Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News & Views
  • Published:

DRUG DISCOVERY

Evolving peptides for oral intake

The selection of double-bridged peptides via in vitro phage display yields constrained cyclic peptides optimized for high therapeutic specificity and for stability against gastrointestinal proteases.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Phage display of peptide sequences optimizes double-bridged peptide candidates for resistance against GI proteases while maintaining high affinity and specificity to therapeutic targets.

References

  1. Tyagi, P., Pechenov, S. & Anand Subramony, J. J. Control. Release 287, 167–176 (2018).

    Article  CAS  Google Scholar 

  2. Lau, J. L. & Dunn, M. K. Bioorg. Med. Chem. 26, 2700–2707 (2018).

    Article  CAS  Google Scholar 

  3. Moroz, E., Matoori, S. & Leroux, J. C. Adv. Drug Deliv. Rev. 101, 108–121 (2016).

    Article  CAS  Google Scholar 

  4. Aguirre, T. A. et al. Adv. Drug Deliv. Rev. 106, 223–241 (2016).

    Article  CAS  Google Scholar 

  5. Maroni, A. et al. Eur. J. Pharm. Biopharm. 108, 76–82 (2016).

    Article  CAS  Google Scholar 

  6. Maher, S., Brayden, D. J., Casettari, L. & Illum, L. Pharmaceutics 11, 41 (2019).

    Article  CAS  Google Scholar 

  7. Han, Y. et al. Acta Pharm. Sin. B. 9, 902–922 (2019).

    Article  Google Scholar 

  8. Abramson, A. et al. Nat. Med. 25, 1512–1518 (2019).

    Article  CAS  Google Scholar 

  9. White, T. R. et al. Nat. Chem. Biol. 7, 810–817 (2011).

    Article  CAS  Google Scholar 

  10. Nielsen, D. S. et al. Chem. Rev. 117, 8094–8128 (2017).

    Article  CAS  Google Scholar 

  11. Fairlie, D. P. & Dantas de Araujo, A. Biopolymers 106, 843–852 (2016).

    Article  CAS  Google Scholar 

  12. Kong, X.-D. et al. Nat. Biomed. Eng. https://doi.org/10.1038/s41551-020-0556-3 (2020).

  13. Kang, S. K. et al. J. Biotechnol. 135, 210–216 (2008).

    Article  CAS  Google Scholar 

  14. Wang, J., Yadav, V., Smart, A. L., Tajiri, S. & Basit, A. W. Mol. Pharm. 12, 966–973 (2015).

    Article  CAS  Google Scholar 

  15. Layer, P. & Stanghellini, V. Aliment. Pharmacol. Ther. 39, 371–384 (2014).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David J. Brayden.

Ethics declarations

Competing interests

D.B. consults for pharmaceutical companies working on oral peptide delivery, and in the past five years has received research grants from Sanofi, Jazz Pharmaceuticals, Nuritas Ltd. and Gatefossé Ltd.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brayden, D.J. Evolving peptides for oral intake. Nat Biomed Eng 4, 487–488 (2020). https://doi.org/10.1038/s41551-020-0559-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41551-020-0559-0

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research