Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Stabilization of a brain–computer interface via the alignment of low-dimensional spaces of neural activity


The instability of neural recordings can render clinical brain–computer interfaces (BCIs) uncontrollable. Here, we show that the alignment of low-dimensional neural manifolds (low-dimensional spaces that describe specific correlation patterns between neurons) can be used to stabilize neural activity, thereby maintaining BCI performance in the presence of recording instabilities. We evaluated the stabilizer with non-human primates during online cursor control via intracortical BCIs in the presence of severe and abrupt recording instabilities. The stabilized BCIs recovered proficient control under different instability conditions and across multiple days. The stabilizer does not require knowledge of user intent and can outperform supervised recalibration. It stabilized BCIs even when neural activity contained little information about the direction of cursor movement. The stabilizer may be applicable to other neural interfaces and may improve the clinical viability of BCIs.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Stabilized BCI framework.
Fig. 2: Manifold-based stabilization intuition and design.
Fig. 3: Examples of neural recording instabilities.
Fig. 4: Representative experimental session.
Fig. 5: Summary of the single-day experimental sessions.
Fig. 6: Manifold-based stabilization restores performance in the presence of instabilities.
Fig. 7: Manifold-based stabilization maintains performance across multiple days.
Fig. 8: Manifold-based stabilization can outperform supervised recalibration.

Data availability

The main data supporting the results in this study are available within the paper and its Supplementary Information. Experimental data for the stabilization of brain–computer interfaces are available at

Code availability

The MATLAB code for the stabilization of brain–computer interfaces is available at


  1. 1.

    Collinger, J. L. et al. High-performance neuroprosthetic control by an individual with tetraplegia. Lancet 381, 557–564 (2012).

    PubMed  Google Scholar 

  2. 2.

    Hochberg, L. R. et al. Reach and grasp by people with tetraplegia using a neurally controlled robotic arm. Nature 485, 372–375 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Bouton, C. E. et al. Restoring cortical control of functional movement in a human with quadriplegia. Nature 533, 247–250 (2016).

    CAS  PubMed  Google Scholar 

  4. 4.

    Ajiboye, A. B. et al. Restoration of reaching and grasping movements through brain-controlled muscle stimulation in a person with tetraplegia: a proof-of-concept demonstration. Lancet 389, 1821–1830 (2017).

    PubMed  PubMed Central  Google Scholar 

  5. 5.

    Pandarinath, C. et al. High performance communication by people with paralysis using an intracortical brain–computer interface. eLife 6, e18554 (2017).

    PubMed  PubMed Central  Google Scholar 

  6. 6.

    Sakellaridi, S. et al. Intrinsic variable learning for brain–machine interface control by human anterior intraparietal cortex. Neuron 102, 694–705 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Perge, J. A. et al. Intra-day signal instabilities affect decoding performance in an intracortical neural interface system. J. Neural Eng. 10, 036004 (2013).

    PubMed  PubMed Central  Google Scholar 

  8. 8.

    Turner, J. N. et al. Cerebral astrocyte response to micromachined silicon implants. Exp. Neurol. 156, 33–49 (1999).

    CAS  PubMed  Google Scholar 

  9. 9.

    Biran, R., Martin, D. C. & Tresco, P. A. Neuronal cell loss accompanies the brain tissue response to chronically implanted silicon microelectrode arrays. Exp. Neurol. 195, 115–126 (2005).

    CAS  PubMed  Google Scholar 

  10. 10.

    Moffitt, M. A. & McIntyre, C. C. Model-based analysis of cortical recording with silicon microelectrodes. Clin. Neurophysiol. 116, 2240–2250 (2005).

    PubMed  Google Scholar 

  11. 11.

    McConnell, G. C. et al. Implanted neural electrodes cause chronic, local inflammation that is correlated with local neurodegeneration. J. Neural Eng. 6, 056003 (2009).

    PubMed  Google Scholar 

  12. 12.

    Nuyujukian, P. et al. Performance sustaining intracortical neural prostheses. J. Neural Eng. 11, 066003 (2014).

    PubMed  Google Scholar 

  13. 13.

    Jarosiewicz, B. et al. Virtual typing by people with tetraplegia using a self-calibrating intracortical brain–computer interface. Sci. Transl. Med. 7, 313ra179 (2015).

    PubMed  PubMed Central  Google Scholar 

  14. 14.

    Downey, J. E., Schwed, N., Chase, S. M., Schwartz, A. B. & Collinger, J. L. Intracortical recording stability in human brain–computer interface users. J. Neural Eng. 15, 046016 (2018).

    PubMed  Google Scholar 

  15. 15.

    Li, Z., O’Doherty, J. E., Lebedev, M. A. & Nicolelis, M. A. L. Adaptive decoding for brain–machine interfaces through Bayesian parameter updates. Neural Comput. 23, 3162–3204 (2011).

    PubMed  PubMed Central  Google Scholar 

  16. 16.

    Zhang, Y. & Chase, S. M. A stabilized dual Kalman filter for adaptive tracking of brain–computer interface decoding parameters. In 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) 7100–7103 (IEEE, 2013).

  17. 17.

    Bishop, W. et al. Self-recalibrating classifiers for intracortical brain–computer interfaces. J. Neural Eng. 11, 026001 (2014).

    PubMed  PubMed Central  Google Scholar 

  18. 18.

    Homer, M. L. et al. Adaptive offset correction for intracortical brain–computer interfaces. IEEE Trans. Neural Syst. Rehab. Eng. 22, 239–248 (2014).

    Google Scholar 

  19. 19.

    Sussillo, D., Stavisky, S. D., Kao, J. C., Ryu, S. I. & Shenoy, K. V. Making brain–machine interfaces robust to future neural variability. Nat. Commun. 7, 13749 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Yu, B. et al. Gaussian-process factor analysis for low-dimensional single-trial analysis of neural population activity. J. Neurophysiol. 102, 614–635 (2009).

    PubMed  PubMed Central  Google Scholar 

  21. 21.

    Cunningham, J. P. & Yu, B. M. Dimensionality reduction for large-scale neural recordings. Nat. Neurosci. 17, 1500–1509 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Gao, P. & Ganguli, S. On simplicity and complexity in the brave new world of large-scale neuroscience. Curr. Opin. Neurobiol. 32, 148–155 (2015).

    CAS  PubMed  Google Scholar 

  23. 23.

    Gallego, J. A., Perich, M. G., Miller, L. E. & Solla, S. A. Neural manifolds for the control of movement. Neuron 94, 978–984 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Luczak, A., Barthó, P. & Harris, K. D. Spontaneous events outline the realm of possible sensory responses in neocortical populations. Neuron 62, 413–425 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Sadtler, P. T. et al. Neural constraints on learning. Nature 512, 423–426 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Degenhart, A. D. et al. Self-Recalibrating Brain-Computer Interfaces based on Population Subspace Alignment Abstr. 334.13 (Society of Neuroscience, 2016).

  27. 27.

    Bishop, W. E. et al. Extracting Stable Representations of Neural Population State from Unstable Neural Recordings (COSYNE, 2017).

  28. 28.

    Chase, S. M. Neural manifolds: from basic science to practical improvements in brain-computer interfaces. In IEEE 7th International Winter Conference on Brain-Computer Interface (BCI) 1–2 (IEEE, 2019).

  29. 29.

    Santhanam, G. et al. Factor-analysis methods for higher-performance neural prostheses. J. Neurophysiol. 102, 1315–1330 (2009).

    PubMed  PubMed Central  Google Scholar 

  30. 30.

    Wu, W., Gao, Y., Bienenstock, E., Donoghue, J. P. & Black, M. J. Bayesian population decoding of motor cortical activity using a Kalman filter. Neural Comput. 18, 80–118 (2006).

    PubMed  Google Scholar 

  31. 31.

    Fraser, G. W. & Schwartz, A. B. Recording from the same neurons chronically in motor cortex. J. Neurophysiol. 107, 1970–1978 (2012).

    PubMed  Google Scholar 

  32. 32.

    Pandarinath, C. et al. Inferring single-trial neural population dynamics using sequential auto-encoders. Nat. Methods 15, 805–815 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Gallego, J. A., Perich, M. G., Chowdhury, R. H., Solla, S. A. & Miller, L. E. Long-term stability of cortical population dynamics underlying consistent behavior. Nat. Neurosci. 23, 260–270 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Chestek, C. A. et al. Single-neuron stability during repeated reaching in macaque premotor cortex. J. Neurosci. 27, 10742–10750 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Stevenson, I. H. et al. Statistical assessment of the stability of neural movement representations. J. Neurophysiol. 106, 764–774 (2011).

    PubMed  PubMed Central  Google Scholar 

  36. 36.

    Flint, R. D., Scheid, M. R., Wright, Z. A., Solla, S. A. & Slutzky, M. W. Long-term stability of motor cortical activity: implications for brain machine interfaces and optimal feedback control. J. Neurosci. 36, 3623–3632 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Ruff, D. A., Ni, A. M. & Cohen, M. R. Cognition as a window into neuronal population space. Annu. Rev. Neurosci. 41, 77–97 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Tolias, A. S. et al. Recording chronically from the same neurons in awake, behaving primates. J. Neurophysiol. 98, 3780–3790 (2007).

    PubMed  Google Scholar 

  39. 39.

    Dickey, A. S., Suminski, A., Amit, Y. & Hatsopoulos, N. G. Single-unit stability using chronically implanted multielectrode arrays. J. Neurophysiol. 102, 1331–1339 (2009).

    PubMed  PubMed Central  Google Scholar 

  40. 40.

    Cunningham, J. P. & Ghahramani, Z. Linear dimensionality reduction: survey, insights, and generalizations. J. Mach. Learn. Res. 16, 2859–2900 (2015).

    Google Scholar 

  41. 41.

    Gilja, V. et al. A high-performance neural prosthesis enabled by control algorithm design. Nat. Neurosci. 15, 1752–1757 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Chase, S. M., Schwartz, A. B. & Kass, R. E. Bias, optimal linear estimation, and the differences between open-loop simulation and closed-loop performance of spiking-based brain–computer interface algorithms. Neural Netw. 22, 1203–1213 (2009).

    PubMed  PubMed Central  Google Scholar 

  43. 43.

    Carmena, J. M. et al. Learning to control a brain–machine interface for reaching and grasping by primates. PLoS Biol. 1, E42 (2003).

    PubMed  PubMed Central  Google Scholar 

  44. 44.

    So, K., Dangi, S., Orsborn, A. L., Gastpar, M. C. & Carmena, J. M. Subject-specific modulation of local field potential spectral power during brain–machine interface control in primates. J. Neural Eng. 11, 026002 (2014).

    PubMed  Google Scholar 

  45. 45.

    Leuthardt, E. C., Schalk, G., Wolpaw, J. R., Ojemann, J. G. & Moran, D. W. A brain–computer interface using electrocorticographic signals in humans. J. Neural Eng. 1, 63–71 (2004).

    PubMed  Google Scholar 

  46. 46.

    Degenhart, A. D. et al. Remapping cortical modulation for electrocorticographic brain–computer interfaces: a somatotopy-based approach in individuals with upper-limb paralysis. J. Neural Eng. 15, 026021 (2018).

    PubMed  PubMed Central  Google Scholar 

  47. 47.

    Wolpaw, J. R. & McFarland, D. J. Control of a two-dimensional movement signal by a noninvasive brain–computer interface in humans. Proc. Natl Acad. Sci. USA 101, 17849–17854 (2004).

    CAS  PubMed  Google Scholar 

  48. 48.

    Picton, T. W. & Hillyard, S. A. Cephalic skin potentials in electroencephalography. Electroencephalogr. Clin. Neurophysiol. 33, 419–424 (1972).

    CAS  PubMed  Google Scholar 

  49. 49.

    Degenhart, A. D. et al. Histological evaluation of a chronically-implanted electrocorticographic electrode grid in a non-human primate. J. Neural Eng. 13, 046019 (2016).

    PubMed  PubMed Central  Google Scholar 

  50. 50.

    Miller, K. J. et al. Spectral changes in cortical surface potentials during motor movement. J. Neurosci. 27, 2424–2432 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. 51.

    Siems, M., Pape, A.-A., Hipp, J. F. & Siegel, M. Measuring the cortical correlation structure of spontaneous oscillatory activity with EEG and MEG. NeuroImage 129, 345–355 (2016).

    PubMed  Google Scholar 

  52. 52.

    Piccione, F. et al. P300-based brain computer interface: reliability and performance in healthy and paralysed participants. Clin. Neurophysiol. 117, 531–537 (2006).

    CAS  PubMed  Google Scholar 

  53. 53.

    Gunduz, A., Ozturk, M., Sanchez, J. & Principe, J. Echo state networks for motor control of human ECoG neuroprosthetics. In 3rd International IEEE/EMBS Conference on Neural Engineering 514–517 (IEEE, 2007).

  54. 54.

    Kim, J.-H., Bießmann, F. & Lee, S.-W. Decoding three-dimensional trajectory of executed and imagined arm movements from electroencephalogram signals. IEEE Trans. Neural Syst. Rehab. Eng. 23, 867–876 (2015).

    Google Scholar 

  55. 55.

    Bishop, W. E. & Yu, S. M. Deterministic symmetric positive semidefinite matrix completion. Adv. Neural Inf. Process. Syst. 27, 2762–2770 (2014).

    Google Scholar 

  56. 56.

    Cowley, B. R., Smith, M. A., Kohn, A. & Yu, B. M. Stimulus-driven population activity patterns in macaque primary visual cortex. PLoS Comput. Biol. 12, e1005185 (2016).

    PubMed  PubMed Central  Google Scholar 

  57. 57.

    Wodlinger, B. et al. Ten-dimensional anthropomorphic arm control in a human brain–machine interface: difficulties, solutions, and limitations. J. Neural Eng. 12, 016011 (2014).

    PubMed  Google Scholar 

  58. 58.

    Fiser, J., Chiu, C. & Weliky, M. Small modulation of ongoing cortical dynamics by sensory input during natural vision. Nature 431, 573–578 (2004).

    CAS  PubMed  Google Scholar 

  59. 59.

    Berkes, P., Orbán, G., Lengyel, M. & Fiser, J. Spontaneous cortical activity reveals hallmarks of an optimal internal model of the environment. Science 331, 83–87 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. 60.

    Kiani, R. et al. Natural grouping of neural responses reveals spatially segregated clusters in prearcuate cortex. Neuron 85, 1359–1373 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. 61.

    Gallego, J. A. et al. Cortical population activity within a preserved neural manifold underlies multiple motor behaviors. Nat. Commun. 9, 4233 (2018).

    PubMed  PubMed Central  Google Scholar 

  62. 62.

    Oby, E. R. et al. New neural activity patterns emerge with long-term learning. Proc. Natl Acad. Sci. USA 7, 201820296 (2019).

    Google Scholar 

  63. 63.

    Zhou, X., Tien, R. N., Ravikumar, S. & Chase, S. M. Distinct types of neural reorganization during long-term learning. J. Neurophysiol. 121, 1329–1341 (2019).

    PubMed  PubMed Central  Google Scholar 

  64. 64.

    Golub, M. D. et al. Learning by neural reassociation. Nat. Neurosci. 21, 607–616 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. 65.

    Shenoy, K. V. & Carmena, J. M. Combining decoder design and neural adaptation in brain–machine interfaces. Neuron 84, 665–680 (2014).

    CAS  PubMed  Google Scholar 

  66. 66.

    Zhang, Y. & Chase, S. M. Optimizing the usability of brain–computer interfaces. Neural Comput. 30, 1323–1358 (2018).

    PubMed  Google Scholar 

  67. 67.

    Dyer, E. L. et al. A cryptography-based approach for movement decoding. Nat. Biomed. Eng. 1, 967–976 (2017).

    PubMed  Google Scholar 

  68. 68.

    Kao, J. C., Ryu, S. I. & Shenoy, K. V. Leveraging neural dynamics to extend functional lifetime of brain–machine interfaces. Sci. Rep. 7, 7395 (2017).

    PubMed  PubMed Central  Google Scholar 

  69. 69.

    Hamilton, L. S., Edwards, E. & Chang, E. F. A spatial map of onset and sustained responses to speech in the human superior temporal gyrus. Curr. Biol. 28, 1860–1871 (2018).

    CAS  PubMed  Google Scholar 

  70. 70.

    Riva-Posse, P. et al. A connectomic approach for subcallosal cingulate deep brain stimulation surgery: prospective targeting in treatment-resistant depression. Mol. Psychiatry 23, 843–849 (2018).

    CAS  PubMed  Google Scholar 

  71. 71.

    Williamson, R. C. et al. Scaling properties of dimensionality reduction for neural populations and network models. PLoS Comput. Biol. 12, e1005141 (2016).

    PubMed  PubMed Central  Google Scholar 

  72. 72.

    Dempster, A. P., Laird, N. M. & Rubin, D. B. Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. B 39, 1–38 (1977).

    Google Scholar 

  73. 73.

    Schönemann, P. H. A generalized solution of the orthogonal procrustes problem. Psychometrika 31, 1–10 (1966).

    Google Scholar 

  74. 74.

    Kao, J. C. et al. Single-trial dynamics of motor cortex and their applications to brain–machine interfaces. Nat. Commun. 6, 7759 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. 75.

    Tkach, D., Reimer, J. & Hatsopoulos, N. G. Congruent activity during action and action observation in motor cortex. J. Neurosci. 27, 13241–13250 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. 76.

    Golub, M. D., Yu, B. M. & Chase, S. M. Internal models for interpreting neural population activity during sensorimotor control. eLife 4, e10015 (2015).

    PubMed  PubMed Central  Google Scholar 

Download references


This work was supported by the Craig H. Neilsen Foundation (280028 to B.M.Y., S.M.C. and A.P.B.), NIH T32 NS086749 (to A.D.D. and E.R.O.), the DSF Charitable Foundation (132RA03 to A.D.D.), NIH R01 HD071686 (to A.P.B., B.M.Y. and S.M.C.), NSF NCS BCS1533672 (to S.M.C., A.P.B. and B.M.Y.), NIH CRCNS R01 NS105318 (to B.M.Y. and A.P.B.), the PA Department of Health (Research Formula Grant SAP 4100077048 to S.M.C. and B.M.Y.), NSF CAREER Award IOS1553252 (to S.M.C.), NSF NCS BCS1734916 (to B.M.Y.) and the Simons Foundation (364994 and 543065 to B.M.Y.).

Author information




A.D.D., W.E.B., E.R.O., S.M.C., A.P.B. and B.M.Y. designed the experiments and interpreted the results. A.D.D. performed the experiments with input from W.E.B. W.E.B. and B.M.Y. designed the stabilization method. A.D.D. and W.E.B. developed the real-time implementation of the stabilized BCI. A.D.D. and W.E.B. performed the analyses and wrote the manuscript. E.R.O., E.C.T.-K. and A.D.D. implanted the electrode arrays used for the experiments. All authors provided feedback on the manuscript.

Corresponding author

Correspondence to Byron M. Yu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–8 and reference.

Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Degenhart, A.D., Bishop, W.E., Oby, E.R. et al. Stabilization of a brain–computer interface via the alignment of low-dimensional spaces of neural activity. Nat Biomed Eng 4, 672–685 (2020).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing