
291

editorial

Pooling the strengths of data and models
The availability of higher-quality biomedical and clinical data is widening the reach and usefulness of data-fitted 
biophysical models and of data-driven mathematical and statistical modelling.

Scarce samples, small data and the 
limited availability of computing 
capacity and data storage have long 

constrained the acquisition of scientific 
knowledge. Yet this didn’t prevent Charles 
Darwin, James Clerk Maxwell, Gregor 
Mendel, and Rosalind Franklin, James 
Watson and Francis Crick from describing 
how natural selection works, the behaviour 
of electric and magnetic fields, how genetic 
inheritance functions, and how DNA stores 
information. Most scientific laws describing 
aspects of the natural world (and scientific 
theories explaining it) have been originally 
put forward on the basis of limited actual 
information and via careful reasoning 
and maths, and then validated over time 
with more observations and repeated 
experiments. The strengths of mathematical 
and physical models are indisputable.

However, in a world increasingly awash 
with data, it is tempting to leave biophysical 
models behind and let model-agnostic 
computational techniques (often using 
machine learning) find patterns that 
describe the data. After all, not everything 
can be put down into tractable mathematical 
formulae. And the bigger and messier 
the datasets, the harder is to work out 
formal relationships that explain what is 
going on. Nonetheless, when available or 
feasible, data-driven mathematical and 
statistical models can provide mechanistic 
understanding, generalization and 
explainability, and can be used to predict 
outcomes. And even when necessarily 
simplistic, analytical models can capture the 
essence of the problem or be used to derive 
insight from the data.

Many biomedical problems and systems 
of pressing relevance are too complex to 
be feasibly or practically described via 
analytical biophysical models. Instead, pure 
data-driven modelling does not require 
predefined rules or hypotheses about the 
problem or system (and the biases that come 
with such assumptions). But data-driven 
models can be blind to all sorts of biases in 
the data, may find irrelevant or unphysical 
patterns, or fail to converge to scientifically 
meaningful solutions. This may not matter 
when the intention is to create a practical 
tool that accurately predicts outputs within 
the bounds of the data inputs, but we may  
be lead astray when pursuing discovery  
or meaning.

When big data and mathematical 
modelling grounded on physical and 
biological knowledge can be judiciously 
combined, the power of raw information 
and the robustness and predictive strength 
of mathematical or statistical relationships 
can bring about the best of both worlds. 
Five papers in this issue of Nature 
Biomedical Engineering showcase how this 
can be achieved for a range of problems in 
neuroscience and oncology.

Understanding brain function involves 
finding patterns in the connectivity between 
regions of the brain that share a function 
or that are engaged in the same task at the 
same time. Such functional connectivity 
patterns have been biophysically modelled 
as neural circuits. Yet such models typically 
apply to population-level responses 
rather than to responses observed in a 
patient or individual, are disease-specific, 
and cannot be easily applied to control 
closed-loop electrical stimulation for 
treating neurological disorders (such 
as Parkinson’s disease and epilepsy). 
Maryam Shanechi and colleagues report 
the development of linear input–output 

models to predict how multiregional 
brain networks respond to continuous 
stimulation, by using neural recordings from 
two awake (yet head-restrained) monkeys 
(which experienced stochastic changes 
in stimulation amplitude and frequency). 
Using cross-validation, the researchers 
fitted the parameters of the data-driven 
models to the datasets generated, and then 
evaluated their forward-prediction accuracy. 
By using numerical simulations, they also 
show that the fitted models could be used in 
closed-loop neuromodulation systems.

Amit Etkin and colleagues also used 
a data-driven approach, yet with purely 
statistical modelling (unsupervised sparse 
K-means clustering; that is, the clustering 
of observations into a K number of groups 
after filtering out uninformative features), 
to identify subtypes of post-traumatic stress 
disorder and of major depressive disorder on 
the basis of functional connectivity patterns 
by analysing data in four resting-state 
electroencephalography datasets that in 
aggregate included hundreds of patients 
with the two psychiatric disorders as well 
as healthy controls. They validated the 
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discovered neurophysiological subtypes  
with datasets of connectivity features  
from resting-state functional magnetic 
resonance imaging.

Finding genetic and epigenetic drivers 
of cancer is becoming increasingly 
feasible because of big data generated 
by array-based techniques. For 
example, analyses of DNA methylation 
have shown that some cancers are 
associated with specific patterns of 
epigenetic dysregulation. By performing 
whole-genome analysis of methylation 
stochasticity (using data from 
whole-genome bisulfite sequencing of 
patient samples covering a large fraction of 
CpG sites in the genome) for four subsets of 
paediatric acute lymphoblastic leukaemia, 
Andrew Feinberg, John Goutsias and 
colleagues have now found a relationship 
between methylation entropy and 
gene-expression variability. The analysis 
involved statistical-physics modelling, 
via a ‘potential-energy landscape’ of 
DNA-methylation patterns (pictured) 
following a probability distribution akin to 
that of a one-dimensional Ising model, of 
the probability that a specific methylation 

pattern is observed within a specific 
genomic region. They found that a set of 
genes involved in in-frame chromosomal 
translocations has methylation levels that 
carry information about the molecular 
subtype of leukaemia.

Biophysical modelling can also be 
leveraged to help patients. Franziska Michor, 
Eric Holland and colleagues show that 
a stochastic agent-based computational 
model of the dependence of cell location in 
the glioblastoma microenvironment (the 
perivascular niche) on the cells’ sensitivity 
to radiotherapy and the concurrent 
administration of the chemotherapeutic 
temozolomide (the standard-of-care 
treatment for glioblastoma) can be used to 
optimize the treatment schedule so as to 
maximize survival. The model consists of 
a collection of autonomous ‘agents’ (in this 
case, cells) that interact with their immediate 
environment according to pre-specified 
rules, and was parametrized and validated 
using mouse data (yet can be matched to 
human data).

Predicting the time course of patients 
receiving checkpoint inhibitors, ideally 
before they start treatment, is currently 

limited by the absence of accurate 
biomarkers and clinical criteria. Zhihui 
Wang, Vittorio Cristini and colleagues 
developed a mathematical model that 
predicts tumour burden over time by 
using a set of differential equations 
describing the rates of tumour growth 
and of immune activation, tumour–
immune-cell interactions, and the efficacy 
of immune-mediated cytotoxicity. They 
parametrized the model with published 
clinical data, and validated its performance 
in the stratification of patients according to 
long-term tumour burden with data from 
patients across four additional clinical trials.

Clearly, the pooling of models and data 
via data-driven modelling or model-driven 
data analysis can be leveraged for scientific 
discovery and to help solve practical 
problems. However, working out which 
types of data and model to use to best 
address specific problems leverages 
experience and perseverance; that is, it often 
draws on informed intuition more than on 
raw maths or computation. ❐
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