Three-dimensional single-cell imaging for the analysis of RNA and protein expression in intact tumour biopsies

Abstract

Microscopy analysis of tumour samples is commonly performed on fixed, thinly sectioned and protein-labelled tissues. However, these examinations do not reveal the intricate three-dimensional structures of tumours, nor enable the detection of aberrant transcripts. Here, we report a method, which we name DIIFCO (for diagnosing in situ immunofluorescence-labelled cleared oncosamples), for the multimodal volumetric imaging of RNAs and proteins in intact tumour volumes and organoids. We used DIIFCO to spatially profile the expression of diverse coding RNAs and non-coding RNAs at the single-cell resolution in a variety of cancer tissues. Quantitative single-cell analysis revealed spatial niches of cancer stem-like cells, and showed that the niches were present at a higher density in triple-negative breast cancer tissue. The improved molecular phenotyping and histopathological diagnosis of cancers may lead to new insights into the biology of tumours of patients.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Development of the DIIFCO imaging method.
Fig. 2: RNA detection in intact fresh-frozen human tumours with DIIFCO.
Fig. 3: RNA detection in intact human FFPE tumours with DIIFCO.
Fig. 4: RNA and protein detection in intact human tumours with DIIFCO.
Fig. 5: RNA and protein detection in human-derived organoids.
Fig. 6: Singe-cell analysis of RNAs and proteins in intact human tumours.
Fig. 7: Quantitative cell-by-cell analysis in intact human breast tumours.

Data availability

The main data supporting the results in this study are available within the paper and its Supplementary Information. The raw and analysed datasets generated during the study are too large to be publicly shared, yet they are available for research purposes from the corresponding authors on reasonable request.

Code availability

The custom code used in this study is available at GitHub (https://github.com/uhlen-lab).

References

  1. 1.

    Andor, N. et al. Pan-cancer analysis of the extent and consequences of intratumor heterogeneity. Nat. Med. 22, 105–113 (2016).

    CAS  PubMed  Google Scholar 

  2. 2.

    Wang, K. et al. Whole-genome sequencing and comprehensive molecular profiling identify new driver mutations in gastric cancer. Nat. Genet. 46, 573–582 (2014).

    CAS  PubMed  Google Scholar 

  3. 3.

    Gerlinger, M. et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N. Engl. J. Med. 366, 883–892 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Sachs, N. et al. A living biobank of breast cancer organoids captures disease heterogeneity. Cell 172, 373–386 (2018).

    CAS  PubMed  Google Scholar 

  5. 5.

    Vogelstein, B. et al. Cancer genome landscapes. Science 339, 1546–1558 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. 6.

    McGranahan, N. & Swanton, C. Biological and therapeutic impact of intratumor heterogeneity in cancer evolution. Cancer Cell 27, 15–26 (2015).

    CAS  PubMed  Google Scholar 

  7. 7.

    Uhlen, P. & Tanaka, N. Improved pathological examination of tumors with 3D light-sheet microscopy. Trends Cancer 4, 337–341 (2018).

    PubMed  Google Scholar 

  8. 8.

    Tanaka, N. et al. Whole-tissue biopsy phenotyping of three-dimensional tumours reveals patterns of cancer heterogeneity. Nat. Biomed. Eng. 1, 796–806 (2017).

    CAS  PubMed  Google Scholar 

  9. 9.

    Chen, F. et al. Nanoscale imaging of RNA with expansion microscopy. Nat. Methods 13, 679–684 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Choi, H. M. T. et al. Programmable in situ amplification for multiplexed imaging of mRNA expression. Nat. Biotechnol. 28, 1208–1212 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Lovett-Barron, M. et al. Ancestral circuits for the coordinated modulation of brain state. Cell 171, 1411–1423 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Choi, H. M. T. et al. Mapping a multiplexed zoo of mRNA expression. Development 143, 3632–3637 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Choi, H. M. T. et al. Third-generation in situ hybridization chain reaction: multiplexed, quantitative, sensitive, versatile, robust. Development 145, dev165753 (2018).

  14. 14.

    Stefanits, H. et al. KINFix—A formalin-free non-commercial fixative optimized for histological, immunohistochemical and molecular analyses of neurosurgical tissue specimens. Clin. Neuropathol. 35, 3–12 (2016).

    PubMed  Google Scholar 

  15. 15.

    Kap, M. et al. Histological assessment of PAXgene tissue fixation and stabilization reagents. Plos ONE 6, e27704 (2011).

  16. 16.

    Lykidis, D. et al. Novel zinc-based fixative for high quality DNA, RNA and protein analysis. Nucleic Acids Res. 35, e85 (2007).

  17. 17.

    Wester, K. et al. Zinc-based fixative improves preservation of genomic DNA and proteins in histoprocessing of human tissues. Lab. Invest. 83, 889–899 (2003).

    CAS  PubMed  Google Scholar 

  18. 18.

    Sylwestrak, E. L., Rajasethupathy, P., Wright, M. A., Jaffe, A. & Deisseroth, K. Multiplexed intact-tissue transcriptional analysis at cellular resolution. Cell 164, 792–804 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Renier, N. et al. Mapping of brain activity by automated volume analysis of immediate early genes. Cell 165, 1789–1802 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Hatzis, C. et al. Effects of tissue handling on RNA integrity and microarray measurements from resected breast cancers. J. Natl Cancer Inst. 103, 1871–1883 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Snippert, H. J. et al. Prominin-1/CD133 marks stem cells and early progenitors in mouse small intestine. Gastroenterology 136, 2187–2194 (2009).

    CAS  PubMed  Google Scholar 

  22. 22.

    Medema, J. P. Cancer stem cells: the challenges ahead. Nat. Cell Biol. 15, 338–344 (2013).

    CAS  PubMed  Google Scholar 

  23. 23.

    Brugnoli, F., Grassilli, S., Al-Qassab, Y., Capitani, S. & Bertagnolo, V. CD133 in breast cancer cells: more than a stem cell marker. J. Oncol. 2019, 7512632 (2019).

    PubMed  PubMed Central  Google Scholar 

  24. 24.

    Joseph, C. et al. Overexpression of the cancer stem cell marker CD133 confers a poor prognosis in invasive breast cancer. Breast Cancer Res. Treat. 174, 387–399 (2019).

    CAS  PubMed  Google Scholar 

  25. 25.

    Liu, T. J. et al. CD133+ cells with cancer stem cell characteristics associates with vasculogenic mimicry in triple-negative breast cancer. Oncogene 32, 544–553 (2013).

    CAS  PubMed  Google Scholar 

  26. 26.

    Panaccione, A., Guo, Y., Yarbrough, W. G. & Ivanov, S. V. Expression profiling of clinical specimens supports the existence of neural progenitor-like stem cells in basal breast cancers. Clin. Breast Cancer 17, 298–306 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Iwai, Y., Hamanishi, J., Chamoto, K. & Honjo, T. Cancer immunotherapies targeting the PD-1 signaling pathway. J. Biomed. Sci. 24, 26 (2017).

    PubMed  PubMed Central  Google Scholar 

  28. 28.

    Anastasiadou, E., Jacob, L. S. & Slack, F. J. Non-coding RNA networks in cancer. Nat. Rev. Cancer 18, 5–18 (2018).

    CAS  PubMed  Google Scholar 

  29. 29.

    Schmitt, A. M. & Chang, H. Y. Long noncoding RNAs in cancer pathways. Cancer Cell 29, 452–463 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Arun, G. et al. Differentiation of mammary tumors and reduction in metastasis upon Malat1 lncRNA loss. Genes Dev. 30, 34–51 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Xue, M., Chen, W. & Li, X. Urothelial cancer associated 1: a long noncoding RNA with a crucial role in cancer. J. Cancer Res. Clin. Oncol. 142, 1407–1419 (2016).

    PubMed  Google Scholar 

  32. 32.

    Weber, J. et al. Adjuvant nivolumab versus ipilimumab in resected stage III or IV melanoma. N. Engl. J. Med. 377, 1824–1835 (2017).

    CAS  PubMed  Google Scholar 

  33. 33.

    Uhlen, M. et al. Tissue-based map of the human proteome. Science 347, 1260419 (2015).

    PubMed  Google Scholar 

  34. 34.

    Clevers, H. Modeling development and disease with organoids. Cell 165, 1586–1597 (2016).

    CAS  PubMed  Google Scholar 

  35. 35.

    Choi, H. M., Beck, V. A. & Pierce, N. A. Next-generation in situ hybridization chain reaction: higher gain, lower cost, greater durability. ACS Nano 8, 4284–4294 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Han, R., Chen, S., Wang, J., Zhao, Y. & Li, G. LncRNA UCA1 affects epithelial–mesenchymal transition, invasion, migration and apoptosis of nasopharyngeal carcinoma cells. Cell Cycle 18, 3044–3053 (2019).

    CAS  PubMed  Google Scholar 

  37. 37.

    Brabletz, T., Kalluri, R., Nieto, M. A. & Weinberg, R. A. EMT in cancer. Nat. Rev. Cancer 18, 128–134 (2018).

    CAS  PubMed  Google Scholar 

  38. 38.

    Pastushenko, I. et al. Identification of the tumour transition states occurring during EMT. Nature 556, 463–468 (2018).

    CAS  PubMed  Google Scholar 

  39. 39.

    Gutschner, T. et al. The noncoding RNA MALAT1 is a critical regulator of the metastasis phenotype of lung cancer cells. Cancer Res. 73, 1180–1189 (2013).

    CAS  PubMed  Google Scholar 

  40. 40.

    Murrow, L. M. et al. Mapping the complex paracrine response to hormones in the human breast at single-cell resolution. Preprint at bioRxiv https://doi.org/10.1101/430611 (2020).

  41. 41.

    Diggle, P. J. Statistical Analysis of Spatial Point Patterns (Academic, 1983).

  42. 42.

    Park, Y. G. et al. Protection of tissue physicochemical properties using polyfunctional crosslinkers. Nat. Biotechnol. 37, 73–83 (2019).

    CAS  Google Scholar 

  43. 43.

    Azaripour, A. et al. A survey of clearing techniques for 3D imaging of tissues with special reference to connective tissue. Prog. Histochem. Cytochem. 51, 9–23 (2016).

    PubMed  Google Scholar 

  44. 44.

    Kreso, A. & Dick, J. E. Evolution of the cancer stem cell model. Cell Stem Cell 14, 275–291 (2014).

    CAS  PubMed  Google Scholar 

  45. 45.

    Nassar, D. & Blanpain, C. Cancer stem cells: basic concepts and therapeutic implications. Annu Rev. Pathol. 11, 47–76 (2016).

    CAS  PubMed  Google Scholar 

  46. 46.

    O’Brien, C. A., Pollett, A., Gallinger, S. & Dick, J. E. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 445, 106–110 (2007).

    PubMed  Google Scholar 

  47. 47.

    Al-Hajj, M., Wicha, M. S., Benito-Hernandez, A., Morrison, S. J. & Clarke, M. F. Prospective identification of tumorigenic breast cancer cells. Proc. Natl Acad. Sci. USA 100, 3983–3988 (2003).

    CAS  PubMed  Google Scholar 

  48. 48.

    Lathia, J. D. & Liu, H. Overview of cancer stem cells and stemness for community oncologists. Target Oncol. 12, 387–399 (2017).

    PubMed  PubMed Central  Google Scholar 

  49. 49.

    Batlle, E. & Clevers, H. Cancer stem cells revisited. Nat. Med. 23, 1124–1134 (2017).

    CAS  PubMed  Google Scholar 

  50. 50.

    Schulenburg, A. et al. Cancer stem cells in basic science and in translational oncology: can we translate into clinical application? J. Hematol. Oncol. 8, 16 (2015).

    PubMed  PubMed Central  Google Scholar 

  51. 51.

    Desai, A., Yan, Y. & Gerson, S. L. Concise reviews: cancer stem cell targeted therapies: toward clinical success. Stem Cells Transl. Med. 8, 75–81 (2019).

    PubMed  Google Scholar 

  52. 52.

    Prasad, S., Ramachandran, S., Gupta, N., Kaushik, I. & Srivastava, S. K. Cancer cells stemness: a doorstep to targeted therapy. Biochim. Biophys. Acta Mol. Basis Dis. 1866, 165424 (2020).

    CAS  PubMed  Google Scholar 

  53. 53.

    Klonisch, T. et al. Cancer stem cell markers in common cancers—therapeutic implications. Trends Mol. Med. 14, 450–460 (2008).

    CAS  PubMed  Google Scholar 

  54. 54.

    Enderling, H. Cancer stem cells: small subpopulation or evolving fraction? Integr. Biol. 7, 14–23 (2015).

    Google Scholar 

  55. 55.

    Hoefflin, R. et al. Spatial niche formation but not malignant progression is a driving force for intratumoural heterogeneity. Nat. Commun. 7, ncomms11845 (2016).

  56. 56.

    Neumeister, V., Agarwal, S., Bordeaux, J., Camp, R. L. & Rimm, D. L. In situ identification of putative cancer stem cells by multiplexing ALDH1, CD44, and cytokeratin identifies breast cancer patients with poor prognosis. Am. J. Pathol. 176, 2131–2138 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. 57.

    Yang, F. et al. Evaluation of breast cancer stem cells and intratumor stemness heterogeneity in triple-negative breast cancer as prognostic factors. Int. J. Biol. Sci. 12, 1568–1577 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. 58.

    Ricci-Vitiani, L. et al. Tumour vascularization via endothelial differentiation of glioblastoma stem-like cells. Nature 468, 824–828 (2010).

    CAS  PubMed  Google Scholar 

  59. 59.

    Lancaster, M. A. & Knoblich, J. A. Generation of cerebral organoids from human pluripotent stem cells. Nat. Protoc. 9, 2329–2340 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. 60.

    Camp, J. G. et al. Human cerebral organoids recapitulate gene expression programs of fetal neocortex development. Proc. Natl Acad. Sci. USA 112, 15672–15677 (2015).

    CAS  PubMed  Google Scholar 

  61. 61.

    Uhlin, E. et al. Derivation of human iPS cell lines from monozygotic twins in defined and xeno free conditions. Stem Cell Res. 18, 22–25 (2017).

    CAS  PubMed  Google Scholar 

  62. 62.

    Sato, T. et al. Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett’s epithelium. Gastroenterology 141, 1762–1772 (2011).

    CAS  Google Scholar 

  63. 63.

    Chung, K. et al. Structural and molecular interrogation of intact biological systems. Nature 497, 332–337 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. 64.

    Tanaka, N. et al. Mapping of the three-dimensional lymphatic microvasculature in bladder tumours using light-sheet microscopy. Br. J. Cancer 118, 995–999 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. 65.

    Tomer, R., Ye, L., Hsueh, B. & Deisseroth, K. Advanced CLARITY for rapid and high-resolution imaging of intact tissues. Nat. Protoc. 9, 1682–1697 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. 66.

    Bria, A. & Iannello, G. TeraStitcher—a tool for fast automatic 3D-stitching of teravoxel-sized microscopy images. BMC Bioinformatics 13, 316 (2012).

    PubMed  PubMed Central  Google Scholar 

  67. 67.

    Rueden, C. T. et al. ImageJ2: ImageJ for the next generation of scientific image data. BMC Bioinformatics 18, 529 (2017).

    PubMed  PubMed Central  Google Scholar 

  68. 68.

    Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank A. Östman for discussions. This study was supported by the Swedish Research Council (grant nos. 2009-3364, 2013-3189 and 2017-00815, to P.U.), the Swedish Cancer Society (grant nos. CAN 2016-801, 19 0544 Pj and 19 0545 Us, to P.U.), the Swedish Childhood Cancer Foundation (grant no. PR2018-0123, to P.U.), the Swedish Brain Foundation (grant nos. FO2018-0209, to P.U., and FO2018-0281, to A.F.), the Olle Engkvist foundation (to P.U.), the David and Astrid Hagelén Foundation (to N.T.), the Karolinska Institutet Research Foundation (to N.T., S.K. and P.U.), the Takeda Science Foundation (to N.T.), Grant-in-Aid for Scientific Research (KAKENHI 18H04906, 18K19482 and 19H03792, to N.T.), the Kobayashi Foundation for Cancer Research (to N.T.), the Keio Gijuku Academic Development Funds (to N.T.), the Scandinavia-Japan Sasakawa Foundation (to N.T., K.F. and S.K.), and the Wenner-Gren Foundation (to S.K.). The light-sheet microscopy infrastructure used in this research received grants from the Strategic Research Area in Neuroscience (StratNeuro) and the Strategic Research Area in Stem Cells and Regenerative Medicine (StratRegen), supported by the Swedish government.

Author information

Affiliations

Authors

Contributions

N.T., S.K. and P.U. conceived the study and designed experiments. N.T., S.K., D.K., K.F., L.L. and K.M. performed the experiments and data analyses. N.T., S.K. and D.K. performed 3D image processing and 3D data analyses. A.M., P.K., S.R., C.L., L.K., N.N., K.M., J.H. and C.S. provided mouse and human tumour samples. T.M., O.K., R.P., A.F. and H.C. provided human organoids. M.O. and A.M. provided conceptual advice on clinical aspects. S.K., C.S., L.L. and H.C. reviewed and commented on the manuscript. N.T. and P.U. performed data interpretation and wrote the manuscript. P.U. supervised the research.

Corresponding authors

Correspondence to Nobuyuki Tanaka or Per Uhlén.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–10 and captions for Supplementary Videos 1–6.

Reporting Summary

Supplementary Video 1

Volume rendering of a mouse embryo.

Supplementary Video 2

Cell-by-cell analysis of human breast cancer tissue.

Supplementary Video 3

Parvalbumin RNA and protein staining of a mouse cortical section.

Supplementary Video 4

Volume rendering of a human organoid.

Supplementary Video 5

Cell-by-cell analysis of human colon cancer tissue.

Supplementary Video 6

Spatial niche analysis of human breast cancer tissue.

Supplementary Dataset 1

Key resources.

Supplementary Dataset 2

Probe sequences and accession numbers of the targeted RNAs.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tanaka, N., Kanatani, S., Kaczynska, D. et al. Three-dimensional single-cell imaging for the analysis of RNA and protein expression in intact tumour biopsies. Nat Biomed Eng 4, 875–888 (2020). https://doi.org/10.1038/s41551-020-0576-z

Download citation

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing