Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Validation of the use of a fluorescent PARP1 inhibitor for the detection of oral, oropharyngeal and oesophageal epithelial cancers

Abstract

For oral, oropharyngeal and oesophageal cancer, the early detection of tumours and of residual tumour after surgery are prognostic factors of recurrence rates and patient survival. Here, we report the validation, in animal models and a human, of the use of a previously described fluorescently labelled small-molecule inhibitor of the DNA repair enzyme poly(ADP–ribose) polymerase 1 (PARP1) for the detection of cancers of the oral cavity, pharynx and oesophagus. We show that the fluorescent contrast agent can be used to quantify the expression levels of PARP1 and to detect oral, oropharyngeal and oesophageal tumours in mice, pigs and fresh human biospecimens when delivered topically or intravenously. The fluorescent PARP1 inhibitor can also detect oral carcinoma in a patient when applied as a mouthwash, and discriminate between fresh biopsied samples of the oral tumour and the surgical resection margin with more than 95% sensitivity and specificity. The PARP1 inhibitor could serve as the basis of a rapid and sensitive assay for the early detection and for the surgical-margin assessment of epithelial cancers of the upper intestinal tract.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Study overview.
Fig. 2: PARP1 expression and imaging in oesophageal cancer.
Fig. 3: PARP1 expression and PARP cytometry in oropharyngeal cancer.
Fig. 4: PARP1 expression during malignant transition and at tumour margins in oral cancer.
Fig. 5: Rapid PARPi-FL staining on fresh biospecimens.
Fig. 6: Feasibility of microscopic and macroscopic in-human imaging of PARPi-FL.

Data availability

The main data supporting the findings of this study are available within the paper and its Supplementary Information files. Associated raw data and step-by-step protocols can be made available from the corresponding author on reasonable request.

Code availability

The ImageJ macro for the automated analysis of PARP1 expression on immunohistochemistry slides is available on reasonable request.

References

  1. 1.

    Cancer stat facts: oral cavity and pharynx cancer. National Cancer Institute Surveillance, Epidemiology, and End Results Program https://seer.cancer.gov/statfacts/html/oralcav.html (2018).

  2. 2.

    Cancer stat facts: esophageal cancer. National Cancer Institute Surveillance, Epidemiology, and End Results Program https://seer.cancer.gov/statfacts/html/esoph.html (2018).

  3. 3.

    Sutton, D. N., Brown, J. S., Rogers, S. N., Vaughan, E. D. & Woolgar, J. A. The prognostic implications of the surgical margin in oral squamous cell carcinoma. Int J. Oral Maxillofac. Surg. 32, 30–34 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Ganly, I., Patel, S. & Shah, J. Early stage squamous cell cancer of the oral tongue—clinicopathologic features affecting outcome. Cancer 118, 101–111 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Law, S., Arcilla, C., Chu, K. M. & Wong, J. The significance of histologically infiltrated resection margin after esophagectomy for esophageal cancer. Am. J. Surg. 176, 286–290 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Fedele, S. Diagnostic aids in the screening of oral cancer. Head Neck Oncol. 1, 5 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Lingen, M. W., Kalmar, J. R., Karrison, T. & Speight, P. M. Critical evaluation of diagnostic aids for the detection of oral cancer. Oral Oncol. 44, 10–22 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Fuller, C. et al. Adjunctive diagnostic techniques for oral lesions of unknown malignant potential: systematic review with meta-analysis. Head Neck 37, 755–762 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Olivo, M., Bhuvaneswari, R. & Keogh, I. Advances in bio-optical imaging for the diagnosis of early oral cancer. Pharmaceutics 3, 354–378 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Strome, A. et al. Current practice and emerging molecular imaging technologies in oral cancer screening. Mol. Imaging 17, 1536012118808644 (2018).

    Article  CAS  Google Scholar 

  11. 11.

    Yang, E. C. et al. Noninvasive diagnostic adjuncts for the evaluation of potentially premalignant oral epithelial lesions: current limitations and future directions. Oral Surg. Oral Med. Oral Pathol. Oral. Radio. 125, 670–681 (2018).

    Article  Google Scholar 

  12. 12.

    Shin, D., Vigneswaran, N., Gillenwater, A. & Richards-Kortum, R. Advances in fluorescence imaging techniques to detect oral cancer and its precursors. Future Oncol. 6, 1143–1154 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Patton, L. L., Epstein, J. B. & Kerr, A. R. Adjunctive techniques for oral cancer examination and lesion diagnosis: a systematic review of the literature. J. Am. Dent. Assoc. 139, 896–905 (2008). quiz 993-894.

    Article  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Nosho, K. et al. Overexpression of poly(ADP-ribose) polymerase-1 (PARP-1) in the early stage of colorectal carcinogenesis. Eur. J. Cancer 42, 2374–2381 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Staibano, S. et al. Poly(adenosine diphosphate-ribose) polymerase 1 expression in malignant melanomas from photoexposed areas of the head and neck region. Hum. Pathol. 36, 724–731 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Chow, J. P. et al. PARP1 is overexpressed in nasopharyngeal carcinoma and its inhibition enhances radiotherapy. Mol. Cancer Therapeutics 12, 2517–2528 (2013).

    Article  CAS  Google Scholar 

  17. 17.

    Salemi, M. et al. Poly (ADP-ribose) polymerase 1 protein expression in normal and neoplastic prostatic tissue. Eur. J. Histochemistry 57, e13 (2013).

    Article  CAS  Google Scholar 

  18. 18.

    Green, A. R. et al. Biological and clinical significance of PARP1 protein expression in breast cancer. Breast Cancer Res. Treat. 149, 353–362 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Dziaman, T. et al. PARP-1 expression is increased in colon adenoma and carcinoma and correlates with OGG1. PLoS ONE 9, e115558 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Ossovskaya, V., Koo, I. C., Kaldjian, E. P., Alvares, C. & Sherman, B. M. Upregulation of poly (ADP-Ribose) polymerase-1 (PARP1) in triple-negative breast cancer and other primary human tumour types. Genes Cancer 1, 812–821 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Michels, J. et al. Negative prognostic value of high levels of intracellular poly(ADP-ribose) in non-small cell lung cancer. Ann. Oncol. 26, 2470–2477 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Rojo, F. et al. Nuclear PARP-1 protein overexpression is associated with poor overall survival in early breast cancer. Ann. Oncol. 23, 1156–1164 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Pashaiefar, H. et al. PARP-1 overexpression as an independent prognostic factor in adult non-M3 acute myeloid leukemia. Genet. Test. Mol. Biomark. 22, 343–349 (2018).

    Article  CAS  Google Scholar 

  24. 24.

    Li, Z. H. et al. PARP1 is a novel independent prognostic factor for the poor prognosis of chordoma. Cancer Biomark. 16, 633–639 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Irwin, C. P. et al. PARPi-FL—a fluorescent PARP1 inhibitor for glioblastoma imaging. Neoplasia 16, 432–440 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Kossatz, S. et al. Detection and delineation of oral cancer with a PARP1 targeted optical imaging agent. Sci. Rep. 6, 21371 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Rosenthal, E. L. et al. Successful translation of fluorescence navigation during oncologic surgery: a consensus report. J. Nucl. Med. 57, 144–150 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Kariv, R. et al. The Seattle protocol does not more reliably predict the detection of cancer at the time of esophagectomy than a less intensive surveillance protocol. Clin. Gastroenterol. Hepatol. 7, 653–658 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Canto, M. I. et al. Methylene blue-directed biopsies improve detection of intestinal metaplasia and dysplasia in Barrett’s esophagus. Gastrointest. Endosc. 51, 560–568 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Ngamruengphong, S., Sharma, V. K. & Das, A. Diagnostic yield of methylene blue chromoendoscopy for detecting specialized intestinal metaplasia and dysplasia in Barrett’s esophagus: a meta-analysis. Gastrointest. Endosc. 69, 1021–1028 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Shiozaki, H. et al. Endoscopic screening of early esophageal cancer with the Lugol dye method in patients with head and neck cancers. Cancer 66, 2068–2071 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Patel, A. A., Strome, M. & Blitzer, A. Directed balloon cytology of the esophagus: a novel device for obtaining circumferential cytologic sampling. Laryngoscope 127, 1032–1035 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Moinova, H. R. et al. Identifying DNA methylation biomarkers for non-endoscopic detection of Barrett’s esophagus. Sci. Transl. Med. 10, eaao5848 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Warnakulasuriya, S. Global epidemiology of oral and oropharyngeal cancer. Oral Oncol. 45, 309–316 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Johnson, S., Corsten, M. J., McDonald, J. T. & Chun, J. Socio-economic factors and stage at presentation of head and neck cancer patients in Ottawa, Canada: a logistic regression analysis. Oral Oncol. 46, 366–368 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Conway, D. I. et al. Socioeconomic inequalities and oral cancer risk: a systematic review and meta-analysis of case-control studies. Int. J. Cancer 122, 2811–2819 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Torre, L. A. et al. Global cancer statistics, 2012. CA Cancer J. Clin. 65, 87–108 (2015).

    Article  Google Scholar 

  38. 38.

    Mehrotra, R. & Gupta, D. K. Exciting new advances in oral cancer diagnosis: avenues to early detection. Head Neck Oncol. 3, 33 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Greenberg, M. S. The “brush” controversy. Oral Surg. Oral Med. Oral Pathol. Oral Radio. Endod. 93, 217–218 (2002).

    Article  Google Scholar 

  40. 40.

    Mehrotra, R. The role of cytology in oral lesions: a review of recent improvements. Diagn. Cytopathol. 40, 73–83 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Fusaroli, P. et al. Histology vs brush cytology (BC) in the diagnosis and follow up of Barrett’s esophagus (BE). Gastrointest. Endosc. 61, Ab131–Ab131 (2005).

    Google Scholar 

  42. 42.

    Hardwick, R. H., Morgan, R. J., Warren, B. F., Lott, M. & Alderson, D. Brush cytology in the diagnosis of neoplasia in Barrett’s esophagus. Dis. Esophagus 10, 233–237 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. 43.

    D’Souza, S. & Addepalli, V. Preventive measures in oral cancer: an overview. Biomed. Pharmacother. 107, 72–80 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. 44.

    McMahon, J. et al. Influence of condition of surgical margins on local recurrence and disease-specific survival in oral and oropharyngeal cancer. Br. J. Oral Maxillofac. Surg. 41, 224–231 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Ravasz, L. A., Slootweg, P. J., Hordijk, G. J., Smit, F. & van der Tweel, I. The status of the resection margin as a prognostic factor in the treatment of head and neck carcinoma. J. Craniomaxillofac. Surg. 19, 314–318 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Alicandri-Ciufelli, M. et al. Surgical margins in head and neck squamous cell carcinoma: what is ‘close’? Eur. Arch. Otorhinolaryngol. 270, 2603–2609 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Black, C., Marotti, J., Zarovnaya, E. & Paydarfar, J. Critical evaluation of frozen section margins in head and neck cancer resections. Cancer 107, 2792–2800 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  48. 48.

    Pathak, K. A. et al. Impact of use of frozen section assessment of operative margins on survival in oral cancer. Oral Surg. Oral Med. Oral Pathol. Oral Radio. Endod. 107, 235–239 (2009).

    Article  Google Scholar 

  49. 49.

    Kossatz, S., Weber, W. & Reiner, T. Detection and delineation of oral cancer with a PARP1-targeted optical imaging agent. Mol. Imaging 16, 1536012117723786 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Carney, B., Kossatz, S. & Reiner, T. Molecular Imaging of PARP. J. Nucl. Med. 58, 1025–1030 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. 51.

    Thurber, G. M., Reiner, T., Yang, K. S., Kohler, R. H. & Weissleder, R. Effect of small-molecule modification on single-cell pharmacokinetics of PARP inhibitors. Mol. Cancer Ther. 13, 986–995 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. 52.

    van Dam, G. M. et al. Intraoperative tumour-specific fluorescence imaging in ovarian cancer by folate receptor-α targeting: first in-human results. Nat. Med. 17, 1315–1319 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. 53.

    Tummers, W. S. et al. Recommendations for reporting on emerging optical imaging agents to promote clinical approval. Theranostics 8, 5336–5347 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. 54.

    Carney, B. et al. Target engagement imaging of PARP inhibitors in small-cell lung cancer. Nat. Commun. 9, 176 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. 55.

    Kossatz, S., Weber, W. A. & Reiner, T. Optical imaging of PARP1 in response to radiation in oral squamous cell carcinoma. PLoS ONE 11, e0147752 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. 56.

    Kossatz, S. et al. Direct imaging of drug distribution and target engagement of the PARP inhibitor rucaparib. J. Nucl. Med. 59, 1316–1320 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank A. Sahu and R. Giese for supporting the work at MSMC; J. Budrewicz for his support of the experiments at CBSet; N. Katabi for providing expertise in histopathology; V. Dokic for assistance during clinical work with PARPi-FL; and G. Scott and L. Bassity for editing the manuscript. We thank the Molecular Cytology Core Facility, Radiochemistry and Molecular Imaging Probes Core Facility, and Flow Cytometry Core Facility at MSKCC. Finally, we thank the participants of the blinded study, including (in alphabetical order): A. Schulman, A. Sahu, A. Bolaender, C. Mason, E. Pratt, C. Andreou, F. Nicolson, J. Berry, J. Goos, J. Gonzales, K. Henry, L. Carter, M. Jain, M. McGill, N. Guru, N. Sobol, P. R. Pereira, R. Mirsafavi, S. Roberts, S. Poty, S. Jannetti, T. Crawford, V. Nagle, X. (L.) Wu and A. Sadique. This work was supported by National Institutes of Health grants R01 CA204441, P30 CA008748, R43 CA228815 and K99 CA218875 (to S.K.). We thank the Tow Foundation and the MSKCC Center for Molecular Imaging and Nanotechnology, Imaging and Radiation Sciences Program, and Molecularly Targeted Intraoperative Imaging Fund.

Author information

Affiliations

Authors

Contributions

S.K., G.P., M.A.K., S.G.P. and T.R. conceived the study and designed the experiments. S.K., G.P., A.L.S., S.P.S., P.D.D.S.F., D.K.Z., C.B., R.A.G., V.S., P.B., N.H., R.D.R., A.S. and T.R. carried out the experiments and collected and analysed the data. S.K., S.P.S., P.D.D.S.F., D.K.Z., A.S., S.G.P. and T.R. wrote Institutional Research Board protocols. A.M., M.G., G.P. and S.K. conducted statistical analysis of the data. M.S. and M.A.K. contributed experimental or analysis tools. S.K. and T.R. wrote the manuscript. All authors carefully reviewed and approved the manuscript.

Corresponding author

Correspondence to Thomas Reiner.

Ethics declarations

Competing interests

S.K., S.G.P., C.B. and T.R. are shareholders of Summit Biomedical Imaging. S.K., S.G.P. and T.R. are co-inventors on filed US patent (WO2016164771), held by Memorial Sloan Kettering Cancer Centre, which covers methods of use for PARPi-FL. T.R. is a co-inventor on US patent (WO2012074840), held by the General Hospital Corporation, which covers the composition of PARPi-FL. B.C. and T.R. are co-inventors on the filed US patent (WO2016033293), held by Memorial Sloan Kettering Cancer Centre, which covers methods for the synthesis of [18F]PARPi. T.R. is a paid consultant for Theragnostics. M.S. is a co-founder of Aero-Di-Namics.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary figures, tables and references.

Reporting Summary

Supplementary Dataset 1

Blinded study training dataset.

Supplementary Dataset 2

Blinded study test dataset.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kossatz, S., Pirovano, G., Demétrio De Souza França, P. et al. Validation of the use of a fluorescent PARP1 inhibitor for the detection of oral, oropharyngeal and oesophageal epithelial cancers. Nat Biomed Eng 4, 272–285 (2020). https://doi.org/10.1038/s41551-020-0526-9

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing