Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Generation of model tissues with dendritic vascular networks via sacrificial laser-sintered carbohydrate templates

An Author Correction to this article was published on 16 June 2021

This article has been updated


Sacrificial templates for patterning perfusable vascular networks in engineered tissues have been constrained in architectural complexity, owing to the limitations of extrusion-based 3D printing techniques. Here, we show that cell-laden hydrogels can be patterned with algorithmically generated dendritic vessel networks and other complex hierarchical networks by using sacrificial templates made from laser-sintered carbohydrate powders. We quantified and modulated gradients of cell proliferation and cell metabolism emerging in response to fluid convection through these networks and to diffusion of oxygen and metabolites out of them. We also show scalable strategies for the fabrication, perfusion culture and volumetric analysis of large tissue-like constructs with complex and heterogeneous internal vascular architectures. Perfusable dendritic networks in cell-laden hydrogels may help sustain thick and densely cellularized engineered tissues, and assist interrogations of the interplay between mass transport and tissue function.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Open-source SLS of carbohydrates.
Fig. 2: Sacrificial templating of hierarchically branched and entangled multivascular networks.
Fig. 3: Fluid convection through generatively designed dendritic vascular networks.
Fig. 4: Seeding cells in the lumenal and parenchymal compartments of sacrificially templated gels.
Fig. 5: Assessment of metabolic activity in perfused model tissues.
Fig. 6: Fabrication, perfusion and volumetric analysis of 3D dendritic vascular networks.
Fig. 7: Perfusion through dendritic networks to support primary hepatocyte cultures.

Data availability

The main data supporting the results in this study are available within the paper and its Supplementary Information. Much of the source and analysed data are available in Zenodo ( Some source datasets are too large to be shared in public repositories and are available from the corresponding author on reasonable request. Design files and documentation for our open-source selective laser sintering hardware and software are available in the Zenodo repository and at

Code availability

A custom Python add-on for Blender to generate bifurcating vascular structures is available in the Zenodo repository and at Image-processing and analysis scripts are also available in the Zenodo repository. The mutual tree attraction algorithm for generating dendritic networks is closed source, but the generated architectures are included in the Zenodo repository.

Change history


  1. 1.

    Zamir, M. Fractal dimensions and multifractility in vascular branching. J. Theor. Biol. 212, 183–190 (2001).

    CAS  PubMed  Google Scholar 

  2. 2.

    West, G. B., Brown, J. H. & Enquist, B. J. A general model for the origin of allometric scaling laws in biology. Science 276, 122–126 (1997).

    CAS  Google Scholar 

  3. 3.

    West, G. B., Brown, J. H. & Enquist, B. J. A general model for ontogenetic growth. Nature 413, 628–631 (2001).

    CAS  PubMed  Google Scholar 

  4. 4.

    Monahan-Earley, R., Dvorak, A. M. & Aird, W. C. Evolutionary origins of the blood vascular system and endothelium. J. Thromb. Haemost. 11, 46–66 (2013).

    PubMed  PubMed Central  Google Scholar 

  5. 5.

    Novosel, E. C., Kleinhans, C. & Kluger, P. J. Vascularization is the key challenge in tissue engineering. Adv. Drug Deliv. Rev. 63, 300–311 (2011).

    CAS  PubMed  Google Scholar 

  6. 6.

    Kinstlinger, I. S. & Miller, J. S. 3D-printed fluidic networks as vasculature for engineered tissue. Lab Chip 16, 2025–2043 (2016).

    CAS  PubMed  Google Scholar 

  7. 7.

    Cabodi, M. et al. A microfluidic biomaterial. J. Am. Chem. Soc. 127, 13788–13789 (2005).

    CAS  PubMed  Google Scholar 

  8. 8.

    Chrobak, K. M., Potter, D. R. & Tien, J. Formation of perfused, functional microvascular tubes in vitro. Microvasc. Res. 71, 185–196 (2006).

    CAS  PubMed  Google Scholar 

  9. 9.

    Zhang, B. et al. Biodegradable scaffold with built-in vasculature for organ-on-a-chip engineering and direct surgical anastomosis. Nat. Mater. 15, 669–678 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Miller, J. S. The billion cell construct: will three-dimensional printing get us there? PLoS Biol. 12, e1001882 (2014).

    PubMed  PubMed Central  Google Scholar 

  11. 11.

    Luo, Y., Lode, A. & Gelinsky, M. Direct plotting of three-dimensional hollow fiber scaffolds based on concentrated alginate pastes for tissue engineering. Adv. Healthc. Mater. 2, 777–783 (2013).

    CAS  PubMed  Google Scholar 

  12. 12.

    Christensen, K. et al. Freeform inkjet printing of cellular structures with bifurcations. Biotechnol. Bioeng. 112, 1047–1055 (2015).

    CAS  PubMed  Google Scholar 

  13. 13.

    Hinton, T. J. et al. Three-dimensional printing of complex biological structures by freeform reversible embedding of suspended hydrogels. Sci. Adv. 1, e1500758 (2015).

    PubMed  PubMed Central  Google Scholar 

  14. 14.

    Lee, A. et al. 3D bioprinting of collagen to rebuild components of the human heart. Science 365, 482–487 (2019).

    CAS  PubMed  Google Scholar 

  15. 15.

    Zhang, R. & Larsen, N. B. Stereolithographic hydrogel printing of 3D culture chips with biofunctionalized complex 3D perfusion networks. Lab Chip 17, 4273–4282 (2017).

    CAS  PubMed  Google Scholar 

  16. 16.

    Meyer, W. et al. Soft polymers for building up small and smallest blood supplying systems by stereolithography. J. Funct. Biomater. 3, 257–268 (2012).

    PubMed  PubMed Central  Google Scholar 

  17. 17.

    Brandenberg, N. & Lutolf, M. P. In situ patterning of microfluidic networks in 3D cell-laden hydrogels. Adv. Mater. 28, 7450–7456 (2016).

    CAS  PubMed  Google Scholar 

  18. 18.

    Heintz, K. A. et al. Fabrication of 3D biomimetic microfluidic networks in hydrogels. Adv. Healthc. Mater. 5, 2153–2160 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Arakawa, C. K., Badeau, B. A., Zheng, Y. & DeForest, C. A. Multicellular vascularized engineered tissues through user-programmable biomaterial photodegradation. Adv. Mat. 29, 1703156 (2017).

    Google Scholar 

  20. 20.

    Grigoryan, B. et al. Functional intravascular topologies and multivascular networks within biocompatible hydrogels. Science 364, 458–464 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Golden, A. P. & Tien, J. Fabrication of microfluidic hydrogels using molded gelatin as a sacrificial element. Lab Chip 7, 720–725 (2007).

    CAS  PubMed  Google Scholar 

  22. 22.

    Miller, J. S. et al. Rapid casting of patterned vascular networks for perfusable engineered three-dimensional tissues. Nat. Mater. 11, 768–774 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Bégin-Drolet, A. et al. Design of a 3D printer head for additive manufacturing of sugar glass for tissue engineering applications. Addit. Manuf. 15, 29–39 (2017).

    Google Scholar 

  24. 24.

    Gelber, M. K., Hurst, G., Comi, T. J. & Bhargava, R. Model-guided design and characterization of a high-precision 3D printing process for carbohydrate glass. Addit. Manuf. 22, 38–50 (2018).

    CAS  Google Scholar 

  25. 25.

    Homan, K. A. et al. Bioprinting of 3D convoluted renal proximal tubules on perfusable chips. Sci. Rep. 6, 34845 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Kolesky, D. B. et al. 3D bioprinting of vascularized, heterogeneous cell-laden tissue constructs. Adv. Mater. 26, 3124–3130 (2014).

    CAS  PubMed  Google Scholar 

  27. 27.

    Kolesky, D. B., Homan, K. A., Skylar-Scott, M. A. & Lewis, J. A. Three-dimensional bioprinting of thick vascularized tissues. Proc. Natl Acad. Sci. USA 113, 3179–3184 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Skylar-Scott, M. A. et al. Biomanufacturing of organ-specific tissues with high cellular density and embedded vascular channels. Sci. Adv. 5, eaaw2459 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Wu, W., Deconinck, A. & Lewis, J. A. Omnidirectional printing of 3D microvascular networks. Adv. Mater. 23, H178–H183 (2011).

    CAS  PubMed  Google Scholar 

  30. 30.

    Song, K. H., Highley, C. B., Rouff, A. & Burdick, J. A. Complex 3D-printed microchannels within cell-degradable hydrogels. Adv. Funct. Mater. 28, 1801331 (2018).

    Google Scholar 

  31. 31.

    Pimentel, C. R. et al. Three-dimensional fabrication of thick and densely populated soft constructs with complex and actively perfused channel network. Acta Biomater. 65, 174–184 (2018).

    Google Scholar 

  32. 32.

    Kinstlinger, I. S. et al. Open-source selective laser sintering (OpenSLS) of nylon and biocompatible polycaprolactone. PLoS ONE 11, e0147399 (2016).

    PubMed  PubMed Central  Google Scholar 

  33. 33.

    Roszelle, B. N. et al. Flow diverter effect on cerebral aneurysm hemodynamics: An in vitro comparison of telescoping stents and the Pipeline. Neuroradiology 55, 751–758 (2013).

    PubMed  Google Scholar 

  34. 34.

    Saggiomo, V. & Velders, A. H. Simple 3D printed scaffold-removal method for the fabrication of intricate microfluidic devices. Adv. Sci. 2, 1500125 (2015).

    Google Scholar 

  35. 35.

    Nguyen, L. H. et al. Vascularized bone tissue engineering: approaches for potential improvement. Tissue Eng. Part B 18, 363–382 (2012).

    CAS  Google Scholar 

  36. 36.

    Nguyen, Q. T., Hwang, Y., Chen, A. C., Varghese, S. & Sah, R. L. Cartilage-like mechanical properties of poly (ethylene glycol)-diacrylate hydrogels. Biomaterials 33, 6682–6690 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Partlow, B. P. et al. Highly tunable elastomeric silk biomaterials. Adv. Funct. Mater. 24, 4615–4624 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Mooney, R., Tawil, B. & Mahoney, M. Specific fibrinogen and thrombin concentrations promote neuronal rather than glial growth when primary neural cells are seeded within plasma-derived fibrin gels. Tissue Eng. Part A 16, 1607–1619 (2010).

    CAS  PubMed  Google Scholar 

  39. 39.

    Duong, H., Wu, B. & Tawil, B. Modulation of 3D fibrin matrix stiffness by intrinsic fibrinogen–thrombin compositions and by extrinsic cellular activity. Tissue Eng. Part A 15, 1865–1876 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Subhash, G., Liu, Q., Moore, D. F., Ifju, P. G. & Haile, M. A. Concentration dependence of tensile behavior in agarose gel using digital image correlation. Exp. Mech. 51, 255–262 (2011).

    CAS  Google Scholar 

  41. 41.

    Feugier, F. G., Mochizuki, A. & Iwasa, Y. Self-organization of the vascular system in plant leaves: inter-dependent dynamics of auxin flux and carrier proteins. J. Theor. Biol. 236, 366–375 (2005).

    CAS  PubMed  Google Scholar 

  42. 42.

    Fujita, H. & Mochizuki, A. The origin of the diversity of leaf venation pattern. Dev. Dyn. 235, 2710–2721 (2006).

    PubMed  Google Scholar 

  43. 43.

    Runions, A., Lane, B. & Prusinkiewicz, P. Modeling trees with a space colonization algorithm. In Proc. 3rd Eurographics Conference on Natural Phenomena (Eds Ebert, D. & Mérillou, S.) 63–70 (Eurographics Association, 2007).

  44. 44.

    Murray, C. D. The physiological principle of minimum work applied to the angle of branching of arteries. J. Gen. Physiol. 9, 835–841 (1926).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Miguel, A. F. Dendritic design as an archetype for growth patterns in nature: fractal and constructal views. Front. Phys. 2, 9 (2014).

    Google Scholar 

  46. 46.

    Moon, J. J. et al. Biomimetic hydrogels with pro-angiogenic properties. Biomaterials 31, 3840–3847 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Calderon, G. et al. Tubulogenesis of co-cultured human iPS-derived endothelial cells and human mesenchymal stem cells in fibrin and gelatin methacrylate gels. Biomater. Sci. 5, 1652–1660 (2017).

    CAS  PubMed  Google Scholar 

  48. 48.

    Eskin, S. G., Ives, C., McIntire, L. & Navarro, L. Response of cultured endothelial cells to steady flow. Microvasc. Res. 28, 87–94 (1984).

    CAS  PubMed  Google Scholar 

  49. 49.

    Yang, P. J. & Temenoff, J. S. Engineering orthopedic tissue interfaces. Tissue Eng. Part B 15, 127–141 (2009).

    CAS  Google Scholar 

  50. 50.

    Eckes, B. et al. Fibroblast-matrix interactions in wound healing and fibrosis. Matrix Biol. 19, 325–332 (2000).

    CAS  PubMed  Google Scholar 

  51. 51.

    Lu, P., Weaver, V. M. & Werb, Z. The extracellular matrix: a dynamic niche in cancer progression. J. Cell Biol. 196, 395–406 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. 52.

    Radisic, M. et al. Oxygen gradients correlate with cell density and cell viability in engineered cardiac tissue. Biotechnol. Bioeng. 93, 332–343 (2006).

    CAS  PubMed  Google Scholar 

  53. 53.

    Tocchio, A. et al. Versatile fabrication of vascularizable scaffolds for large tissue engineering in bioreactor. Biomaterials 45, 124–131 (2015).

    CAS  PubMed  Google Scholar 

  54. 54.

    Tsang, V. L. et al. Fabrication of 3D hepatic tissues by additive photopatterning of cellular hydrogels. FASEB J. 21, 790–801 (2007).

    CAS  Google Scholar 

  55. 55.

    Krogh, A. The number and distribution of capillaries in muscles with calculations of the oxygen pressure head necessary for supplying the tissue. J. Physiol. 52, 409–415 (1919).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. 56.

    Lewis, M. C., MacArthur, B. D., Malda, J., Pettet, G. & Please, C. P. Heterogeneous proliferation within engineered cartilaginous tissue: the role of oxygen tension. Biotechnol. Bioeng. 91, 607–615 (2005).

    CAS  PubMed  Google Scholar 

  57. 57.

    Demol, J., Lambrechts, D., Geris, L., Schrooten, J. & Van Oosterwyck, H. Towards a quantitative understanding of oxygen tension and cell density evolution in fibrin hydrogels. Biomaterials 32, 107–118 (2011).

    CAS  PubMed  Google Scholar 

  58. 58.

    Gu, W. Y., Yao, H., Huang, C. Y. & Cheung, H. S. New insight into deformation-dependent hydraulic permeability of gels and cartilage, and dynamic behavior of agarose gels in confined compression. J. Biomech. 36, 593–598 (2003).

    CAS  PubMed  Google Scholar 

  59. 59.

    Chuppa, S. et al. Fermentor temperature as a tool for control of high-density perfusion cultures of mammalian cells. Biotechnol. Bioeng. 55, 328–338 (1997).

    CAS  PubMed  Google Scholar 

  60. 60.

    Ducommun, P., Ruffieux, P. A., Kadouri, A., Von Stockar, U. & Marison, I. W. Monitoring of temperature effects on animal cell metabolism in a packed bed process. Biotechnol. Bioeng. 77, 838–842 (2002).

    CAS  PubMed  Google Scholar 

  61. 61.

    Jorjani, P. & Ozturk, S. S. Effects of cell density and temperature on oxygen consumption rate for different mammalian cell lines. Biotechnol. Bioeng. 64, 349–356 (1999).

    CAS  PubMed  Google Scholar 

  62. 62.

    Xiang, C. et al. Long-term functional maintenance of primary human hepatocytes in vitro. Science 364, 399–402 (2019).

    CAS  PubMed  Google Scholar 

  63. 63.

    Bhatia, S. N., Balis, U. J., Yarmush, M. L. & Toner, M. Effect of cell–cell interactions in preservation of cellular phenotype: cocultivation of hepatocytes and nonparenchymal cells. FASEB J. 13, 1883–1900 (1999).

    CAS  PubMed  Google Scholar 

  64. 64.

    Stevens, K. R. et al. InVERT molding for scalable control of tissue microarchitecture. Nat. Commun. 4, 1847 (2013).

    CAS  PubMed  Google Scholar 

  65. 65.

    Stevens, K. R. et al. In situ expansion of engineered human liver tissue in a mouse model of chronic liver disease. Sci. Transl. Med. 9, eaah5505 (2017).

    PubMed  PubMed Central  Google Scholar 

  66. 66.

    Khetani, S. R. & Bhatia, S. N. Microscale culture of human liver cells for drug development. Nat. Biotechnol. 26, 120–126 (2008).

    CAS  PubMed  Google Scholar 

  67. 67.

    Bhatia, S. N., Underhill, G. H., Zaret, K. S. & Fox, I. J. Cell and tissue engineering for liver disease. Sci. Transl. Med. 6, 245sr2 (2014).

    PubMed  PubMed Central  Google Scholar 

  68. 68.

    Rafii, S., Butler, J. M. & Ding, B.-S. Angiocrine functions of organ-specific endothelial cells. Nature 529, 316–325 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. 69.

    Baranski, J. D. et al. Geometric control of vascular networks to enhance engineered tissue integration and function. Proc. Natl Acad. Sci USA 110, 7586–7591 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. 70.

    Mirabella, T. et al. 3D-printed vascular networks direct therapeutic angiogenesis in ischaemia. Nat. Biomed. Eng. 1, 0083 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. 71.

    Lindström, N. O. et al. Conserved and divergent molecular and anatomic features of human and mouse nephron patterning. J. Am. Soc. Nephrol. 29, 825–840 (2018).

    PubMed  PubMed Central  Google Scholar 

  72. 72.

    Bosco, D. et al. Unique arrangement of α- and β-cells in human islets of Langerhans. 59, 1202–1210 (2010).

  73. 73.

    Wang, X.-N. et al. A three-dimensional atlas of human dermal leukocytes, lymphatics, and blood vessels. J. Invest. Dermatol. 134, 965–974 (2014).

    CAS  PubMed  Google Scholar 

  74. 74.

    Kang, H.-W. et al. A 3D bioprinting system to produce human-scale tissue constructs with structural integrity. Nat. Biotechnol. 34, 312–319 (2016).

    CAS  PubMed  Google Scholar 

  75. 75.

    Shapiro, A. J. et al. Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regime. N. Engl. J. Med. 343, 230–238 (2000).

    CAS  PubMed  Google Scholar 

  76. 76.

    Iansante, V., Mitry, R. R., Filippi, C., Fitzpatrick, E. & Dhawan, A. Human hepatocyte transplantation for liver disease: current status and future perspectives. Pediatr. Res. 83, 232–240 (2018).

    CAS  PubMed  Google Scholar 

  77. 77.

    Parker Ponder, K. et al. Mouse hepatocytes migrate to liver parenchyma and function indefinitely after intrasplenic transplantation. Proc. Natl Acad. Sci. USA 88, 1217–1221 (1991).

    Google Scholar 

  78. 78.

    Truslow, J. G. & Tien, J. Perfusion systems that minimize vascular volume fraction in engineered tissues. Biomicrofluidics 5, 022201 (2011).

    PubMed Central  Google Scholar 

  79. 79.

    Ronellenfitsch, H. & Katifori, E. Global optimization, local adaptation, and the role of growth in distribution networks. Phys. Rev. Lett. 117, 138301 (2016).

    PubMed  Google Scholar 

  80. 80.

    Freeman, R. Measuring the flow properties of consolidated, conditioned and aerated powders—a comparative study using a powder rheometer and a rotational shear cell. Powder Technol. 174, 25–33 (2007).

    CAS  Google Scholar 

  81. 81.

    Thadavirul, N., Pavasant, P. & Supaphol, P. Development of polycaprolactone porous scaffolds by combining solvent casting, particulate leaching, and polymer leaching techniques for bone tissue engineering. J. Biomed. Mater. Res. A 102, 3379–3392 (2013).

    PubMed  Google Scholar 

  82. 82.

    Miller, J. S. et al. Bioactive hydrogels made from step-growth derived PEG-peptide macromers. Biomaterials 31, 3736–3743 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. 83.

    Rockwood, D. N. et al. Materials fabrication from Bombyx mori silk fibroin. Nat. Protoc. 6, 1612–1631 (2011).

    CAS  PubMed  Google Scholar 

  84. 84.

    Li, W., Germain, R. N. & Gerner, M. Y. Multiplex, quantitative cellular analysis in large tissue volumes with clearing-enhanced 3D microscopy (Ce3D).Proc. Natl Acad. Sci. USA 114, E7321–E7330 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. 85.

    Thielicke, W. & Stamhuis, E. J. PIVlab—towards user-friendly, affordable and accurate digital particle image velocimetry in MATLAB. J. Open Res. Softw. 2, e30 (2014).

    Google Scholar 

  86. 86.

    Thielicke, W. The Flapping Flight of Birds—Analysis and Application. PhD thesis, Rijksuniversiteit Groningen (2014).

  87. 87.

    Thielicke, W. & Stamhuis, E. J. PIVlab—time-resolved digital particle image velocimetry tool for MATLAB (2014).

  88. 88.

    Cheng, N.-S. Formula for the viscosity of a glycerol–water mixture. Ind. Eng. Chem. Res. 47, 3285–3288 (2008).

    CAS  Google Scholar 

  89. 89.

    Volk, A. & Kähler, C. J. Density model for aqueous glycerol solutions. Exp. Fluids 59, 75 (2018).

    Google Scholar 

  90. 90.

    van de Loosdrecht, A. A., Beelen, R. H., Ossenkoppele, G. J., Broekhoven, M. G. & Langenhuijsen, M. M. A tetrazolium-based colorimetric MTT assay to quantitate human monocyte mediated cytotoxicity against leukemic cells from cell lines and patients with acute myeloid leukemia. J. Immunol. Methods 174, 311–320 (1994).

    PubMed  Google Scholar 

  91. 91.

    Ahrens, J., Geveci, B. & Law, C. in The Visualization Handbook (eds Hansen, C. D. & Johnson, C. R.) 717–731 (2005).

Download references


We thank A. Bastian, A. Ta and T. Schmidt for assistance with OpenSLS hardware and firmware; E. Watson and A. Mikos for assistance with mechanical testing; J. Wagner, P. Desai and C. F. Higgs for assistance with powder rheology; D. De Santos for technical assistance with carbohydrate SLS; D. Kaplan and W. Stoppel for providing silk fibroin; D. L. Gibbons for providing the 344SQ lung adenocarcinoma cell line; and C. Fortin for help with hepatocyte isolations. This work was supported in part by a Medical Research Grant from the Robert J. Kleberg Jr and Helen C. Kleberg Foundation (J.S.M.), National Institutes of Health (grants HL134510 and DK115461 (K.-D.B.)), the Texas Hepatocellular Carcinoma Consortium (THCCC) (CPRIT RP150587 (K.-D.B.)), National Insitutes of Health grant DP2HL137188 (K.R.S.) and National Insitutes of Health NIBIB Cardiovascular Training grant (T32EB001650 (S.H.S.)). I.S.K. acknowledges support by an F31 National Research Service Award (NRSA) from the National Institutes of Health (HL140905). The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.

Author information




I.S.K. and J.S.M. conceived and initiated the project and wrote the manuscript. I.S.K., S.H.S., G.A.C., K.V.R., D.R.Y., P.R.D., K.D.J. and F.J. designed and performed experiments. I.S.K., S.H.S. and G.A.C. acquired and analysed imaging data. J.E.R., J.D.L.-R. and S.S.P. developed generative design algorithms. D.W.S. synthesized materials. K.-D.B., K.R.S. and J.S.M. supervised the project.

Corresponding author

Correspondence to Jordan S. Miller.

Ethics declarations

Competing interests

J.S.M. is a co-founder and holds an equity stake in Volumetric, Inc. J.E.R. and J.D.L.-R. are co-founders and hold equity stakes in Nervous System, Inc.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods.

Reporting Summary

Supplementary Video 1

Annotated video recording of one layer of carbohydrate SLS.

Supplementary Video 2

Mutual-tree-attraction algorithm for the generative design of dendritic networks.

Supplementary Video 3

Fluorescent bead perfusion through a whole planar dendritic network.

Supplementary Video 4

Magnified view of fluorescent bead perfusion through the centre of a planar dendritic network.

Supplementary Video 5

Perfusion of dendritic architectures at a high volumetric flow rate.

Supplementary Video 6

Animated volume rendering of a region in an endothelialized planar dendritic network.

Supplementary Video 7

Rotating rendering of a volumetric μCT scan of a dendritic carbohydrate template.

Supplementary Video 8

Fly-through rendering of a volumetric μCT scan of a dendritic carbohydrate template.

Supplementary Video 9

Fly-through sequence of MTT staining in sections from a cell-laden gel with dendritic architecture.

Supplementary Video 10

Fly-through sequence of nuclear staining in sections from a cell-laden gel with dendritic architecture.

Supplementary Video 11

Fly-through sequence of processed MTT staining images from a cell-laden gel with dendritic architecture.

Supplementary Video 12

Rotating rendering of a volumetrically reconstructed MTT signal in a cell-laden gel with dendritic architecture.

Supplementary Video 13

Computational fluid-dynamics simulation of perfusion through a 3D dendritic architecture.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kinstlinger, I.S., Saxton, S.H., Calderon, G.A. et al. Generation of model tissues with dendritic vascular networks via sacrificial laser-sintered carbohydrate templates. Nat Biomed Eng 4, 916–932 (2020).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing