Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Compression and amplification algorithms in hearing aids impair the selectivity of neural responses to speech

A Publisher Correction to this article was published on 05 January 2022

This article has been updated

Abstract

In quiet environments, hearing aids improve the perception of low-intensity sounds. However, for high-intensity sounds in background noise, the aids often fail to provide a benefit to the wearer. Here, using large-scale single-neuron recordings from hearing-impaired gerbils—an established animal model of human hearing—we show that hearing aids restore the sensitivity of neural responses to speech, but not their selectivity. Rather than reflecting a deficit in supra-threshold auditory processing, the low selectivity is a consequence of hearing-aid compression (which decreases the spectral and temporal contrasts of incoming sound) and amplification (which distorts neural responses, regardless of whether hearing is impaired). Processing strategies that avoid the trade-off between neural sensitivity and selectivity should improve the performance of hearing aids.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Large-scale recordings of neural activity from the IC with normal hearing and mild-to-moderate hearing loss.
Fig. 2: Single-trial responses to speech can be classified with high accuracy.
Fig. 3: Hearing aids restore speech audibility but not consonant identification.
Fig. 4: Hearing aids fail to restore the selectivity of neural responses to speech.
Fig. 5: Hearing aids restore the selectivity of neural responses to tones.
Fig. 6: Hearing aid compression decreases the selectivity of neural responses to speech.
Fig. 7: Amplification decreases consonant identification even with normal hearing.

Similar content being viewed by others

Data availability

Recordings of consonant–vowel syllables are available from the Linguistic Data Consortium (catalogue number: LDC2015S12). Recordings of continuous speech are available from the UCL Scribe database (https://www.phon.ucl.ac.uk/resource/scribe). The database of neural recordings that were analysed in this study is too large to be publicly shared, but is available from the corresponding author on reasonable request.

Code availability

The custom MATLAB code used in this study is available at GitHub (https://github.com/nicklesica/neuro).

Change history

References

  1. Wilson, B. S., Tucci, D. L., Merson, M. H. & O’Donoghue, G. M. Global hearing health care: new findings and perspectives. Lancet 390, 2503–2515 (2017).

    Article  PubMed  Google Scholar 

  2. WHO Global Costs of Unaddressed Hearing Loss and Cost-Effectiveness of Interventions: a WHO Report (WHO, 2017).

  3. Livingston, G. et al. Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. Lancet 396, 413–446 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  4. McCormack, A. & Fortnum, H. Why do people fitted with hearing aids not wear them? Int. J. Audiol. 52, 360–368 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Orji, A. et al. Global and regional needs, unmet needs and access to hearing aids. Int. J. Audiol. 59, 166–172 (2020).

    Article  PubMed  Google Scholar 

  6. Humes, L. E. Speech understanding in the elderly. J. Am. Acad. Audiol. 7, 161–167 (1996).

    CAS  PubMed  Google Scholar 

  7. Humes, L. E. & Dubno, J. R. in The Aging Auditory System (eds Gordon-Salant, S. et al.) 211–257 (Springer, 2010).

  8. Humes, L. E. et al. A comparison of the aided performance and benefit provided by a linear and a two-channel wide dynamic range compression hearing aid. J. Speech Lang. Hear. Res. 42, 65–79 (1999).

    Article  CAS  PubMed  Google Scholar 

  9. Larson, V. D. et al. Efficacy of 3 commonly used hearing aid circuits: a crossover trial. NIDCD/VA Hearing Aid Clinical Trial Group. JAMA 284, 1806–1813 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. Moore, B. C. J. Cochlear Hearing Loss: Physiological, Psychological and Technical Issues (John Wiley & Sons, 2007).

  11. Henry, K. S. & Heinz, M. G. Effects of sensorineural hearing loss on temporal coding of narrowband and broadband signals in the auditory periphery. Hear. Res. 303, 39–47 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Lorenzi, C., Gilbert, G., Carn, H., Garnier, S. & Moore, B. C. J. Speech perception problems of the hearing impaired reflect inability to use temporal fine structure. Proc. Natl Acad. Sci. USA 103, 18866–18869 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Horvath, D. & Lesica, N. A. The effects of interaural time difference and intensity on the coding of low-frequency sounds in the mammalian midbrain. J. Neurosci. 31, 3821–3827 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Studebaker, G. A., Sherbecoe, R. L., McDaniel, D. M. & Gwaltney, C. A. Monosyllabic word recognition at higher-than-normal speech and noise levels. J. Acoust. Soc. Am. 105, 2431–2444 (1999).

    Article  CAS  PubMed  Google Scholar 

  15. Wong, J. C., Miller, R. L., Calhoun, B. M., Sachs, M. B. & Young, E. D. Effects of high sound levels on responses to the vowel ‘eh’ in cat auditory nerve. Hear. Res. 123, 61–77 (1998).

    Article  CAS  PubMed  Google Scholar 

  16. Nelson, D. A. High-level psychophysical tuning curves: forward masking in normal-hearing and hearing-impaired listeners. J. Speech Hear. Res. 34, 1233–1249 (1991).

    Article  CAS  PubMed  Google Scholar 

  17. Ching, T. Y., Dillon, H. & Byrne, D. Speech recognition of hearing-impaired listeners: predictions from audibility and the limited role of high-frequency amplification. J. Acoust. Soc. Am. 103, 1128–1140 (1998).

    Article  CAS  PubMed  Google Scholar 

  18. Lee, L. W. & Humes, L. E. Evaluating a speech-reception threshold model for hearing-impaired listeners. J. Acoust. Soc. Am. 93, 2879–2885 (1993).

    Article  CAS  PubMed  Google Scholar 

  19. Oxenham, A. J. & Kreft, H. A. Speech masking in normal and impaired hearing: interactions between frequency selectivity and inherent temporal fluctuations in noise. Adv. Exp. Med. Biol. 894, 125–132 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Summers, V. & Cord, M. T. Intelligibility of speech in noise at high presentation levels: effects of hearing loss and frequency region. J. Acoust. Soc. Am. 122, 1130–1137 (2007).

    Article  PubMed  Google Scholar 

  21. Lesica, N. A. Why do hearing aids fail to restore normal auditory perception? Trends Neurosci. 41, 174–185 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Souza, P. E. Effects of compression on speech acoustics, intelligibility, and sound quality. Trends Amplif. 6, 131–165 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Kates, J. M. Understanding compression: modeling the effects of dynamic-range compression in hearing aids. Int. J. Audiol. 49, 395–409 (2010).

    Article  PubMed  Google Scholar 

  24. Young, E. D. in Noise-Induced Hearing Loss (eds Le Prell, C. G. et al.) Vol. 40, 87–135 (Springer, 2012).

  25. Mesgarani, N., David, S. V., Fritz, J. B. & Shamma, S. A. Phoneme representation and classification in primary auditory cortex. J. Acoust. Soc. Am. 123, 899–909 (2008).

    Article  PubMed  Google Scholar 

  26. Heinz, M. G., Issa, J. B. & Young, E. D. Auditory-nerve rate responses are inconsistent with common hypotheses for the neural correlates of loudness recruitment. J. Assoc. Res. Otolaryngol. JARO 6, 91–105 (2005).

    Article  PubMed  Google Scholar 

  27. Liberman, M. C., Dodds, L. W. & Learson, D. A. in Basic and Applied Aspects of Noise-Induced Hearing Loss (eds Salvi, R. J. et al.) 163–177 (Springer, 1986).

  28. Miller, G. A. & Nicely, P. E. An analysis of perceptual confusions among some english consonants. J. Acoust. Soc. Am. 27, 338–352 (1955).

    Article  Google Scholar 

  29. Phatak, S. A. & Allen, J. B. Consonant and vowel confusions in speech-weighted noise. J. Acoust. Soc. Am. 121, 2312–2326 (2007).

    Article  PubMed  Google Scholar 

  30. Moore, B. C. & Glasberg, B. R. Auditory filter shapes derived in simultaneous and forward masking. J. Acoust. Soc. Am. 70, 1003–1014 (1981).

    Article  CAS  PubMed  Google Scholar 

  31. Shera, C. A., Guinan, J. J. & Oxenham, A. J. Revised estimates of human cochlear tuning from otoacoustic and behavioral measurements. Proc. Natl Acad. Sci. USA 99, 3318–3323 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sumner, C. J. et al. Mammalian behavior and physiology converge to confirm sharper cochlear tuning in humans. Proc. Natl Acad. Sci. USA 115, 11322–11326 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Dubno, J. R., Horwitz, A. R. & Ahlstrom, J. B. Estimates of basilar-membrane nonlinearity effects on masking of tones and speech. Ear Hear. 28, 2–17 (2007).

    Article  PubMed  Google Scholar 

  34. Lopez-Poveda, E. A., Plack, C. J., Meddis, R. & Blanco, J. L. Cochlear compression in listeners with moderate sensorineural hearing loss. Hear. Res. 205, 172–183 (2005).

    Article  PubMed  Google Scholar 

  35. Plack, C. J., Drga, V. & Lopez-Poveda, E. A. Inferred basilar-membrane response functions for listeners with mild to moderate sensorineural hearing loss. J. Acoust. Soc. Am. 115, 1684–1695 (2004).

    Article  PubMed  Google Scholar 

  36. Dubno, J. R., Ahlstrom, J. B., Wang, X. & Horwitz, A. R. Level-dependent changes in perception of speech envelope cues. J. Assoc. Res. Otolaryngol. 13, 835–852 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Hornsby, B. W. Y., Trine, T. D. & Ohde, R. N. The effects of high presentation levels on consonant feature transmission. J. Acoust. Soc. Am. 118, 1719–1729 (2005).

    Article  PubMed  Google Scholar 

  38. Zurek, P. M. & Delhorne, L. A. Consonant reception in noise by listeners with mild and moderate sensorineural hearing impairment. J. Acoust. Soc. Am. 82, 1548–1559 (1987).

    Article  CAS  PubMed  Google Scholar 

  39. Woods, D. L., Yund, E. W. & Herron, T. J. Measuring consonant identification in nonsense syllables, words, and sentences. J. Rehabil. Res. Dev. 47, 243–260 (2010).

    Article  PubMed  Google Scholar 

  40. Woods, D. L. et al. Aided and unaided speech perception by older hearing impaired listeners. PLoS ONE 10, e0114922 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Parthasarathy, A., Hancock, K. E., Bennett, K., DeGruttola, V. & Polley, D. B. Bottom-up and top-down neural signatures of disordered multi-talker speech perception in adults with normal hearing. eLife 9, e51419 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Baer, T., Moore, B. C. & Gatehouse, S. Spectral contrast enhancement of speech in noise for listeners with sensorineural hearing impairment: effects on intelligibility, quality, and response times. J. Rehabil. Res. Dev. 30, 49–72 (1993).

    CAS  PubMed  Google Scholar 

  43. May, T., Kowalewski, B. & Dau, T. Signal-to-noise-ratio-aware dynamic range compression in hearing aids. Trends Hear. 22, https://doi.org/10.1177/2331216518790903 (2018).

  44. Miller, R. L., Calhoun, B. M. & Young, E. D. Contrast enhancement improves the representation of /epsilon/-like vowels in the hearing-impaired auditory nerve. J. Acoust. Soc. Am. 106, 2693–2708 (1999).

    Article  CAS  PubMed  Google Scholar 

  45. Moore, B. C. Enhancement of spectral contrast and spectral changes as approaches to improving the intelligibility of speech in background sounds. J. Acoust. Soc. Am. 139, 2043–2043 (2016).

    Article  Google Scholar 

  46. Rallapalli, V. H. & Alexander, J. M. Effects of noise and reverberation on speech recognition with variants of a multichannel adaptive dynamic range compression scheme. Int. J. Audiol. 58, 661–669 (2019).

    Article  PubMed  Google Scholar 

  47. Rasetshwane, D. M., Gorga, M. P. & Neely, S. T. Signal-processing strategy for restoration of cross-channel suppression in hearing-impaired listeners. IEEE Trans. Biomed. Eng. 61, 64–75 (2014).

    Article  PubMed  Google Scholar 

  48. Dubno, J. R., Horwitz, A. R. & Ahlstrom, J. B. Word recognition in noise at higher-than-normal levels: decreases in scores and increases in masking. J. Acoust. Soc. Am. 118, 914–922 (2005).

    Article  PubMed  Google Scholar 

  49. Bose Hearphones (Bose, 2020); https://www.bose.com/en_us/support/products/bose_wellness_support/hearphones.html

  50. King, A. J. & Walker, K. M. Listening in complex acoustic scenes. Curr. Opin. Physiol. 18, 63–72 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  51. McWalter, R. & McDermott, J. H. Adaptive and selective time averaging of auditory scenes. Curr. Biol. 28, 1405–1418 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Akeroyd, M. A. An overview of the major phenomena of the localization of sound sources by normal-hearing, hearing-impaired, and aided listeners. Trends Hear. 18, https://doi.org/10.1177/2331216514560442 (2014).

  53. Brown, A. D., Rodriguez, F. A., Portnuff, C. D. F., Goupell, M. J. & Tollin, D. J. Time-varying distortions of binaural information by bilateral hearing aids. Trends Hear. 20, https://doi.org/10.1177/2331216516668303 (2016).

  54. Gates, G. A. & Mills, J. H. Presbycusis. Lancet 366, 1111–1120 (2005).

    Article  PubMed  Google Scholar 

  55. Davies-Venn, E., Souza, P., Brennan, M. & Stecker, G. C. Effects of audibility and multichannel wide dynamic range compression on consonant recognition for listeners with severe hearing loss. Ear Hear. 30, 494–504 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Shanks, J. E., Wilson, R. H., Larson, V. & Williams, D. Speech recognition performance of patients with sensorineural hearing loss under unaided and aided conditions using linear and compression hearing aids. Ear Hear. 23, 280–290 (2002).

    Article  PubMed  Google Scholar 

  57. Committee on Accessible and Affordable Hearing Health Care for Adults, Board on Health Sciences Policy, Health and Medicine Division & National Academies of Sciences, Engineering, and Medicine Hearing Health Care for Adults: Priorities for Improving Access and Affordability (National Academies Press, 2016).

  58. Warren, E. & Grassley, C. Over-the-counter hearing aids: the path forward. JAMA Intern. Med. 177, 609–610 (2017).

    Article  PubMed  Google Scholar 

  59. President’s Council of Advisors on Science and Technology (PCAST) Aging America & Hearing Loss: Imperative of Improved Hearing Technologies (PCAST, 2016).

  60. Sinha, S., Irani, U. D., Manchaiah, V. & Bhamla, M. S. LoCHAid: an ultra-low-cost hearing aid for age-related hearing loss. PLoS ONE 15, e0238922 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Cox, R. M., Johnson, J. A. & Xu, J. Impact of hearing aid technology on outcomes in daily life I: the patients’ perspective. Ear Hear. 37, e224–e237 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Brody, L., Wu, Y.-H. & Stangl, E. A comparison of personal sound amplification products and hearing aids in ecologically relevant test environments. Am. J. Audiol. 27, 581–593 (2018).

    Article  PubMed  Google Scholar 

  63. Cho, Y. S. et al. Clinical performance evaluation of a personal sound amplification product vs a basic hearing aid and a premium hearing aid. JAMA Otolaryngol. Head Neck Surg. 145, 516–522 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Humes, L. E. et al. The effects of service-delivery model and purchase price on hearing-aid outcomes in older adults: a randomized double-blind placebo-controlled clinical trial. Am. J. Audiol. 26, 53–79 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Suberman, T. A. et al. A gerbil model of sloping sensorineural hearing loss. Otol. Neurotol. 32, 544–552 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Pachitariu, M., Steinmetz, N., Kadir, S., Carandini, M. & Harris, K. Kilosort: realtime spike-sorting for extracellular electrophysiology with hundreds of channels. Preprint at bioRxiv https://doi.org/10.1101/061481 (2016).

  67. Maki, K. & Furukawa, S. Acoustical cues for sound localization by the Mongolian gerbil, Meriones unguiculatus. J. Acoust. Soc. Am. 118, 872–886 (2005).

    Article  PubMed  Google Scholar 

  68. Alexander, J. M. & Masterson, K. Effects of WDRC release time and number of channels on output SNR and speech recognition. Ear Hear. 36, e35–e49 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Moore, B. C. J., Glasberg, B. R. & Stone, M. A. Development of a new method for deriving initial fittings for hearing aids with multi-channel compression: CAMEQ2-HF. Int. J. Audiol. 49, 216–227 (2010).

    Article  PubMed  Google Scholar 

  70. Garcia-Lazaro, J. A., Belliveau, L. A. C. & Lesica, N. A. Independent population coding of speech with sub-millisecond precision. J. Neurosci. 33, 19362–19372 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank J. Linden, S. Rosen, D. Fitzpatrick, B. Moore, J. Alexander, M. Huckvale, K. Harris, G. Huang, T. Keck and R. Beutelmann for their advice. This work was supported by a Wellcome Trust Senior Research Fellowship (200942/Z/16/Z).

Author information

Authors and Affiliations

Authors

Contributions

N.A.L. and C.C.L. conceived and designed the experiments. N.A.L., C.C.L., A.G.A. and S.S. performed the experiments. N.A.L. analysed the data and wrote the paper.

Corresponding author

Correspondence to Nicholas A. Lesica.

Ethics declarations

Competing interests

N.A.L. is a co-founder of Perceptual Technologies Ltd. A.G.A., C.C.L. and S.S. declare no competing interests.

Additional information

Peer review information Nature Biomedical Engineering thanks Hubert Lim, David McAlpine and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Armstrong, A.G., Lam, C.C., Sabesan, S. et al. Compression and amplification algorithms in hearing aids impair the selectivity of neural responses to speech. Nat. Biomed. Eng 6, 717–730 (2022). https://doi.org/10.1038/s41551-021-00707-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41551-021-00707-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing