. & Chau, T. T. Upper limb prosthesis use and abandonment: a survey of the last 25 years. Prosthet. Orthot. Int. 31, 236–257 (2007).

    PubMed  Article  Google Scholar 

  16. 16.

    Vujaklija, I., Farina, D. & Aszmann, O. New developments in prosthetic arm systems. Orthop. Res. Rev. 8, 31–39 (2016).

    PubMed  PubMed Central  Google Scholar 

  17. 17.

    Peerdeman, B. et al. Myoelectric forearm prostheses: state of the art from a user-centered perspective. J. Rehabil. Res. Dev. 48, 719–737 (2011).

    PubMed  Article  Google Scholar 

  18. 18.

    Belter, J. T., Segil, J. L., Dollar, A. M. & Weir, R. F. Mechanical design and performance specifications of anthropomorphic prosthetic hands: a review. J. Rehabil. Res. Dev. 50, 599–618 (2013).

    PubMed  Article  Google Scholar 

  19. 19.

    Farina, D. & Aszmann, O. Bionic limbs: clinical reality and academic promises. Sci. Transl. Med. 6, 257ps12 (2014).

    PubMed  Article  Google Scholar 

  20. 20.

    Ning, J., Dosen, S., Muller, K.-R. & Farina, D. Myoelectric control of artificial limbs—is there a need to change focus? IEEE Signal Process. Mag. 29, 152–150 (2012).

    Article  Google Scholar 

  21. 21.

    Castellini, C., Bongers, R. M., Nowak, M. & van der Sluis, C. K. Upper-limb prosthetic myocontrol: two recommendations. Front. Neurosci. 9, 496 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  22. 22.

    Bicchi, A. & Sorrentino, R. Dexterous manipulation through rolling. In Proc. 1995 IEEE International Conference on Robotics and Automation 452–457 (IEEE, 1995).

  23. 23.

    Okamura, A. M., Smaby, N. & Cutkosky, M. R. An overview of dexterous manipulation. In Proc. 2000 IEEE International Conference on Robotics and Automation 255–262 (IEEE, 2000).

  24. 24.

    Shimoga, K. B. Robot grasp synthesis algorithms: a survey. Int. J. Rob. Res. 15, 230–266 (1996).

    Article  Google Scholar 

  25. 25.

    Bicchi, A. Hands for dexterous manipulation and robust grasping: a difficult road toward simplicity. IEEE Trans. Robot. Autom. 16, 652–662 (2000).

    Article  Google Scholar 

  26. 26.

    Fishel, J. A. & Loeb, G. E. Sensing tactile microvibrations with the BioTac—comparison with human sensitivity. In 2012 4th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob) 1122–1127 (IEEE, 2012).

  27. 27.

    Sewell, P., Noroozi, S., Vinney, J. & Andrews, S. Developments in the trans-tibial prosthetic socket fitting process: a review of past and present research. Prosthet. Orthot. Int. 24, 97–107 (2000).

    CAS  PubMed  Article  Google Scholar 

  28. 28.

    Astrom, I. & Stenstrom, A. Effect on gait and socket comfort in unilateral trans-tibial amputees after exchange to a polyurethane concept. Prosthet. Orthot. Int. 28, 28–36 (2004).

    CAS  PubMed  Article  Google Scholar 

  29. 29.

    Ortiz-Catalan, M., Brånemark, R., Håkansson, B. & Delbeke, J. On the viability of implantable electrodes for the natural control of artificial limbs: review and discussion. Biomed. Eng. Online 11, 33 (2012).

    PubMed  PubMed Central  Article  Google Scholar 

  30. 30.

    Zhou, P. et al. Decoding a new neural–machine interface for control of artificial limbs. J. Neurophysiol. 98, 2974–2982 (2007).

    PubMed  Article  Google Scholar 

  31. 31.

    Scott, R. N. & Parker, P. A. Myoelectric prostheses: state of the art. J. Med. Eng. Technol. 12, 143–151 (1988).

    CAS  PubMed  Article  Google Scholar 

  32. 32.

    Lake, C. The evolution of upper limb prosthetic socket design. JPO J. Prosthet. Orthot. 20, 85–92 (2008).

    Article  Google Scholar 

  33. 33.

    Potter, M. B. K. et al. Heterotopic ossification following combat-related trauma. J. Bone Joint Surg. Am. 92, 74–89 (2010).

    PubMed  Article  Google Scholar 

  34. 34.

    Brånemark, R., Brånemark, P.-I., Rydevik, B. & Myers, R. R. Osseointegration in skeletal reconstruction and rehabilitation: a review. J. Rehabil. Res. Dev. 38, 175–181 (2001).

    PubMed  Google Scholar 

  35. 35.

    Shelton, T. J., Beck, P. J., Bloebaum, R. D. & Bachus, K. N. Percutaneous osseointegrated prostheses for amputees: limb compensation in a 12-month ovine model. J. Biomech. 44, 2601–2606 (2011).

    PubMed  PubMed Central  Article  Google Scholar 

  36. 36.

    Jönsson, S., Caine-Winterberger, K. & Brånemark, R. Osseointegration amputation prostheses on the upper limbs: methods, prosthetics and rehabilitation. Prosthet. Orthot. Int. 35, 190–200 (2011).

    PubMed  Article  Google Scholar 

  37. 37.

    Hagberg, K., Branemark, R., Gunterberg, B. & Rydevik, B. Osseointegrated trans-femoral amputation prostheses: prospective results of general and condition-specific quality of life in 18 patients at 2-year follow-up. Prosthet. Orthot. Int. 32, 29–41 (2008).

    PubMed  Article  Google Scholar 

  38. 38.

    Hagberg, K., Häggström, E., Uden, M. & Brånemark, R. Socket versus bone-anchored trans-femoral prostheses: hip range of motion and sitting comfort. Prosthet. Orthot. Int. 29, 153–163 (2005).

    CAS  PubMed  Article  Google Scholar 

  39. 39.

    Pitkin, M. Design features of implants for direct skeletal attachment of limb prostheses. J. Biomed. Mater. Res. A 101, 3339–3348 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Brånemark, R. P., Hagberg, K., Kulbacka-Ortiz, K., Berlin, Ö. & Rydevik, B. Osseointegrated percutaneous prosthetic system for the treatment of patients with transfemoral amputation: a prospective five-year follow-up of patient-reported outcomes and complications. J. Am. Acad. Orthop. Surg. 27, E743–E751 (2019).

    PubMed  Article  Google Scholar 

  41. 41.

    Al Muderis, M., Khemka, A., Lord, S. J., Van de Meent, H. & Frölke, J. P. M. Safety of osseointegrated implants for transfemoral amputees. J. Bone Joint. Surg. 98, 900–909 (2016).

    PubMed  Article  Google Scholar 

  42. 42.

    Ortiz-Catalan, M., Hakansson, B. & Branemark, R. An osseointegrated human-machine gateway for long-term sensory feedback and motor control of artificial limbs. Sci. Transl. Med. 6, 257re6 (2014).

    PubMed  Article  Google Scholar 

  43. 43.

    Mastinu, E., Doguet, P., Botquin, Y., Hakansson, B. & Ortiz-Catalan, M. Embedded system for prosthetic control using implanted neuromuscular interfaces accessed via an osseointegrated implant. IEEE Trans. Biomed. Circuits Syst. 11, 867–877 (2017).

    PubMed  Article  Google Scholar 

  44. 44.

    Ortiz-Catalan, M., Mastinu, E., Sassu, P., Aszmann, O. & Brånemark, R. Self-contained neuromusculoskeletal arm prostheses. New Engl. J. Med. 382, 1732–1738 (2020).

    PubMed  Article  Google Scholar 

  45. 45.

    Matthews, D. J. et al. UK trial of the osseointegrated prosthesis for the rehabilitation for amputees: 1995–2018. Prosthet. Orthot. Int. 43, 112–122 (2019).

    PubMed  Article  Google Scholar 

  46. 46.

    Resnik, L., Benz, H., Borgia, M. & Clark, M. A. Patient perspectives on osseointegration: a national survey of veterans with upper limb amputation. PM&R 11, 1261–1271 (2019).

    Article  Google Scholar 

  47. 47.

    Van Nes, C. P. Rotation-plasty for congenital defects of the femur. J. Bone Joint. Surg. Br. 32-B, 12–16 (1950).

    Article  Google Scholar 

  48. 48.

    Azocar, A. F. et al. Design and clinical implementation of an open-source bionic leg. Nat. Biomed. Eng. 4, 941–953 (2020).

    PubMed  PubMed Central  Article  Google Scholar 

  49. 49.

    Goldfarb, M., Lawson, B. E. & Shultz, A. H. Realizing the promise of robotic leg prostheses. Sci. Transl. Med. 5, 225 (2013).

    Article  Google Scholar 

  50. 50.

    Grimes, D. L., Flowers, W. C. & Donath, M. Feasibility of an active control scheme for above knee prostheses. J. Biomech. Eng. 99, 215–221 (1977).

    Article  Google Scholar 

  51. 51.

    Sup, F., Bohara, A. & Goldfarb, M. Design and control of a powered transfemoral prosthesis. Int. J. Rob. Res. 27, 263–273 (2008).

    PubMed  PubMed Central  Article  Google Scholar 

  52. 52.

    Martinez-Villalpando, E. C. & Herr, H. Agonist–antagonist active knee prosthesis: a preliminary study in level-ground walking. J. Rehabil. Res. Dev. 46, 361 (2009).

    PubMed  Article  Google Scholar 

  53. 53.

    Simon, A. M., Hargrove, L. J., Lock, B. A. & Kuiken, T. A. Target achievement control test: evaluating real-time myoelectric pattern-recognition control of multifunctional upper-limb prostheses. J. Rehabil. Res. Dev. 48, 619–627 (2011).

    PubMed  PubMed Central  Article  Google Scholar 

  54. 54.

    Young, A. J., Simon, A. M., Fey, N. P. & Hargrove, L. J. Intent recognition in a powered lower limb prosthesis using time history information. Ann. Biomed. Eng. 42, 631–641 (2014).

    PubMed  Article  Google Scholar 

  55. 55.

    Lenzi, T., Sensinger, J., Lipsey, J., Hargrove, L. & Kuiken, T. Design and preliminary testing of the RIC hybrid knee prosthesis. In 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) 1683–1686 (IEEE, 2015).

  56. 56.

    Lawson, B. E., Varol, H. A., Huff, A., Erdemir, E. & Goldfarb, M. Control of stair ascent and descent with a powered transfemoral prosthesis. IEEE Trans. Neural Syst. Rehabil. Eng. 21, 466–473 (2013).

    PubMed  Article  Google Scholar 

  57. 57.

    Au, S., Berniker, M. & Herr, H. Powered ankle-foot prosthesis to assist level-ground and stair-descent gaits. Neural Netw. 21, 654–666 (2008).

    PubMed  Article  Google Scholar 

  58. 58.

    Varol, H. A., Sup, F. & Goldfarb, M. Multiclass real-time intent recognition of a powered lower limb prosthesis. IEEE Trans. Biomed. Eng. 57, 542–551 (2010).

    PubMed  Article  Google Scholar 

  59. 59.

    Huang, H. et al. Continuous locomotion-mode identification for prosthetic legs based on neuromuscular–mechanical fusion. IEEE Trans. Biomed. Eng. 58, 2867–2875 (2011).

    PubMed  PubMed Central  Article  Google Scholar 

  60. 60.

    Weir, R. F., Heckathorne, C. W. & Childress, D. S. Cineplasty as a control input for externally powered prosthetic components. J. Rehabil. Res. Dev. 38, 357–363 (2001).

    CAS  PubMed  Google Scholar 

  61. 61.

    Brückner, L. Sauerbruch-Lebsche-Vanghetti cineplasty: the surgical procedure. Orthop. Traumatol. 1, 90–99 (1992).

    Article  Google Scholar 

  62. 62.

    Kruit, J. & Cool, J. C. Body-powered hand prosthesis with low operating power for children. J. Med. Eng. Technol. 13, 129–133 (1989).

    CAS  PubMed  Article  Google Scholar 

  63. 63.

    Doeringer, J. A. & Hogan, N. Performance of above elbow body-powered prostheses in visually guided unconstrained motion tasks. IEEE Trans. Biomed. Eng. 42, 621–631 (1995).

    CAS  PubMed  Article  Google Scholar 

  64. 64.

    Carey, S. L., Lura, D. J. & Highsmith, M. J. Differences in myoelectric and body-powered upper-limb prostheses: systematic literature review. J. Rehabil. Res. Dev. 52, 247–262 (2015).

    PubMed  Article  Google Scholar 

  65. 65.

    Schweitzer, W., Thali, M. J. & Egger, D. Case-study of a user-driven prosthetic arm design: bionic hand versus customized body-powered technology in a highly demanding work environment. J. Neuroeng. Rehabil. 15, 1 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  66. 66.

    Riener, R. The Cybathlon promotes the development of assistive technology for people with physical disabilities. J. Neuroeng. Rehabil. 13, 49 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  67. 67.

    Hargrove, L. J., Simon, A. M., Lipschutz, R., Finucane, S. B. & Kuiken, T. A. Non-weight-bearing neural control of a powered transfemoral prosthesis. J. Neuroeng. Rehabil. 10, 62 (2013).

    PubMed  PubMed Central  Article  Google Scholar 

  68. 68.

    Ha, K. H., Varol, H. A. & Goldfarb, M. Volitional control of a prosthetic knee using surface electromyography. IEEE Trans. Biomed. Eng. 58, 144–151 (2011).

    PubMed  Article  Google Scholar 

  69. 69.

    Hargrove, L. J. et al. Intuitive control of a powered prosthetic leg during ambulation. JAMA 313, 2244–2252 (2015).

    CAS  PubMed  Article  Google Scholar 

  70. 70.

    Peng, J., Fey, N. P., Kuiken, T. A. & Hargrove, L. J. Anticipatory kinematics and muscle activity preceding transitions from level-ground walking to stair ascent and descent. J. Biomech. 49, 528–536 (2016).

    PubMed  Article  Google Scholar 

  71. 71.

    Zhang, F., Liu, M. & Huang, H. Effects of locomotion mode recognition errors on volitional control of powered above-knee prostheses. IEEE Trans. Neural Syst. Rehabil. Eng. 23, 64–72 (2015).

    PubMed  Article  Google Scholar 

  72. 72.

    Khademi, G., Mohammadi, H. & Simon, D. Gradient-based multi-objective feature selection for gait mode recognition of transfemoral amputees. Sensors 19, 253 (2019).

    Article  Google Scholar 

  73. 73.

    Spanias, J. A., Simon, A. M., Finucane, S. B., Perreault, E. J. & Hargrove, L. J. Online adaptive neural control of a robotic lower limb prosthesis. J. Neural Eng. 15, 016015 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  74. 74.

    Au, S. K., Bonato, P. & Herr, H. An EMG-position controlled system for an active ankle-foot prosthesis: an initial experimental study. In 9th International Conference on Rehabilitation Robotics, ICORR 2005 375–379 (IEEE, 2005).

  75. 75.

    Zhang, F., Liu, M. & Huang, H. Investigation of timing to switch control mode in powered knee prostheses during task transitions. PLoS ONE 10, e0133965 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  76. 76.

    Stevens, P. M. & Highsmith, M. J. Myoelectric and body power, design options for upper-limb prostheses. J. Prosthet. Orthot. 29, P1–P3 (2017).

    Article  Google Scholar 

  77. 77.

    Parker, P., Englehart, K. & Hudgins, B. Myoelectric signal processing for control of powered limb prostheses. J. Electromyogr. Kinesiol. 16, 541–548 (2006).

    CAS  PubMed  Article  Google Scholar 

  78. 78.

    Hudgins, B., Parker, P. & Scott, R. N. A new strategy for multifunction myoelectric control. IEEE Trans. Biomed. Eng. 40, 82–94 (1993).

    CAS  PubMed  Article  Google Scholar 

  79. 79.

    Graupe, D. & Cline, W. K. Functional separation of EMG signals via ARMA identification methods for prosthesis control purposes. IEEE Trans. Syst. Man Cybern. 5, 252–259 (1975).

    Article  Google Scholar 

  80. 80.

    Englehart, K., Hudgin, B. & Parker, P. A. A wavelet-based continuous classification scheme for multifunction myoelectric control. IEEE Trans. Biomed. Eng. 48, 302–311 (2001).

    CAS  PubMed  Article  Google Scholar 

  81. 81.

    Hargrove, L. J., Guanglin, L., Englehart, K. B. & Hudgins, B. S. Principal components analysis preprocessing for improved classification accuracies in pattern-recognition-based myoelectric control. IEEE Trans. Biomed. Eng. 56, 1407–1414 (2009).

    PubMed  Article  Google Scholar 

  82. 82.

    Englehart, K. & Hudgins, B. A robust, real-time control scheme for multifunction myoelectric control. IEEE Trans. Biomed. Eng. 50, 848–854 (2003).

    PubMed  Article  Google Scholar 

  83. 83.

    Scheme, E. & Englehart, K. Electromyogram pattern recognition for control of powered upper-limb prostheses: state of the art and challenges for clinical use. J. Rehabil. Res. Dev. 48, 643–660 (2011).

    PubMed  Article  Google Scholar 

  84. 84.

    Ohnishi, K., Weir, R. F. & Kuiken, T. A. Neural machine interfaces for controlling multifunctional powered upper-limb prostheses. Expert Rev. Med. Dev. 4, 43–53 (2007).

    Article  Google Scholar 

  85. 85.

    Light, C. M. & Chappell, P. H. Development of a lightweight and adaptable multiple-axis hand prosthesis. Med. Eng. Phys. 22, 679–684 (2000).

    CAS  PubMed  Article  Google Scholar 

  86. 86.

    Simon, A. M., Lock, B. A. & Stubblefield, K. A. Patient training for functional use of pattern recognition-controlled prostheses. J. Prosthet. Orthot. 24, 56–64 (2012).

    PubMed  PubMed Central  Article  Google Scholar 

  87. 87.

    Hargrove, L., Englehart, K. & Hudgins, B. The effect of electrode displacements on pattern recognition based myoelectric control. In 2006 International Conference of the IEEE Engineering in Medicine and Biology Society 2203–2206 (IEEE, 2006).

  88. 88.

    Kuiken, T., Miller, L., Turner, K. & Hargrove, L. A comparison of pattern recognition control and direct control of a multiple degree-of-freedom transradial prosthesis. IEEE J. Transl. Eng. Heal. Med. 4, 2100508 (2016).

    Google Scholar 

  89. 89.

    Cipriani, C., Segil, J. L., Birdwell, J. A. & Weir, R. F. Dexterous control of a prosthetic hand using fine-wire intramuscular electrodes in targeted extrinsic muscles. IEEE Trans. Neural Syst. Rehabil. Eng. 22, 828–836 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  90. 90.

    Hahne, J. M., Farina, D., Jiang, N. & Liebetanz, D. A novel percutaneous electrode implant for improving robustness in advanced myoelectric control. Front. Neurosci. 10, 114 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  91. 91.

    Pasquina, P. F. et al. First-in-man demonstration of a fully implanted myoelectric sensors system to control an advanced electromechanical prosthetic hand. J. Neurosci. Methods 244, 85–93 (2015).

    PubMed  Article  Google Scholar 

  92. 92.

    Weir, R. F. et al. Implantable myoelectric sensors (IMESs) for intramuscular electromyogram recording. IEEE Trans. Biomed. Eng. 56, 159–171 (2009).

    PubMed  PubMed Central  Article  Google Scholar 

  93. 93.

    Lewis, S. et al. Fully implantable multi-channel measurement system for acquisition of muscle activity. IEEE Trans. Instrum. Meas. 62, 1972–1981 (2013).

    Article  Google Scholar 

  94. 94.

    McDonnall, S., Hiatt, S., Crofts, B., Smith, C. & Merrill, D. Development of a wireless multichannel myoelectric implant for prosthesis control. In Proc. Myoelectric Control and Upper Limb Prosthesis Symposium (MEC 2017) 21 (2017).

  95. 95.

    Graczyk, E. L., Resnik, L., Schiefer, M. A., Schmitt, M. S. & Tyler, D. J. Home use of a neural-connected sensory prosthesis provides the functional and psychosocial experience of having a hand again. Sci. Rep. 8, 9866 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  96. 96.

    Weir, R. F., Troyk, P. R., DeMichele, G., Kuiken, T. & Ku, T. Implantable myoelectric sensors (IMES) for upper-extremity prosthesis control—preliminary work. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 25, 1562–1565 (2003).

    Article  Google Scholar 

  97. 97.

    Merrill, D. R., Lockhart, J., Troyk, P. R., Weir, R. F. & Hankin, D. L. Development of an implantable myoelectric sensor for advanced prosthesis control. Artif. Organs 35, 249–252 (2011).

    PubMed  PubMed Central  Article  Google Scholar 

  98. 98.

    Baker, J. J., Scheme, E., Englehart, K., Hutchinson, D. T. & Greger, B. Continuous detection and decoding of dexterous finger flexions with implantable myoelectric sensors. IEEE Trans. Neural Syst. Rehabil. Eng. 18, 424–432 (2010).

    PubMed  Article  Google Scholar 

  99. 99.

    Kristjansson, K. et al. in Converging Clinical and Engineering Research on Neurorehabilitation II (eds Ibáñez, J. et al.) 571–574 (Springer, 2017).

  100. 100.

    Salminger, S. Long-term implant of intramuscular sensors and nerve transfers for wireless control of robotic arms in above-elbow amputees. Sci. Robot. 4, eaaw6306 (2019).

    PubMed  Article  Google Scholar 

  101. 101.

    Jezernik, S., Grill, W. W. & Sinkjaer, T. Neural network classification of nerve activity recorded in a mixed nerve. Neurol. Res. 23, 429–434 (2001).

    CAS  PubMed  Article  Google Scholar 

  102. 102.

    Haugland, M. K. & Sinkjaer, T. Cutaneous whole nerve recordings used for correction of footdrop in hemiplegic man. IEEE Trans. Rehabil. Eng. 3, 307–317 (1995).

    Article  Google Scholar 

  103. 103.

    Hoffer, J. & Loeb, G. Implantable electrical and mechanical interfaces with nerve and muscle. Ann. Biomed. Eng. 8, 351–360 (1980).

    CAS  PubMed  Article  Google Scholar 

  104. 104.

    Navarro, X. et al. A critical review of interfaces with the peripheral nervous system for the control of neuroprostheses and hybrid bionic systems. J. Peripher. Nerv. Syst. 10, 229–258 (2005).

    PubMed  Article  Google Scholar 

  105. 105.

    Micera, S. et al. Decoding of grasping information from neural signals recorded using peripheral intrafascicular interfaces. J. Neuroeng. Rehabil. 8, 53 (2011).

    PubMed  PubMed Central  Article  Google Scholar 

  106. 106.

    Raspopović, S., Capogrosso, M., Navarro, X. & Micera, S. Finite element and biophysics modelling of intraneural transversal electrodes: influence of active site shape. In 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology 1678–1681 (IEEE, 2010).

  107. 107.

    Kagan, Z. B. et al. Linear methods for reducing EMG contamination in peripheral nerve motor decodes. In 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) 3422–3425 (IEEE, 2016).

  108. 108.

    Davis, T. S. et al. Restoring motor control and sensory feedback in people with upper extremity amputations using arrays of 96 microelectrodes implanted in the median and ulnar nerves. J. Neural Eng. 13, 036001 (2016).

    CAS  PubMed  Article  Google Scholar 

  109. 109.

    Noce, E. et al. EMG and ENG-envelope pattern recognition for prosthetic hand control. J. Neurosci. Methods 311, 38–46 (2019).

    PubMed  Article  Google Scholar 

  110. 110.

    Petrini, F. M. et al. Microneurography as a tool to develop decoding algorithms for peripheral neuro-controlled hand prostheses. Biomed. Eng. Online 18, 44 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  111. 111.

    Cracchiolo, M. et al. Decoding of grasping tasks from intraneural recordings in trans-radial amputee. J. Neural Eng. 17, 026034 (2020).

    PubMed  Article  Google Scholar 

  112. 112.

    Rossini, P. M. et al. Double nerve intraneural interface implant on a human amputee for robotic hand control. Clin. Neurophysiol. 121, 777–783 (2010).

    Article  Google Scholar 

  113. 113.

    Wurth, S. et al. Long-term usability and bio-integration of polyimide-based intra-neural stimulating electrodes. Biomaterials 122, 114–129 (2017).

    CAS  Article  Google Scholar 

  114. 114.

    Kuiken, T. A. et al. Targeted muscle reinnervation for real-time myoelectric control of multifunction artificial arms. JAMA 301, 619–628 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  115. 115.

    Dumanian, G. A. et al. Targeted reinnervation for transhumeral amputees: current surgical technique and update on results. Plast. Reconstr. Surg. 124, 863–869 (2009).

    CAS  PubMed  Article  Google Scholar 

  116. 116.

    Kuiken, T. A., Dumanian, G. A., Lipschutz, R. D., Miller, L. A. & Stubblefield, K. A. The use of targeted muscle reinnervation for improved myoelectric prosthesis control in a bilateral shoulder disarticulation amputee. Prosthet. Orthot. Int. 28, 245–253 (2004).

    CAS  PubMed  Article  Google Scholar 

  117. 117.

    Farina, D. et al. Man/machine interface based on the discharge timings of spinal motor neurons after targeted muscle reinnervation. Nat. Biomed. Eng. 1, 0025 (2017).

    Article  Google Scholar 

  118. 118.

    Aszmann, O. C. et al. Bionic reconstruction to restore hand function after brachial plexus injury: a case series of three patients. Lancet 385, 2183–2189 (2015).

    PubMed  Article  Google Scholar 

  119. 119.

    Muceli, S. et al. Decoding motor neuron activity from epimysial thin-film electrode recordings following targeted muscle reinnervation. J. Neural Eng. 16, 016010 (2019).

    PubMed  Article  Google Scholar 

  120. 120.

    Bergmeister, K. D. et al. Peripheral nerve transfers induce target muscle hyper-reinnervation and muscle fiber type switch. Sci. Adv. 5, eaau2956 (2019).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  121. 121.

    Farina, D. et al. Noninvasive, accurate assessment of the behavior of representative populations of motor units in targeted reinnervated muscles. IEEE Trans. Neural Syst. Rehabil. Eng. 22, 810–819 (2014).

    PubMed  Article  Google Scholar 

  122. 122.

    Kapelner, T. et al. Motor unit characteristics after targeted muscle reinnervation. PLoS ONE 11, e0149772 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  123. 123.

    Kapelner, T. et al. Classification of motor unit activity following targeted muscle reinnervation. In 2015 7th International IEEE/EMBS Conference on Neural Engineering (NER) 652–654 (IEEE, 2015).

  124. 124.

    Bergmeister, K. D. et al. Broadband prosthetic interfaces: combining nerve transfers and implantable multichannel EMG technology to decode spinal motor neuron activity. Front. Neurosci. 11, 421 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  125. 125.

    Ortiz-Catalan, M. Neuroengineering: deciphering neural drive. Nat. Biomed. Eng. 1, 0034 (2017).

    Article  Google Scholar 

  126. 126.

    Chen, C. et al. Prediction of finger kinematics from discharge timings of motor units: implications for intuitive control of myoelectric prostheses. J. Neural Eng. 16, 026005 (2019).

    PubMed  Article  Google Scholar 

  127. 127.

    Urbanchek, M. G. et al. Development of a regenerative peripheral nerve interface for control of a neuroprosthetic limb. BioMed. Res. Int. 2016, 1–8 (2016).

    Article  Google Scholar 

  128. 128.

    Frost, C. M. et al. Regenerative peripheral nerve interfaces for real-time, proportional control of a neuroprosthetic hand. J. Neuroeng. Rehabil. 15, 108 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  129. 129.

    Vu, P. P. et al. Closed-loop continuous hand control via chronic recording of regenerative peripheral nerve interfaces. IEEE Trans. Neural Syst. Rehabil. Eng. 26, 515–526 (2018).

    PubMed  Article  Google Scholar 

  130. 130.

    Vu, P. P. et al. A regenerative peripheral nerve interface allows real-time control of an artificial hand in upper limb amputees. Sci. Transl. Med. 12, eaay2857 (2020).

    PubMed  PubMed Central  Article  Google Scholar 

  131. 131.

    Collinger, J. L. et al. High-performance neuroprosthetic control by an individual with tetraplegia. Lancet 381, 557–564 (2013).

    PubMed  PubMed Central  Article  Google Scholar 

  132. 132.

    Wodlinger, B. et al. Ten-dimensional anthropomorphic arm control in a human brain–machine interface: difficulties, solutions, and limitations. J. Neural Eng. 12, 016011 (2015).

    CAS  PubMed  Article  Google Scholar 

  133. 133.

    Courtine, G., Micera, S., DiGiovanna, J. & del R Millán, J. Brain–machine interface: closer to therapeutic reality? Lancet 381, 515–517 (2013).

    PubMed  Article  Google Scholar 

  134. 134.

    Lebedev, M. A. & Nicolelis, M. A. L. Brain–machine interfaces: past, present and future. Trends Neurosci. 29, 536–546 (2006).

    CAS  PubMed  Article  Google Scholar 

  135. 135.

    Rohm, M. et al. Hybrid brain–computer interfaces and hybrid neuroprostheses for restoration of upper limb functions in individuals with high-level spinal cord injury. Artif. Intell. Med. 59, 133–142 (2013).

    PubMed  Article  Google Scholar 

  136. 136.

    Ison, M., Vujaklija, I., Whitsell, B., Farina, D. & Artemiadis, P. High-density electromyography and motor skill learning for robust long-term control of a 7-DoF robot arm. IEEE Trans. Neural Syst. Rehabil. Eng. 24, 424–433 (2016).

    PubMed  Article  Google Scholar 

  137. 137.

    Makin, T. R., de Vignemont, F. & Faisal, A. A. Neurocognitive barriers to the embodiment of technology. Nat. Biomed. Eng. 1, 0014 (2017).

    Article  Google Scholar 

  138. 138.

    Tyler, D. J. Neural interfaces for somatosensory feedback. Curr. Opin. Neurol. 28, 574–581 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  139. 139.

    Jiang, N., Rehbaum, H., Vujaklija, I., Graimann, B. & Farina, D. Intuitive, online, simultaneous, and proportional myoelectric control over two degrees-of-freedom in upper limb amputees. IEEE Trans. Neural Syst. Rehabil. Eng. 22, 501–510 (2014).

    PubMed  Article  Google Scholar 

  140. 140.

    Amsuess, S. et al. Context-dependent upper limb prosthesis control for natural and robust use. IEEE Trans. Neural Syst. Rehabil. Eng. 24, 744–753 (2016).

    PubMed  Article  Google Scholar 

  141. 141.

    Smith, L. H., Kuiken, T. A. & Hargrove, L. J. Real-time simultaneous myoelectric control by transradial amputees using linear and probability-weighted regression. In 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) 1119–1123 (IEEE, 2015).

  142. 142.

    Hahne, J. M., Schweisfurth, M. A., Koppe, M. & Farina, D. Simultaneous control of multiple functions of bionic hand prostheses: performance and robustness in end users. Sci. Robot. 3, eaat3630 (2018).

    PubMed  Article  Google Scholar 

  143. 143.

    Vujaklija, I. et al. Online mapping of EMG signals into kinematics by autoencoding. J. Neuroeng. Rehabil. 15, 21 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  144. 144.

    Hahne, J. M., Markovic, M. & Farina, D. User adaptation in myoelectric man-machine interfaces. Sci. Rep. 7, 4437 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  145. 145.

    Sartori, M., Llyod, D. G. & Farina, D. Neural data-driven musculoskeletal modeling for personalized neurorehabilitation technologies. IEEE Trans. Biomed. Eng. 63, 879–893 (2016).

    PubMed  Article  Google Scholar 

  146. 146.

    Sartori, M., Farina, D. & Lloyd, D. G. Hybrid neuromusculoskeletal modeling to best track joint moments using a balance between muscle excitations derived from electromyograms and optimization. J. Biomech. 47, 3613–3621 (2014).

    PubMed  Article  Google Scholar 

  147. 147.

    Durandau, G., Farina, D. & Sartori, M. Robust real-time musculoskeletal modeling driven by electromyograms. IEEE Trans. Biomed. Eng. 65, 556–564 (2018).

    PubMed  Article  Google Scholar 

  148. 148.

    Crouch, D. L. & Huang, H. Lumped-parameter electromyogram-driven musculoskeletal hand model: a potential platform for real-time prosthesis control. J. Biomech. 49, 3901–3907 (2016).

    PubMed  Article  Google Scholar 

  149. 149.

    Crouch, D. L. & Huang, H. Musculoskeletal model-based control interface mimics physiologic hand dynamics during path tracing task. J. Neural Eng. 14, 036008 (2017).

    PubMed  Article  Google Scholar 

  150. 150.

    Sartori, M., Durandau, G., Došen, S. & Farina, D. Robust simultaneous myoelectric control of multiple degrees of freedom in wrist-hand prostheses by real-time neuromusculoskeletal modeling. J. Neural Eng. 15, 066026 (2018).

    PubMed  Article  Google Scholar 

  151. 151.

    Sartori, M., Reggiani, M., Farina, D. & Lloyd, D. G. EMG-driven forward-dynamic estimation of muscle force and joint moment about multiple degrees of freedom in the human lower extremity. PLoS ONE 7, e52618 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  152. 152.

    Sartori, M., van de Riet, J. & Farina, D. Estimation of phantom arm mechanics about four degrees of freedom after targeted muscle reinnervation. IEEE Trans. Med. Robot. Bionics 1, 58–64 (2019).

    Article  Google Scholar 

  153. 153.

    Young, A. J., Simon, A. M. & Hargrove, L. J. A training method for locomotion mode prediction using powered lower limb prostheses. IEEE Trans. Neural Syst. Rehabil. Eng. 22, 671–677 (2014).

    PubMed  Article  Google Scholar 

  154. 154.

    Simon, A. M. et al. Configuring a powered knee and ankle prosthesis for transfemoral amputees within five specific ambulation modes. PLoS ONE 9, e99387 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  155. 155.

    Huang, H., Kuiken, T. A. & Lipschutz, R. D. A strategy for identifying locomotion modes using surface electromyography. IEEE Trans. Biomed. Eng. 56, 65–73 (2009).

    PubMed  PubMed Central  Article  Google Scholar 

  156. 156.

    Wang, J., Kannape, O. A. & Herr, H. M. Proportional EMG control of ankle plantar flexion in a powered transtibial prosthesis. In 2013 IEEE 13th International Conference on Rehabilitation Robotics (ICORR) 1–5 (IEEE, 2013).

  157. 157.

    Spanias, J. A., Perreault, E. J. & Hargrove, L. J. Detection of and compensation for EMG disturbances for powered lower limb prosthesis control. IEEE Trans. Neural Syst. Rehabil. Eng. 24, 226–234 (2016).

    PubMed  Article  Google Scholar 

  158. 158.

    Scheme, E., Fougner, A., Stavdahl, Ø., Chan, A. D. C. & Englehart, K. Examining the adverse effects of limb position on pattern recognition based myoelectric control. In 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology 6337–6340 (IEEE, 2010).

  159. 159.

    Scheme, E. J., Englehart, K. B. & Hudgins, B. S. Selective classification for improved robustness of myoelectric control under nonideal conditions. IEEE Trans. Biomed. Eng. 58, 1698–1705 (2011).

    PubMed  Article  Google Scholar 

  160. 160.

    Sensinger, J. W., Lock, B. A. & Kuiken, T. A. Adaptive pattern recognition of myoelectric signals: exploration of conceptual framework and practical algorithms. IEEE Trans. Neural Syst. Rehabil. Eng. 17, 270–278 (2009).

    PubMed  PubMed Central  Article  Google Scholar 

  161. 161.

    Zhang, F. & Huang, H. Source selection for real-time user intent recognition toward volitional control of artificial legs. IEEE J. Biomed. Health Inform. 17, 907–914 (2013).

    PubMed Central  Article  PubMed  Google Scholar 

  162. 162.

    Hahne, J. M., Dahne, S., Hwang, H.-J., Muller, K.-R. & Parra, L. C. Concurrent adaptation of human and machine improves simultaneous and proportional myoelectric control. IEEE Trans. Neural Syst. Rehabil. Eng. 23, 618–627 (2015).

    PubMed  Article  Google Scholar 

  163. 163.

    Yeung, D., Farina, D. & Vujaklija, I. Directional forgetting for stable co-adaptation in myoelectric control. Sensors 19, 2203 (2019).

    Article  Google Scholar 

  164. 164.

    Edwards, A. L. et al. Application of real-time machine learning to myoelectric prosthesis control: a case series in adaptive switching. Prosthet. Orthot. Int. 40, 573–581 (2016).

    PubMed  Article  Google Scholar 

  165. 165.

    Spanias, J. A., Simon, A. M., Perreault, E. J. & Hargrove, L. J. Preliminary results for an adaptive pattern recognition system for novel users using a powered lower limb prosthesis. In 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) 5083–5086 (IEEE, 2016).

  166. 166.

    Du, L., Zhang, F., He, H. & Huang, H. Improving the performance of a neural-machine interface for prosthetic legs using adaptive pattern classifiers. In Proc. Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) 1571–1574 (IEEE, 2013).

  167. 167.

    Zhuang, K. Z. et al. Shared human–robot proportional control of a dexterous myoelectric prosthesis. Nat. Mach. Intell. 1, 400–411 (2019).

    Article  Google Scholar 

  168. 168.

    Volkmar, R., Dosen, S., Gonzalez-Vargas, J., Baum, M. & Markovic, M. Improving bimanual interaction with a prosthesis using semi-autonomous control. J. Neuroeng. Rehabil. 16, 140 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  169. 169.

    Bensmaia, S. J., Tyler, D. J. & Micera, S. Restoration of sensory information via bionic hands. Nat. Biomed. Eng. https://doi.org/10.1038/s41551-020-00630-8 (2020).

  170. 170.

    Berniker, M. & Kording, K. Bayesian approaches to sensory integration for motor control. Wiley Interdiscip. Rev. Cogn. Sci. 2, 419–428 (2011).

    PubMed  Article  Google Scholar 

  171. 171.

    Witteveen, H. J., Rietman, H. S. & Veltink, P. H. Vibrotactile grasping force and hand aperture feedback for myoelectric forearm prosthesis users. Prosthet. Orthot. Int. 39, 204–212 (2015).

    PubMed  Article  Google Scholar 

  172. 172.

    Dosen, S., Ninu, A., Yakimovich, T., Dietl, H. & Farina, D. A novel method to generate amplitude-frequency modulated vibrotactile stimulation. IEEE Trans. Haptics 9, 3–12 (2016).

    PubMed  Article  Google Scholar 

  173. 173.

    Antfolk, C., Balkenius, C., Lundborg, G., Rosen, B. & Sebelius, F. A tactile display system for hand prostheses to discriminate pressure and individual finger localization. J. Med. Biol. Eng. 30, 355–359 (2010).

    Article  Google Scholar 

  174. 174.

    Antfolk, C. et al. Artificial redirection of sensation from prosthetic fingers to the phantom hand map on transradial amputees: vibrotactile versus mechanotactile sensory feedback. IEEE Trans. Neural Syst. Rehabil. Eng. 21, 112–120 (2013).

    PubMed  Article  Google Scholar 

  175. 175.

    Bark, K., Wheeler, J., Lee, G., Savall, J. & Cutkosky, M. A wearable skin stretch device for haptic feedback. In World Haptics 2009—3rd Joint EuroHaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems 464–469 (IEEE, 2009).

  176. 176.

    Wheeler, J., Bark, K., Savall, J. & Cutkosky, M. Investigation of rotational skin stretch for proprioceptive feedback with application to myoelectric systems. IEEE Trans. Neural Syst. Rehabil. Eng. 18, 58–66 (2010).

    PubMed  Article  Google Scholar 

  177. 177.

    Patterson, P. E. & Katz, J. A. Design and evaluation of a sensory feedback system that provides grasping pressure in a myoelectric hand. J. Rehabil. Res. Dev. 29, 1–8 (1992).

    CAS  PubMed  Article  Google Scholar 

  178. 178.

    Štrbac, M. et al. Integrated and flexible multichannel interface for electrotactile stimulation. J. Neural Eng. 13, 046014 (2016).

    PubMed  Article  Google Scholar 

  179. 179.

    Patel, G. K., Dosen, S., Castellini, C. & Farina, D. Multichannel electrotactile feedback for simultaneous and proportional myoelectric control. J. Neural Eng. 13, 056015 (2016).

    PubMed  Article  Google Scholar 

  180. 180.

    Scott, R. N., Brittain, R. H., Caldwell, R. R., Cameron, A. B. & Dunfield, V. A. Sensory-feedback system compatible with myoelectric control. Med. Biol. Eng. Comput. 18, 65–69 (1980).

    CAS  PubMed  Article  Google Scholar 

  181. 181.

    D’Anna, E. et al. A somatotopic bidirectional hand prosthesis with transcutaneous electrical nerve stimulation based sensory feedback. Sci. Rep. 7, 10930 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  182. 182.

    Li, M. et al. Discrimination and recognition of phantom finger sensation through transcutaneous electrical nerve stimulation. Front. Neurosci. 12, 283 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  183. 183.

    Vargas, L. et al. Object stiffness recognition using haptic feedback delivered through transcutaneous proximal nerve stimulation. J. Neural Eng. 17, 016002 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  184. 184.

    Zollo, L. et al. Restoring tactile sensations via neural interfaces for real-time force-and-slippage closed-loop control of bionic hands. Sci. Robot. 4, eaau9924 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  185. 185.

    Jorgovanovic, N., Dosen, S., Djozic, D. J., Krajoski, G. & Farina, D. Virtual grasping: closed-loop force control using electrotactile feedback. Comput. Math. Methods Med. 2014, 120357 (2014).

  186. 186.

    Saunders, I. & Vijayakumar, S. The role of feed-forward and feedback processes for closed-loop prosthesis control. J. Neuroeng. Rehabil. 8, 60 (2011).

    PubMed  PubMed Central  Article  Google Scholar 

  187. 187.

    Schweisfurth, M. A. et al. Electrotactile EMG feedback improves the control of prosthesis grasping force. J. Neural Eng. 13, 056010 (2016).

    PubMed  Article  Google Scholar 

  188. 188.

    Marasco, P. D., Schultz, A. E. & Kuiken, T. A. Sensory capacity of reinnervated skin after redirection of amputated upper limb nerves to the chest. Brain 132, 1441–1448 (2009).

    PubMed  PubMed Central  Article  Google Scholar 

  189. 189.

    Kuiken, T. A. et al. Targeted reinnervation for enhanced prosthetic arm function in a woman with a proximal amputation: a case study. Lancet 369, 371–380 (2007).

    PubMed  Article  Google Scholar 

  190. 190.

    Marasco, P. D., Kim, K., Colgate, J. E., Peshkin, M. A. & Kuiken, T. A. Robotic touch shifts perception of embodiment to a prosthesis in targeted reinnervation amputees. Brain 134, 747–758 (2011).

    PubMed  PubMed Central  Article  Google Scholar 

  191. 191.

    Srinivasan, S. S. & Herr, H. M. A cutaneous mechanoneural interface for neuroprosthetic feedback. Nat. Biomed. Eng. https://doi.org/10.1038/s41551-020-00669-7 (2021).

  192. 192.

    Čvančara, P. et al. Stability of flexible thin-film metallization stimulation electrodes: analysis of explants after first-in-human study and improvement of in vivo performance. J. Neural Eng. 17, 046006 (2020).

    PubMed  Article  Google Scholar 

  193. 193.

    Raspopovic, S. et al. Restoring natural sensory feedback in real-time bidirectional hand prostheses. Sci. Transl. Med. 6, 222ra19 (2014).

    PubMed  Article  Google Scholar 

  194. 194.

    Tan, D. W. et al. A neural interface provides long-term stable natural touch perception. Sci. Transl. Med. 6, 257ra138 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  195. 195.

    Mastinu, E. et al. Neural feedback strategies to improve grasping coordination in neuromusculoskeletal prostheses. Sci. Rep. 10, 11793 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  196. 196.

    Oddo, C. M. et al. Intraneural stimulation elicits discrimination of textural features by artificial fingertip in intact and amputee humans. eLife 5, 167–174 (2016).

    Article  Google Scholar 

  197. 197.

    Petrini, F. M. et al. Six-month assessment of a hand prosthesis with intraneural tactile feedback. Ann. Neurol. 85, 137–154 (2018).

    PubMed  Article  Google Scholar 

  198. 198.

    Valle, G. et al. Biomimetic intraneural sensory feedback enhances sensation naturalness, tactile sensitivity, and manual dexterity in a bidirectional prosthesis. Neuron 100, 37–45.e7 (2018).

    CAS  PubMed  Article  Google Scholar 

  199. 199.

    Risso, G. et al. Optimal integration of intraneural somatosensory feedback with visual information: a single-case study. Sci. Rep. 9, 7916 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  200. 200.

    D’Anna, E. et al. A closed-loop hand prosthesis with simultaneous intraneural tactile and position feedback. Sci. Robot. 4, eaau8892 (2019).

    PubMed  Article  Google Scholar 

  201. 201.

    Petrini, F. M. et al. Sensory feedback restoration in leg amputees improves walking speed, metabolic cost and phantom pain. Nat. Med. 25, 1356–1363 (2019).

    CAS  PubMed  Article  Google Scholar 

  202. 202.

    Chandrasekaran, S. et al. Sensory restoration by epidural stimulation of the lateral spinal cord in upper-limb amputees. eLife 9, e54349 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  203. 203.

    Klaes, C. et al. A cognitive neuroprosthetic that uses cortical stimulation for somatosensory feedback. J. Neural Eng. 11, 056024 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  204. 204.

    May, T. et al. Detection of optogenetic stimulation in somatosensory cortex by non-human primates—towards artificial tactile sensation. PLoS ONE 9, e114529 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  205. 205.

    Anderson, H. E. & Weir, R. F. ff. On the development of optical peripheral nerve interfaces. Neural Regen. Res. 14, 425–436 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  206. 206.

    Fontaine, A. K. et al. Optical vagus nerve modulation of heart and respiration via heart-injected retrograde AAV. Sci. Rep. 11, 3664 (2021).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  207. 207.

    Fontaine, A. K. et al. Optogenetic stimulation of cholinergic fibers for the modulation of insulin and glycemia. Sci. Rep. 11, 3670 (2021).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  208. 208.

    Fontaine, A. K., Gibson, E. A., Caldwell, J. H. & Weir, R. F. Optical read-out of neural activity in mammalian peripheral axons: calcium signaling at nodes of Ranvier. Sci. Rep. 7, 4744 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  209. 209.

    De Nunzio, A. M. et al. Tactile feedback is an effective instrument for the training of grasping with a prosthesis at low- and medium-force levels. Exp. Brain Res. 235, 2457–2559 (2017).

    Article  CAS  Google Scholar 

  210. 210.

    Strbac, M. et al. Short- and long-term learning of feedforward control of a myoelectric prosthesis with sensory feedback by amputees. IEEE Trans. Neural Syst. Rehabil. Eng. 25, 2133–2145 (2017).

    PubMed  Article  Google Scholar 

  211. 211.

    Mulvey, M. R., Fawkner, H. J., Radford, H. E. & Johnson, M. I. Perceptual embodiment of prosthetic limbs by transcutaneous electrical nerve stimulation. Neuromodulation 15, 42–47 (2012).

    PubMed  Article  Google Scholar 

  212. 212.

    Johnson, S. S. & Mansfield, E. Prosthetic training. Phys. Med. Rehabil. Clin. N. Am. 25, 133–151 (2014).

    PubMed  Article  Google Scholar 

  213. 213.

    Wheaton, L. A. Neurorehabilitation in upper limb amputation: understanding how neurophysiological changes can affect functional rehabilitation. J. Neuroeng. Rehabil. 14, 41 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  214. 214.

    Soyer, K., Ünver, B., Tamer, S. & Ülger, Ö. G. The importance of rehabilitation concerning upper extremity amputees: a systematic review. Pakistan J. Med. Sci. 32, 1312–1319 (2016).

    Google Scholar 

  215. 215.

    Roche, A. D. et al. A structured rehabilitation protocol for improved multifunctional prosthetic control: a case study. J. Vis. Exp. 105, e52968 (2015).

    Google Scholar 

  216. 216.

    Dise-Lewis, J. E. in Comprehensive Management of the Upper-Limb Amputee (eds Atkins, D. J. & Meier, R. H.) 165–172 (Springer, 1989).

  217. 217.

    Gallagher, P. & MacLachlan, M. Psychological adjustment and coping in adults with prosthetic limbs. Behav. Med. 25, 117–124 (1999).

    CAS  PubMed  Article  Google Scholar 

  218. 218.

    Hruby, L. A., Pittermann, A., Sturma, A. & Aszmann, O. C. The Vienna psychosocial assessment procedure for bionic reconstruction in patients with global brachial plexus injuries. PLoS ONE 13, e0189592 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  219. 219.

    Sturma, A., Hruby, L. A., Prahm, C., Mayer, J. A. & Aszmann, O. C. Rehabilitation of upper extremity nerve injuries using surface EMG biofeedback: protocols for clinical application. Front. Neurosci. 12, 906 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  220. 220.

    Vujaklija, I. et al. Translating research on myoelectric control into clinics—are the performance assessment methods adequate? Front. Neurorobot. 11, 7 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  221. 221.

    Ortiz-Catalan, M., Rouhani, F., Branemark, R. & Hakansson, B. Offline accuracy: a potentially misleading metric in myoelectric pattern recognition for prosthetic control. In 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) 1140–1143 (IEEE, 2015).

  222. 222.

    Jarvis, H. L. et al. Temporal spatial and metabolic measures of walking in highly functional individuals with lower limb amputations. Arch. Phys. Med. Rehabil. 98, 1389–1399 (2017).

    PubMed  Article  Google Scholar 

  223. 223.

    Smurr, L. M., Gulick, K., Yancosek, K. & Ganz, O. Managing the upper extremity amputee: a protocol for success. J. Hand Ther. 21, 160–176 (2008).

    PubMed  Article  Google Scholar 

  224. 224.

    Sturma, A. et al. Rehabilitation of high upper limb amputees after targeted muscle reinnervation. J. Hand Ther. https://doi.org/10.1016/j.jht.2020.10.002 (2020).

  225. 225.

    Prahm, C., Vujaklija, I., Kayali, F., Purgathofer, P. & Aszmann, O. C. Game-based rehabilitation for myoelectric prosthesis control. JMIR Serious Games 5, e3 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  226. 226.

    Anderson, F. & Bischof, W. F. Augmented reality improves myoelectric prosthesis training. Int. J. Disabil. Hum. Dev. 13, 349–354 (2014).

    Article  Google Scholar 

  227. 227.

    Prahm, C., Kayali, F., Sturma, A. & Aszmann, O. PlayBionic: game-based interventions to encourage patient engagement and performance in prosthetic motor rehabilitation. PM&R 10, 1252–1260 (2018).

    Article  Google Scholar 

  228. 228.

    Tillander, J., Hagberg, K., Hagberg, L. & Brånemark, R. Osseointegrated titanium implants for limb prostheses attachments: infectious complications. Clin. Orthop. Relat. Res. 468, 2781–2788 (2010).

    PubMed  PubMed Central  Article  Google Scholar 

  229. 229.

    Delgado-Martinez, I. et al. Fascicular nerve stimulation and recording using a novel double-aisle regenerative electrode. J. Neural Eng. 14, 046003 (2017).

    CAS  PubMed  Article  Google Scholar 

  230. 230.

    Tan, D. W., Schiefer, M. A., Keith, M. W., Anderson, J. R. & Tyler, D. J. Stability and selectivity of a chronic, multi-contact cuff electrode for sensory stimulation in human amputees. J. Neural Eng. 12, 026002 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  231. 231.

    Micera, S., Caleo, M., Chisari, C., Hummel, F. C. & Pedrocchi, A. Advanced neurotechnologies for the restoration of motor function. Neuron 105, 604–620 (2020).

    CAS  PubMed  Article  Google Scholar 

  232. 232.

    Delianides, C., Tyler, D., Pinault, G., Ansari, R. & Triolo, R. Implanted high density cuff electrodes functionally activate human tibial and peroneal motor units without chronic detriment to peripheral nerve health. Neuromodulation 23, 754–762 (2020).

    PubMed  Article  Google Scholar 

  233. 233.

    Paggi, V., Akoussi, O., Micera, S. & Lacour, P. S. Compliant peripheral nerve interfaces. J. Neural Eng. 18, 031001 (2021).

    PubMed  Article  Google Scholar 

  234. 234.

    Srinivasan, S. S. et al. On prosthetic control: a regenerative agonist-antagonist myoneural interface. Sci. Robot. 2, eaan2971 (2017).

    PubMed  Article  Google Scholar 

  235. 235.

    Horch, K., Meek, S., Taylor, T. G. & Hutchinson, D. T. Object discrimination with an artificial hand using electrical stimulation of peripheral tactile and proprioceptive pathways with intrafascicular electrodes. IEEE Trans. Neural Syst. Rehabil. Eng. 19, 483–489 (2011).

    PubMed  Article  Google Scholar 

  236. 236.

    Schiefer, M. A., Graczyk, E. L., Sidik, S. M., Tan, D. W. & Tyler, D. J. Artificial tactile and proprioceptive feedback improves performance and confidence on object identification tasks. PLoS ONE 13, e0207659 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  237. 237.

    Fernández, A., Isusi, I. & Gómez, M. Factors conditioning the return to work of upper limb amputees in Asturias, Spain. Prosthet. Orthot. Int. 24, 143–147 (2000).

    PubMed  Article  Google Scholar 

  238. 238.

    Burger, H. & Marinček, Č. Return to work after lower limb amputation. Disabil. Rehabil. 29, 1323–1329 (2007).

    PubMed  Article  Google Scholar 

  239. 239.

    Stieglitz, T. Of man and mice: translational research in neurotechnology. Neuron 105, 12–15 (2020).

    CAS  PubMed  Article  Google Scholar 

  240. 240.

    van der Sluis, C. K. & Bongers, R. M. TIPS for scaling up research in upper limb prosthetics. Prosthesis 2, 340–351 (2020).

    Article  Google Scholar 

  241. 241.

    Hickey, G., Richards, T. & Sheehy, J. Co-production from proposal to paper. Nature 562, 29–31 (2018).

    CAS  PubMed  Article  Google Scholar 

  242. 242.

    Vasudevan, S., Patel, K. & Welle, C. Rodent model for assessing the long term safety and performance of peripheral nerve recording electrodes. J. Neural Eng. 14, 016008 (2017).

    PubMed  Article  Google Scholar 

  243. 243.

    Sartoretto, S. C. et al. Sheep as an experimental model for biomaterial implant evaluation. Acta Ortop. Bras. 24, 262–266 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  244. 244.

    Boretius, T. et al. A transverse intrafascicular multichannel electrode (TIME) to interface with the peripheral nerve. Biosens. Bioelectron. 26, 62–69 (2010).

    CAS  PubMed  Article  Google Scholar 

  245. 245.

    Tyler, D. J. & Durand, D. M. Chronic response of the rat sciatic nerve to the flat interface nerve electrode. Ann. Biomed. Eng. 31, 633–642 (2003).

    PubMed  Article  Google Scholar 

Download references

Acknowledgements

We were supported by the Academy of Finland (I.V.), Austrian Federal Ministry of Science (A.S. and O.C.A.), Bertarelli Foundation (S.M.), the European Union (A.S., D.F., K.-P.H., O.C.A., R.B. and S.M.), the European Research Council (A.S., D.F. and O.C.A.), German Federal Ministry of Education and Research BMBF (K.-P.H. and T.S.), the German National Research Foundation (T.S.), the Royal British Legion (A.M.J.B.), the Swedish Innovation Agency (VINNOVA) (R.B.), the Swedish Research Council (R.B.), the Swiss National Competence Center in Research (NCCR) in Robotics (S.M.), US Department of Defense (R.B. and H.H.), US Department of Veterans Affairs (D.T.), US Department of Veterans Affairs Rehabilitation Research and Development Service (R.F.ff.W.), US National Institute on Disability, Independent Living and Rehabilitation Research (H.H. and T.K.), US National Institutes of Health (D.T., H.H., L.J.H. and R.F.ff.W.), US National Institute on Neurological Disorders and Stroke (R.F.ff.W.), US National Institute on Bioimaging and Bioengineering (R.F.ff.W.) and US National Science Foundation (H.H.).

Author information

Affiliations

Authors

Contributions

D.F. and O.C.A. conceived the project, and D.F., I.V., A.S. and O.C.A. edited the manuscript. All authors contributed to writing and revising the manuscript, and approved the final version.

Corresponding author

Correspondence to Dario Farina.

Ethics declarations

Competing interests

L.J.H. and T.K. have a financial interest in Coapt LLC (https://www.coaptengineering.com). S.M. is a co-founder of Sensars Neuroprosthetics (https://www.sensars.com). T.S. is a co-founder and scientific advisor of CorTec GmbH (https://www.cortec-neuro.com) and neuroloop GmbH (https://www.neuroloop.de). R.F.ff.W. is a co-founder and president of Point Designs Llc (https://www.pointdesignsllc.com). H.D. and B.G. are scientific managers at Ottobock SE & Co. KGaA. T.I. and K.K. are scientific officers at Össur Iceland. R.B. is the founder and chairman of Integrum AB. A.M.J.B. is co-founder and director of Biomex Ltd.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Farina, D., Vujaklija, I., Brånemark, R. et al. Toward higher-performance bionic limbs for wider clinical use. Nat Biomed Eng (2021). https://doi.org/10.1038/s41551-021-00732-x

Download citation

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing