Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Generation of hypoimmunogenic T cells from genetically engineered allogeneic human induced pluripotent stem cells


Avoiding the immune rejection of transplanted T cells is central to the success of allogeneic cancer immunotherapies. One solution to protecting T-cell grafts from immune rejection involves the deletion of allogeneic factors and of factors that activate cytotoxic immune cells. Here we report the generation of hypoimmunogenic cancer-antigen-specific T cells derived from induced pluripotent stem cells (iPSCs) lacking β2-microglobulin, the class-II major histocompatibility complex (MHC) transactivator and the natural killer (NK) cell-ligand poliovirus receptor CD155, and expressing single-chain MHC class-I antigen E. In mouse models of CD20-expressing leukaemia or lymphoma, differentiated T cells expressing a CD20 chimeric antigen receptor largely escaped recognition by NKG2A+ and DNAM-1+ NK cells and by CD8 and CD4 T cells in the allogeneic recipients while maintaining anti-tumour potency. Hypoimmunogenic iPSC-derived T cells may contribute to the creation of off-the-shelf T cell immunotherapies.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: B2MKO iPS-T cells escape the response and lysis of allogeneic CD8 T cells.
Fig. 2: CIITA-disrupted iPS-T cells escaped recognition by allogeneic CD4 T cells.
Fig. 3: HLA-E-transduced iPS-T cells reduced the reactivity of NKG2A+ NK cells.
Fig. 4: tKO/E iPS-T cells reduced the reactivity of DNAM-1+ NK cells.
Fig. 5: tKO/E iPS-T cells show better survival than WT iPS-T cells in co-culture with whole PBMCs.
Fig. 6: tKO/E iPS-T cells survived and suppressed tumour cells in vivo in a human immunocompetent mouse model.

Data availability

The main data supporting the results in this study are available within the paper and its Supplementary Information. The raw and analysed datasets generated during the study are too large to be publicly shared, but they are available for research purposes from the corresponding author on reasonable request.


  1. 1.

    Hammerl, D., Rieder, D., Martens, J. W. M., Trajanoski, Z. & Debets, R. Adoptive T cell therapy: new avenues leading to safe targets and powerful allies. Trends Immunol. 39, 921–936 (2018).

    CAS  PubMed  Google Scholar 

  2. 2.

    Rapoport, A. P. et al. NY-ESO-1-specific TCR-engineered T cells mediate sustained antigen-specific antitumor effects in myeloma. Nat. Med. 21, 914–921 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Kalos, M. et al. T cells with chimeric antigen receptors have potent antitumor effects and can establish memory in patients with advanced leukemia. Sci. Transl. Med. 3, 95ra73 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Qasim, W. et al. Molecular remission of infant B-ALL after infusion of universal TALEN gene-edited CAR T cells. Sci. Transl. Med. 9, eaaj2013 (2017).

    PubMed  Google Scholar 

  5. 5.

    Georgiadis, C. et al. Long terminal repeat CRISPR-CAR-coupled “universal” T cells mediate potent anti-leukemic effects. Mol. Ther. 26, 1215–1227 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Ren, J. et al. Multiplex genome editing to generate universal CAR T cells resistant to PD1 inhibition. Clin. Cancer Res. 23, 2255–2266 (2017).

    CAS  PubMed  Google Scholar 

  7. 7.

    Choi, B. D. et al. CRISPR–Cas9 disruption of PD-1 enhances activity of universal EGFRvIII CAR T cells in a preclinical model of human glioblastoma. J. Immunother. Cancer 7, 304 (2019).

    PubMed  PubMed Central  Google Scholar 

  8. 8.

    Cornelissen, J. J. et al. Early CD4+ T-cell effector alloreactivity towards multiple mismatched HLA class II alleles is associated with graft predominance after double umbilical cord blood transplantation (DUCBT). Blood 126, 387 (2015).

    Google Scholar 

  9. 9.

    Nianias, A. et al. Induced pluripotent stem cell (iPSC)-derived lymphocytes for adoptive cell immunotherapy: recent advances and challenges. Curr. Hematol. Malig. Rep. 14, 261–268 (2019).

    PubMed  PubMed Central  Google Scholar 

  10. 10.

    Nishimura, T. et al. Generation of rejuvenated antigen-specific T cells by reprogramming to pluripotency and redifferentiation. Cell Stem Cell 12, 114–126 (2013).

    CAS  PubMed  Google Scholar 

  11. 11.

    Vizcardo, R. et al. Regeneration of human tumor antigen-specific T cells from iPSCs derived from mature CD8+ T cells. Cell Stem Cell 12, 31–36 (2013).

    CAS  PubMed  Google Scholar 

  12. 12.

    Kitayama, S. et al. Cellular adjuvant properties, direct cytotoxicity of re-differentiated Vα24 invariant NKT-like cells from human induced pluripotent stem cells. Stem Cell Rep. 6, 213–227 (2016).

    CAS  Google Scholar 

  13. 13.

    Ueda, N. et al. Generation of TCR-expressing innate lymphoid-like helper cells that induce cytotoxic T cell-mediated anti-leukemic cell response. Stem Cell Rep. 10, 1935–1946 (2018).

    CAS  Google Scholar 

  14. 14.

    Ando, M. et al. A safeguard system for induced pluripotent stem cell-derived rejuvenated T cell therapy. Stem Cell Rep. 5, 597–608 (2015).

    CAS  Google Scholar 

  15. 15.

    Minagawa, A. et al. Enhancing T cell receptor stability in rejuvenated iPSC-derived T cells improves their use in cancer immunotherapy. Cell Stem Cell 23, 850–858.e4 (2018).

    CAS  PubMed  Google Scholar 

  16. 16.

    Themeli, M. et al. Generation of tumor-targeted human T lymphocytes from induced pluripotent stem cells for cancer therapy. Nat. Biotechnol. 31, 928–933 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Torikai, H. et al. Toward eliminating HLA class I expression to generate universal cells from allogeneic donors. Blood 122, 1341–1349 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Chen, H. et al. Functional disruption of human leukocyte antigen II in human embryonic stem cell. Biol. Res. 48, 59 (2015).

    PubMed  PubMed Central  Google Scholar 

  19. 19.

    Rong, Z. et al. An effective approach to prevent immune rejection of human ESC-derived allografts. Cell Stem Cell 14, 121–130 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Gornalusse, G. G. et al. HLA-E-expressing pluripotent stem cells escape allogeneic responses and lysis by NK cells. Nat. Biotechnol. 35, 765–772 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Mattapally, S. et al. Human leukocyte antigen class I and II knockout human induced pluripotent stem cell-derived cells: universal donor for cell therapy. J. Am. Heart Assoc. 7, e010239 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Han, X. et al. Generation of hypoimmunogenic human pluripotent stem cells. Proc. Natl Acad. Sci. USA 116, 10441–10446 (2019).

    CAS  PubMed  Google Scholar 

  23. 23.

    Marino, J., Paster, J. & Benichou, G. Allorecognition by T lymphocytes and allograft rejection. Front. Immunol. 7, 582 (2016).

    PubMed  PubMed Central  Google Scholar 

  24. 24.

    Gussow, D., Rein, R., Kottman, A. & Ploegh, H. L. The human β2-microglobulin gene. Primary structure and definition of the transcriptional unit. J. Immunol. 139, 3132–3138 (2016).

    Google Scholar 

  25. 25.

    Holling, T. M., Schooten, E. & Van Den Elsen, P. J. Function and regulation of MHC class II molecules in T-lymphocytes: of mice and men. Hum. Immunol. 65, 282–290 (2004).

    CAS  PubMed  Google Scholar 

  26. 26.

    Salgado, F. J. et al. Interleukin-dependent modulation of HLA-DR expression on CD4 and CD8 activated T cells. Immunol. Cell Biol. 80, 138–147 (2002).

    CAS  PubMed  Google Scholar 

  27. 27.

    Lanier, L. L. NK cell recognition. Annu. Rev. Immunol. 23, 225–274 (2005).

    CAS  PubMed  Google Scholar 

  28. 28.

    King, A. et al. HLA-E is expressed on trophoblast and interacts with CD94/NKG2 receptors on decidual NK cells. Eur. J. Immunol. 30, 1623–1631 (2000).

    CAS  PubMed  Google Scholar 

  29. 29.

    Marín, R. et al. Analysis of HLA-E expression in human tumors. Immunogenetics 54, 767–775 (2003).

    PubMed  Google Scholar 

  30. 30.

    Tomasec, P. et al. Surface expression of HLA-E, an inhibitor of natural killer cells, enhanced by human cytomegalovirus gpUL40. Science 287, 1031–1033 (2000).

    CAS  PubMed  Google Scholar 

  31. 31.

    A.T., B. et al. NK cells expressing inhibitory KIR for non-self-ligands remain tolerant in HLA-matched sibling stem cell transplantation. Blood 115, 2686–2694 (2010).

    Google Scholar 

  32. 32.

    Crew, M. D., Cannon, M. J., Phanavanh, B. & Garcia-Borges, C. N. An HLA-E single chain trimer inhibits human NK cell reactivity towards porcine cells. Mol. Immunol. 42, 1205–1214 (2005).

    CAS  PubMed  Google Scholar 

  33. 33.

    Braud, V. M. et al. HLA-E binds to natural killer cell receptors CD94/NKG2A, B and C. Nature 391, 795–799 (1998).

    CAS  PubMed  Google Scholar 

  34. 34.

    Ardolino, M. et al. DNAM-1 ligand expression on Ag-stimulated T lymphocytes is mediated by ROS-dependent activation of DNA-damage response: relevance for NK-T cell interaction. Blood 117, 4778–4786 (2011).

    CAS  PubMed  Google Scholar 

  35. 35.

    Cerboni, C. et al. Antigen-activated human T lymphocytes express cell-surface NKG2D ligands via an ATM/ATR-dependent mechanism and become susceptible to autologous NK-cell lysis. Blood 110, 606–615 (2007).

    CAS  PubMed  Google Scholar 

  36. 36.

    Tomasec, P. et al. Downregulation of natural killer cell-activating ligand CD155 by human cytomegalovirus UL141. Nat. Immunol. 6, 181–188 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Kruse, V. et al. Human induced pluripotent stem cells are targets for allogeneic and autologous natural killer (NK) cells and killing is partly mediated by the activating NK receptor DNAM-1. PLoS ONE 10, e0125544 (2015).

    PubMed  PubMed Central  Google Scholar 

  38. 38.

    Yaguchi, T. et al. Human PBMC-transferred murine MHC class I/II-deficient NOG mice enable long-term evaluation of human immune responses. Cell. Mol. Immunol. 15, 953–962 (2018).

    CAS  PubMed  Google Scholar 

  39. 39.

    Ashizawa, T. et al. Antitumor effect of programmed death-1 (PD-1) blockade in humanized the NOG-MHC double knockout mouse. Clin. Cancer Res. 23, 149–158 (2017).

    CAS  PubMed  Google Scholar 

  40. 40.

    Sommermeyer, D. et al. Chimeric antigen receptor-modified T cells derived from defined CD8+ and CD4+ subsets confer superior antitumor reactivity in vivo. Leukemia 30, 492–500 (2015).

    PubMed  PubMed Central  Google Scholar 

  41. 41.

    Deuse, T. et al. Hypoimmunogenic derivatives of induced pluripotent stem cells evade immune rejection in fully immunocompetent allogeneic recipients. Nat. Biotechnol. 37, 252–258 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Xu, H. et al. Targeted disruption of HLA genes via CRISPR–Cas9 generates iPSCs with enhanced immune compatibility. Cell Stem Cell 24, 566–578.e7 (2019).

    CAS  PubMed  Google Scholar 

  43. 43.

    Ren, J., Zhang, X., Liu, X., Fang, C. & Jiang, S. A versatile system for rapid multiplex genome-edited CAR T cell generation. Oncotarget 8, 17002–17011 (2017).

    PubMed  PubMed Central  Google Scholar 

  44. 44.

    Merkle, F. T. et al. Human pluripotent stem cells recurrently acquire and expand dominant negative P53 mutations. Nature 545, 229–233 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Okita, K. et al. A more efficient method to generate integration-free human iPS cells. Nat. Methods 8, 409–412 (2011).

    CAS  PubMed  Google Scholar 

  46. 46.

    Lee, S. et al. Repurposing the cord blood bank for haplobanking of HLA-homozygous iPSCs and their usefulness to multiple populations. Stem Cells 36, 1552–1566 (2018).

    CAS  PubMed  Google Scholar 

  47. 47.

    Kaneko, S. & Yamanaka, S. To be immunogenic, or not to be: that’s the iPSC question. Cell Stem Cell 12, 385–386 (2013).

    CAS  PubMed  Google Scholar 

  48. 48.

    Taylor, C. J., Peacock, S., Chaudhry, A. N., Bradley, J. A. & Bolton, E. M. Generating an iPSC bank for HLA-matched tissue transplantation based on known donor and recipient HLA types. Cell Stem Cell 11, 147–152 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Ichise, H. et al. NK cell alloreactivity against KIR-ligand-mismatched HLA-haploidentical tissue derived from HLA haplotype-homozygous iPSCs. Stem Cell Rep. 9, 853–867 (2017).

    CAS  Google Scholar 

  50. 50.

    Hashizume, O. et al. Epigenetic regulation of the nuclear-coded GCAT and SHMT2 genes confers human age-associated mitochondrial respiration defects. Sci. Rep. 5, 10434 (2015).

    PubMed  PubMed Central  Google Scholar 

  51. 51.

    Wu, X., Zhang, Y., Li, Y. & Schmidt-wolf, I. G. H. Increase of antitumoral effects of cytokine-induced killer cells by antibody-mediated inhibition of MICA shedding. Cancers 12, 1818 (2020).

    CAS  PubMed Central  Google Scholar 

  52. 52.

    Chen, S., Zhou, Y., Chen, Y. & Gu, J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 17, 884–890 (2018).

    CAS  Google Scholar 

Download references


We thank S. Yamanaka for providing the HLA-homozygous iPSC line and giving critical advice for our research work; H. Nakauchi for providing other iPSC lines; T. Nakahata for providing the animals; K. Eto, D. Suzuki and S. Nakamura for providing the B2M-knockout vector and giving critical advice for our research; P. Karagiannis for providing technical writing support for the manuscript; A. Tanaka for the animal care; M. Nomura for supporting the whole-exome sequencing analysis; P. Gee for supporting the gene modification using MaxCyte; Y. Mishima, Y. Kawai, N. Yanagawa and A. Maruyama for giving advice on our research work; and S. Kitayama, K. Ohara, Y. Miyake, E. Imai, A. Kumagai, S. Kamibayashi and K. Noda for technical assistance. This work was supported in part by Practical Research for Innovative Cancer Control, Core Center for iPS Cell Research from Japan Agency for Medical Research and Development (JP21bm0104001), and a Grant-in-Aid for Research Activity Start-up from the Japan Society for the Promotion of Science (19K23863).

Author information




B.W. and S.K. designed the study; B.W. and S.K. interpreted the data; B.W., T.U., N.U., H.Y., T.I. and A.I. performed the experiments. R.I., M.G. and R.T. generated and provided the NOG dKO mice. B.W. and S.K. analysed the data; S.I., A.M., H.X., A.H., R.I., M.G. and R.T provided critical materials and advice for the experiments. S.I., M.W. and Y.U. contributed to the analysis and discussion of the data; S.K. supervised the study; and B.W. and S.K. wrote the manuscript.

Corresponding author

Correspondence to Shin Kaneko.

Ethics declarations

Competing interests

S.K. is a founder, shareholder and chief scientific officer at Thyas Co. Ltd and received research funding from Takeda Pharmaceutical Co. Ltd, Kirin Co. Ltd, Terumo Co. Ltd, Tosoh Co. Ltd and Thyas Co. Ltd.

Additional information

Peer review information Nature Biomedical Engineering thanks Cliona Rooney and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, B., Iriguchi, S., Waseda, M. et al. Generation of hypoimmunogenic T cells from genetically engineered allogeneic human induced pluripotent stem cells. Nat Biomed Eng 5, 429–440 (2021).

Download citation


Quick links