Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A co-formulation of supramolecularly stabilized insulin and pramlintide enhances mealtime glucagon suppression in diabetic pigs


Treatment of patients with diabetes with insulin and pramlintide (an amylin analogue) is more effective than treatment with insulin only. However, because mixtures of insulin and pramlintide are unstable and have to be injected separately, amylin analogues are only used by 1.5% of people with diabetes needing rapid-acting insulin. Here, we show that the supramolecular modification of insulin and pramlintide with cucurbit[7]uril-conjugated polyethylene glycol improves the pharmacokinetics of the dual-hormone therapy and enhances postprandial glucagon suppression in diabetic pigs. The co-formulation is stable for over 100 h at 37 °C under continuous agitation, whereas commercial formulations of insulin analogues aggregate after 10 h under similar conditions. In diabetic rats, the administration of the stabilized co-formulation increased the area-of-overlap ratio of the pharmacokinetic curves of pramlintide and insulin from 0.4 ± 0.2 to 0.7 ± 0.1 (mean ± s.d.) for the separate administration of the hormones. The co-administration of supramolecularly stabilized insulin and pramlintide better mimics the endogenous kinetics of co-secreted insulin and amylin, and holds promise as a dual-hormone replacement therapy.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: CB[7]–PEG binds to insulin and pramlintide and alters diffusion rates in formulation.
Fig. 2: Formulation with CB[7]–PEG stabilizes a co-formulation of pramlintide and Novolog or Humalog at physiological pH.
Fig. 3: Aspart and pramlintide pharmacokinetics following different administration routes in diabetic rats.
Fig. 4: Administration of aspart and pramlintide as a co-formulation in diabetic rats enhances the pharmacokinetic overlap.
Fig. 5: Lispro and pramlintide pharmacokinetics following different administration routes in diabetic pigs.
Fig. 6: Overlap between the pharmacokinetic curves of lispro and pramlintide, and glucagon suppression following the treatment of diabetic pigs with different formulations.

Data availability

All data supporting the results in this study are available within the article and its Supplementary information. The broad range of raw datasets acquired and analysed (or any subsets thereof), which would require contextual metadata for reuse, are available from the corresponding author on reasonable request.


  1. 1.

    Diabetes: Key Facts (World Health Organization, 2017).

  2. 2.

    Borm, A. K. et al. The effect of pramlintide (amylin analogue) treatment on bone metabolism and bone density in patients with type 1 diabetes mellitus. Horm. Metab. Res. 31, 472–475 (1999).

    CAS  PubMed  Google Scholar 

  3. 3.

    Gottlieb, A. et al. Pramlintide as an adjunct to insulin therapy improved glycemic and weight control in people with type 1 diabetes during treatment for 52 weeks. Diabetes 49, A109 (2000).

    Google Scholar 

  4. 4.

    Ryan, G. J., Jobe, L. J. & Martin, R. Pramlintide in the treatment of type 1 and type 2 diabetes mellitus. Clin. Ther. 27, 1500–1512 (2005).

    CAS  PubMed  Google Scholar 

  5. 5.

    Edelman, S. et al. A double-blind, placebo-controlled trial assessing pramlintide treatment in the setting of intensive insulin therapy in type 1 diabetes. Diabetes Care 29, 2189–2195 (2006).

    CAS  PubMed  Google Scholar 

  6. 6.

    Jones, M. C. Therapies for diabetes: pramlintide and exenatide. Am. Fam. Physician 75, 1831–1835 (2007).

    PubMed  Google Scholar 

  7. 7.

    Rodriguez, L. M. et al. The role of prandial pramlintide in the treatment of adolescents with type 1 diabetes. Pediatr. Res. 62, 746–749 (2007).

    CAS  PubMed  Google Scholar 

  8. 8.

    Weinzimer, S. A. et al. Effect of pramlintide on prandial glycemic excursions during closed-loop control in adolescents and young adults with type 1 diabetes. Diabetes Care 35, 1994–1999 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Grunberger, G. Novel therapies for the management of type 2 diabetes mellitus: part 1. pramlintide and bromocriptine-QR. J. Diabetes 5, 110–117 (2013).

    CAS  PubMed  Google Scholar 

  10. 10.

    Hay, D. L. et al. Amylin: pharmacology, physiology, and clinical potential. Pharmacol. Rev. 67, 564–600 (2015).

    CAS  PubMed  Google Scholar 

  11. 11.

    Wang, H. et al. Rationally designed, nontoxic, nonamyloidogenic analogues of human islet amyloid polypeptide with improved solubility. Biochemistry 53, 5876–5884 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Ratner, R. et al. Adjunctive therapy with pramlintide lowers HbA1c without concomitant weight gain and increased risk of severe hypoglycemia in patients with type 1 diabetes approaching glycemic targets. Exp. Clin. Endocrinol. Diabetes 113, 199–204 (2005).

    CAS  PubMed  Google Scholar 

  13. 13.

    Whitehouse, F. et al. A randomized study and open-label extension evaluating the long-term efficacy of pramlintide as an adjunct to insulin therapy in type 1 diabetes. Diabetes Care 25, 724–730 (2002).

    CAS  PubMed  Google Scholar 

  14. 14.

    Ratner, R. E. et al. Amylin replacement with pramlintide as an adjunct to insulin therapy improves long-term glycaemic and weight control in type 1 diabetes mellitus: a 1-year, randomized controlled trial. Diabet. Med. 21, 1204–1212 (2004).

    CAS  PubMed  Google Scholar 

  15. 15.

    Hampp, C. et al. Use of antidiabetic drugs in the U.S., 2003–2012. Diabetes Care 37, 1367–1374 (2014).

    CAS  PubMed  Google Scholar 

  16. 16.

    Martin, C. The physiology of amylin and insulin: maintaining the balance between glucose secretion and glucose uptake. Diabetes Educ. 32, 101S–104S (2006).

    PubMed  Google Scholar 

  17. 17.

    Heptulla, R. A. et al. The role of subcutaneous pramlintide infusion in the treatment of adolescents with type 1 diabetes. Diabetes 54, A110–A111 (2005).

    Google Scholar 

  18. 18.

    Want, L. L. & Ratner, R. Exenatide and pramlintide: new therapies for diabetes. Int. J. Clin. Pract. 60, 1522–1523 (2006).

    CAS  PubMed  Google Scholar 

  19. 19.

    Mathieu, C. et al. Insulin analogues in type 1 diabetes mellitus: getting better all the time. Nat. Rev. Endocrinol. 13, 385–399 (2017).

    CAS  PubMed  Google Scholar 

  20. 20.

    Holleman, F. & Hoekstra, J. B. L. Insulin lispro. N. Engl. J. Med. 337, 176–183 (1997).

    CAS  PubMed  Google Scholar 

  21. 21.

    Gast, K. et al. Rapid-acting and human insulins: hexamer dissociation kinetics upon dilution of the pharmaceutical formulation. Pharm. Res. 34, 2270–2286 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Riddle, M. C. et al. Fixed ratio dosing of pramlintide with regular insulin before a standard meal in patients with type 1 diabetes. Diabetes Obes. Metab. 17, 904–907 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Haidar, A. et al. Insulin-plus-pramlintide artificial pancreas in type 1 diabetes—randomized controlled trial. Diabetes 67(Suppl. 1), 210-OR (2018).

    Google Scholar 

  24. 24.

    Riddle, M.C. et al. Control of postprandial hyperglycemia in type 1 diabetes by 24-hour fixed-dose coadministration of pramlintide and regular human insulin: a randomized, two-way crossover study. Diabetes Care 41, 2346–2352 (2018).

    CAS  PubMed  Google Scholar 

  25. 25.

    Manning, M. C. et al. Stability of protein pharmaceuticals: an update. Pharm. Res. 27, 544–575 (2010).

    PubMed  Google Scholar 

  26. 26.

    Mitragotri, S., Burke, P. A. & Langer, R. Overcoming the challenges in administering biopharmaceuticals: formulation and delivery strategies. Nat. Rev. Drug Discov. 13, 655–672 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Yang, C., Lu, D. & Liu, Z. How PEGylation enhances the stability and potency of insulin: a molecular dynamics simulation. Biochemistry 50, 2585–2593 (2011).

    CAS  PubMed  Google Scholar 

  28. 28.

    Guerreiro, L. H. et al. Preparation and characterization of PEGylated amylin. AAPS PharmSciTech 14, 1083–1097 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Sisnande, T. et al. Monoconjugation of human amylin with methylpolyethyleneglycol. PLoS ONE 10, e0138803 (2015).

    PubMed  PubMed Central  Google Scholar 

  30. 30.

    Veronese, F. M. & Mero, A. The impact of PEGylation on biological therapies. BioDrugs 22, 315–329 (2008).

    CAS  PubMed  Google Scholar 

  31. 31.

    Webber, M. J. et al. Supramolecular PEGylation of biopharmaceuticals. Proc. Natl Acad. Sci. USA 113, 14189–14194 (2016).

    CAS  PubMed  Google Scholar 

  32. 32.

    Hirotsu, T. et al. Self-assembly PEGylation retaining activity (SPRA) technology via a host–guest interaction surpassing conventional PEGylation methods of proteins. Mol. Pharm. 14, 368–376 (2017).

    CAS  PubMed  Google Scholar 

  33. 33.

    Bush, M., Bouley, N. & Urbach, A. R. Charge-mediated recognition of N-terminal tryptophan in aqueous solution by a synthetic host. J. Am. Chem. Soc. 127, 14511–14517 (2005).

    CAS  PubMed  Google Scholar 

  34. 34.

    Heitmann, L. M. et al. Sequence-specific recognition and cooperative dimerization of N-terminal aromatic peptides in aqueous solution by a synthetic host. J. Am. Chem. Soc. 128, 12574–12581 (2006).

    CAS  PubMed  Google Scholar 

  35. 35.

    Rajgariah, P. & Urbach, A. R. Scope of amino acid recognition by cucurbit[8]uril. J. Incl. Phenom. Macro. 62, 251–254 (2008).

    CAS  Google Scholar 

  36. 36.

    Reczek, J. J. et al. Multivalent recognition of peptides by modular self-assembled receptors. J. Am. Chem. Soc. 131, 2408–2415 (2009).

    CAS  PubMed  Google Scholar 

  37. 37.

    Yin, H. & Wang, R. Applications of cucurbit[n]urils (n = 7 or 8) in pharmaceutical sciences and complexation of biomolecules. Isr. J. Chem. 58, 188–198 (2018).

    CAS  Google Scholar 

  38. 38.

    Walker, S. et al. The potential of cucurbit[n]urils in drug delivery. Isr. J. Chem. 51, 616–624 (2011).

    CAS  Google Scholar 

  39. 39.

    Kuok, K. I. et al. Cucurbit[7]uril: an emerging candidate for pharmaceutical excipients. Ann. NY Acad. Sci. 1398, 108–119 (2017).

    CAS  PubMed  Google Scholar 

  40. 40.

    Berthon, G. Handbook of Metal–Ligand Interactions in Biological Fluids: Bioinorganic Chemistry (Marcel Dekker, 1995).

  41. 41.

    Waters, R. S. et al. EDTA chelation effects on urinary losses of cadmium, calcium, chromium, cobalt, copper, lead, magnesium, and zinc. Biol. Trace Elem. Res. 83, 207–221 (2001).

    CAS  PubMed  Google Scholar 

  42. 42.

    Hvidt, S. Insulin association in neutral solutions studied by light scattering. Biophys. Chem. 39, 205–213 (1991).

    CAS  PubMed  Google Scholar 

  43. 43.

    Fineberg, S. E. et al. Immunological responses to exogenous insulin. Endocr. Rev. 28, 625–652 (2007).

    CAS  PubMed  Google Scholar 

  44. 44.

    Woods, R. J. et al. Intrinsic fibrillation of fast-acting insulin analogs. J. Diabetes Sci. Technol. 6, 265–276 (2012).

    PubMed  PubMed Central  Google Scholar 

  45. 45.

    da Silva, D. C. et al. Amyloidogenesis of the amylin analogue pramlintide. Biophys. Chem. 219, 1–8 (2016).

    PubMed  Google Scholar 

  46. 46.

    Like, A. A. & Rossini, A. A. Streptozotocin-induced pancreatic insulitis: new model of diabetes mellitus. Science 193, 415–417 (1976).

    CAS  PubMed  Google Scholar 

  47. 47.

    Gedulin, B. R., Rink, T. J. & Young, A. A. Dose-response for glucagonostatic effect of amylin in rats. Metabolism 46, 67–70 (1997).

    CAS  PubMed  Google Scholar 

  48. 48.

    Knadler, M. P. et al. Addition of 20-kDa PEG to insulin lispro alters absorption and decreases clearance in animals. Pharm. Res. 33, 2920–2929 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Zou, L., Braegelman, A. S. & Webber, M. J. Dynamic supramolecular hydrogels spanning an unprecedented range of host–guest affinity. ACS Appl. Mater. Interfaces 11, 5695–5700 (2019).

    CAS  PubMed  Google Scholar 

  50. 50.

    Chinai, J. M. et al. Molecular recognition of insulin by a synthetic receptor. J. Am. Chem. Soc. 133, 8810–8813 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. 51.

    Wu, K. K. & Huan, Y. Streptozotocin-induced diabetic models in mice and rats. Curr. Protoc. Pharmacol. 40, 5.47.1–5.47.14 (2008).

    Google Scholar 

  52. 52.

    Maikawa, C. L. et al. Stable monomeric insulin formulations enabled by supramolecular PEGylation of insulin analogues. Adv. Ther. 3, 1900094 (2019).

    Google Scholar 

Download references


This work was funded in part by a NIDDK R01 (the National Institutes of Health grant no. R01DK119254), a Pilot and Feasibility funding from the Stanford Diabetes Research Center (NIH grant no. P30DK116074) and the Stanford Child Health Research Institute, as well as a Research Starter Grant from the PhRMA Foundation. C.L.M. was supported by the NSERC Postgraduate Scholarship and the Stanford Bio-X Bowes Graduate Student Fellowship. A.A.A.S. was funded by grant no. NNF18OC0030896 from the Novo Nordisk Foundation and the Stanford Bio-X Program, as well as by the Danish Council of Independent Research (grant no. DFF5054-00215). The authors thank the Stanford Animal Diagnostic Lab and the Veterinary Service Centre staff for their technical assistance.

Author information




C.L.M., A.A.A.S. and E.A.A. designed experiments and wrote the manuscript. C.L.M., A.A.A.S., L.Z., G.A.R., L.M.S., E.C.G., A.C.Y., J.L.M., S.C., A.K.G., C.M.M., D.C. and C.S.L. performed the experiments. S.W.B. performed the pig surgeries and provided scientific input. C.L.M., A.A.A.S., G.A.R. and M.T. analysed data. D.M.M., B.A.B. and M.J.W. provided scientific input. All authors provided feedback and contributed to writing.

Corresponding author

Correspondence to Eric A. Appel.

Ethics declarations

Competing interests

E.A.A., B.A.B., D.M.M., C.L.M. and G.A.R. are inventors on a patent filing (provisional application no. 62/804,357) describing the work reported in this manuscript.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary information

Supplementary results and discussion, figures and references.

Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Maikawa, C.L., Smith, A.A.A., Zou, L. et al. A co-formulation of supramolecularly stabilized insulin and pramlintide enhances mealtime glucagon suppression in diabetic pigs. Nat Biomed Eng 4, 507–517 (2020).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing