Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Mechanobiological conditioning of mesenchymal stem cells for enhanced vascular regeneration

Abstract

Using endogenous mesenchymal stem cells for treating myocardial infarction and other cardiovascular conditions typically results in poor efficacy, in part owing to the heterogeneity of the harvested cells and of the patient responses. Here, by means of high-throughput screening of the combinatorial space of mechanical-strain level and of the presence of particular kinase inhibitors, we show that human mesenchymal stem cells can be mechanically and pharmacologically conditioned to enhance vascular regeneration in vivo. Mesenchymal stem cells conditioned to increase the activation of signalling pathways mediated by Smad2/3 (mothers against decapentaplegic homolog 2/3) and YAP (Yes-associated protein) expressed markers that are associated with pericytes and endothelial cells, displayed increased angiogenic activity in vitro, and enhanced the formation of vasculature in mice after subcutaneous implantation and after implantation in ischaemic hindlimbs. These effects were mediated by the crosstalk of endothelial-growth-factor receptors, transforming-growth-factor-beta receptor type 1 and vascular-endothelial-growth-factor receptor 2. Mechanical and pharmacological conditioning can significantly enhance the regenerative properties of mesenchymal stem cells.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Specific types of mechanical stretch activate Smad2/3 and YAP/TAZ pathways in MSCs.
Fig. 2: High-throughput mechanobiological screen for small-molecule inhibitors that synergistically activate YAP/TAZ and Smad2/3 with mechanical loading.
Fig. 3: Biomechanical stimulation of MSCs with the brachial waveform and specific small-molecule inhibitors leads to increased expression of EC and pericyte markers and enhanced pericyte-like activity.
Fig. 4: Gene expression analysis using RNA-seq demonstrates that mechanical conditioning with brachial waveform loading enhances pericyte and EC gene expression.
Fig. 5: Optimized mechanical and pharmacological conditioning of MSCs increases their ability to induce angiogenesis and arteriogenesis after subcutaneous implantation or in a hindlimb ischaemia model.
Fig. 6: Analysis of cell signalling pathways activated during treatment of MSCs with brachial waveform loading with an E/E inhibitor.
Fig. 7: Summary of mechanism for mechanical conditioning of MSCs.

Data availability

The main data supporting the results in this study are available within the paper and its Supplementary Information. The source dataset for the RNA-seq analyses can be found in the NIH GEO Database (http://www.ncbi.nlm.nih.gov/bioproject/693356).

References

  1. Sarugaser, R., Hanoun, L., Keating, A., Stanford, W. L. & Davies, J. E. Human mesenchymal stem cells self-renew and differentiate according to a deterministic hierarchy. PLoS ONE 4, e6498 (2009).

    PubMed  PubMed Central  Google Scholar 

  2. Mao, Q. et al. ILK promotes survival and self-renewal of hypoxic MSCs via the activation of lncTCF7-Wnt pathway induced by IL-6/STAT3 signaling. Gene Ther. 26, 165–176 (2019).

    CAS  PubMed  Google Scholar 

  3. Shi, Y. et al. Mesenchymal stem cells: a new strategy for immunosuppression and tissue repair. Cell Res. 20, 510–518 (2010).

    CAS  PubMed  Google Scholar 

  4. Shake, J. G. et al. Mesenchymal stem cell implantation in a swine myocardial infarct model: engraftment and functional effects. Ann. Thorac. Surg. 73, 1919–1925 (2002).

    PubMed  Google Scholar 

  5. Barbash, I. M. et al. Systemic delivery of bone marrow-derived mesenchymal stem cells to the infarcted myocardium: feasibility, cell migration, and body distribution. Circulation 108, 863–868 (2003).

    PubMed  Google Scholar 

  6. Nagaya, N. et al. Intravenous administration of mesenchymal stem cells improves cardiac function in rats with acute myocardial infarction through angiogenesis and myogenesis. Am. J. Physiol. Heart Circ. Physiol. 287, H2670–H2676 (2004).

    CAS  PubMed  Google Scholar 

  7. Muller-Ehmsen, J. et al. Effective engraftment but poor mid-term persistence of mononuclear and mesenchymal bone marrow cells in acute and chronic rat myocardial infarction. J. Mol. Cell. Cardiol. 41, 876–884 (2006).

    PubMed  Google Scholar 

  8. Cai, M. et al. PET monitoring angiogenesis of infarcted myocardium after treatment with vascular endothelial growth factor and bone marrow mesenchymal stem cells. Amino Acids 48, 811–820 (2016).

    CAS  PubMed  Google Scholar 

  9. Cai, M. et al. Bone marrow mesenchymal stem cells (BM-MSCs) improve heart function in swine myocardial infarction model through paracrine effects. Sci. Rep. 6, 28250 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Baraniak, P. R. & McDevitt, T. C. Stem cell paracrine actions and tissue regeneration. Regen. Med. 5, 121–143 (2010).

    PubMed  Google Scholar 

  11. Cassino, T. R. et al. Mechanical loading of stem cells for improvement of transplantation outcome in a model of acute myocardial infarction: the role of loading history. Tissue Eng. Part A 18, 1101–1108 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Watt, S. M. et al. The angiogenic properties of mesenchymal stem/stromal cells and their therapeutic potential. Br. Med. Bull. 108, 25–53 (2013).

    PubMed  PubMed Central  Google Scholar 

  13. Yan, J., Tie, G., Xu, T. Y., Cecchini, K. & Messina, L. M. Mesenchymal stem cells as a treatment for peripheral arterial disease: current status and potential impact of type II diabetes on their therapeutic efficacy. Stem Cell Rev. 9, 360–372 (2013).

    CAS  PubMed Central  Google Scholar 

  14. Wagner, W. et al. Aging and replicative senescence have related effects on human stem and progenitor cells. PLoS ONE 4, e5846 (2009).

    PubMed  PubMed Central  Google Scholar 

  15. Kretlow, J. D. et al. Donor age and cell passage affects differentiation potential of murine bone marrow-derived stem cells. BMC Cell Biol. 9, 60 (2008).

    PubMed  PubMed Central  Google Scholar 

  16. Phinney, D. G. Functional heterogeneity of mesenchymal stem cells: implications for cell therapy. J. Cell. Biochem. 113, 2806–2812 (2012).

    CAS  PubMed  Google Scholar 

  17. Du, W. J. et al. Heterogeneity of proangiogenic features in mesenchymal stem cells derived from bone marrow, adipose tissue, umbilical cord, and placenta. Stem Cell Res. Ther. 7, 163 (2016).

    PubMed  PubMed Central  Google Scholar 

  18. Heeschen, C. et al. Profoundly reduced neovascularization capacity of bone marrow mononuclear cells derived from patients with chronic ischemic heart disease. Circulation 109, 1615–1622 (2004).

    PubMed  Google Scholar 

  19. Hill, J. M. et al. Circulating endothelial progenitor cells, vascular function, and cardiovascular risk. N. Engl. J. Med. 348, 593–600 (2003).

    PubMed  Google Scholar 

  20. Li, T. S. et al. Impaired potency of bone marrow mononuclear cells for inducing therapeutic angiogenesis in obese diabetic rats. Am. J. Physiol. Heart Circ. Physiol. 290, H1362–H1369 (2006).

    CAS  PubMed  Google Scholar 

  21. Roobrouck, V. D., Ulloa-Montoya, F. & Verfaillie, C. M. Self-renewal and differentiation capacity of young and aged stem cells. Exp. Cell Res. 314, 1937–1944 (2008).

    CAS  PubMed  Google Scholar 

  22. Barkholt, L. et al. Risk of tumorigenicity in mesenchymal stromal cell-based therapies—bridging scientific observations and regulatory viewpoints. Cytotherapy 15, 753–759 (2013).

    PubMed  Google Scholar 

  23. Oswald, J. et al. Mesenchymal stem cells can be differentiated into endothelial cells in vitro. Stem Cells 22, 377–384 (2004).

    PubMed  Google Scholar 

  24. Li, Q. et al. VEGF treatment promotes bone marrow-derived CXCR4+ mesenchymal stromal stem cell differentiation into vessel endothelial cells. Exp. Ther. Med. 13, 449–454 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Janeczek Portalska, K. et al. Endothelial differentiation of mesenchymal stromal cells. PLoS ONE 7, e46842 (2012).

    PubMed  PubMed Central  Google Scholar 

  26. Galas, R. J. Jr. & Liu, J. C. Vascular endothelial growth factor does not accelerate endothelial differentiation of human mesenchymal stem cells. J. Cell. Physiol. 229, 90–96 (2014).

    CAS  PubMed  Google Scholar 

  27. Henderson, K., Sligar, A. D., Le, V., Lee, J. & Baker, A. B. Biomechanical regulation of mesenchymal stem cells for cardiovascular tissue engineering. Adv. Healthc. Mater. 6, 1700556 (2017).

    Google Scholar 

  28. Homayouni Moghadam, F. et al. Treatment with platelet lysate induces endothelial differentation of bone marrow mesenchymal stem cells under fluid shear stress. EXCLI J. 13, 638–649 (2014).

    PubMed  PubMed Central  Google Scholar 

  29. Bai, K., Huang, Y., Jia, X., Fan, Y. & Wang, W. Endothelium oriented differentiation of bone marrow mesenchymal stem cells under chemical and mechanical stimulations. J. Biomech. 43, 1176–1181 (2010).

    PubMed  Google Scholar 

  30. Dong, J. D. et al. Response of mesenchymal stem cells to shear stress in tissue-engineered vascular grafts. Acta Pharmacol. Sin. 30, 530–536 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Kim, D. H. et al. Shear stress and circumferential stretch by pulsatile flow direct vascular endothelial lineage commitment of mesenchymal stem cells in engineered blood vessels. J. Mater. Sci. Mater. Med. 27, 60 (2016).

    PubMed  Google Scholar 

  32. Wang, H. et al. Shear stress induces endothelial differentiation from a murine embryonic mesenchymal progenitor cell line. Arterioscler. Thromb. Vasc. Biol. 25, 1817–1823 (2005).

    CAS  PubMed  Google Scholar 

  33. Kinnaird, T. et al. Local delivery of marrow-derived stromal cells augments collateral perfusion through paracrine mechanisms. Circulation 109, 1543–1549 (2004).

    CAS  PubMed  Google Scholar 

  34. Alaminos, M. et al. Transdifferentiation potentiality of human Wharton’s jelly stem cells towards vascular endothelial cells. J. Cell. Physiol. 223, 640–647 (2010).

    CAS  PubMed  Google Scholar 

  35. Tamama, K., Sen, C. K. & Wells, A. Differentiation of bone marrow mesenchymal stem cells into the smooth muscle lineage by blocking ERK/MAPK signaling pathway. Stem Cells Dev. 17, 897–908 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Lee, J. et al. A high throughput screening system for studying the effects of applied mechanical forces on reprogramming factor expression. Sci. Rep. 10, 15469 (2020).

    PubMed  PubMed Central  Google Scholar 

  37. Lee, J. & Baker, A. B. Computational analysis of fluid flow within a device for applying biaxial strain to cultured cells. J. Biomech. Eng. 137, 051006 (2015).

    PubMed  Google Scholar 

  38. Lee, J., Wong, M., Smith, Q. & Baker, A. B. A novel system for studying mechanical strain waveform-dependent responses in vascular smooth muscle cells. Lab Chip 13, 4573–4582 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Serrano, I., McDonald, P. C., Lock, F., Muller, W. J. & Dedhar, S. Inactivation of the Hippo tumour suppressor pathway by integrin-linked kinase. Nat. Commun. 4, 2976 (2013).

    PubMed  Google Scholar 

  40. Crisan, M. et al. A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell 3, 301–313 (2008).

    CAS  PubMed  Google Scholar 

  41. Guimaraes-Camboa, N. et al. Pericytes of multiple organs do not behave as mesenchymal stem cells in vivo. Cell Stem Cell 20, 345–359 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Xie, L., Zeng, X., Hu, J. & Chen, Q. Characterization of nestin, a selective marker for bone marrow derived mesenchymal stem cells. Stem Cells Int. 2015, 762098 (2015).

    PubMed  PubMed Central  Google Scholar 

  43. Espagnolle, N. et al. CD146 expression on mesenchymal stem cells is associated with their vascular smooth muscle commitment. J. Cell. Mol. Med 18, 104–114 (2014).

    CAS  PubMed  Google Scholar 

  44. Russell, K. C. et al. Cell-surface expression of neuron-glial antigen 2 (NG2) and melanoma cell adhesion molecule (CD146) in heterogeneous cultures of marrow-derived mesenchymal stem cells. Tissue Eng. Part A 19, 2253–2266 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Wu, C. C., Liu, F. L., Sytwu, H. K., Tsai, C. Y. & Chang, D. M. CD146+ mesenchymal stem cells display greater therapeutic potential than CD146 cells for treating collagen-induced arthritis in mice. Stem Cell Res. Ther. 7, 23 (2016).

    PubMed  PubMed Central  Google Scholar 

  46. Bussolino, F. et al. Hepatocyte growth factor is a potent angiogenic factor which stimulates endothelial cell motility and growth. J. Cell Biol. 119, 629–641 (1992).

    CAS  PubMed  Google Scholar 

  47. Kumar, A. et al. Specification and diversification of pericytes and smooth muscle cells from mesenchymoangioblasts. Cell Rep. 19, 1902–1916 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Bhasin, M. et al. Bioinformatic identification and characterization of human endothelial cell-restricted genes. BMC Genom. 11, 342 (2010).

    Google Scholar 

  49. Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Dupont, S. et al. Role of YAP/TAZ in mechanotransduction. Nature 474, 179–183 (2011).

    CAS  PubMed  Google Scholar 

  51. Sakabe, M. et al. YAP/TAZ-CDC42 signaling regulates vascular tip cell migration. Proc. Natl Acad. Sci. USA 114, 10918–10923 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Kim, J. et al. YAP/TAZ regulates sprouting angiogenesis and vascular barrier maturation. J. Clin. Invest. 127, 3441–3461 (2017).

    PubMed  PubMed Central  Google Scholar 

  53. Neto, F. et al. YAP and TAZ regulate adherens junction dynamics and endothelial cell distribution during vascular development. eLife 7, 31037 (2018).

    Google Scholar 

  54. Kato, K. et al. Pulmonary pericytes regulate lung morphogenesis. Nat. Commun. 9, 2448 (2018).

    PubMed  PubMed Central  Google Scholar 

  55. Itoh, F. et al. Smad2/Smad3 in endothelium is indispensable for vascular stability via S1PR1 and N-cadherin expressions. Blood 119, 5320–5328 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Hirschi, K. K., Rohovsky, S. A. & D’Amore, P. A. PDGF, TGF-β, and heterotypic cell-cell interactions mediate endothelial cell-induced recruitment of 10T1/2 cells and their differentiation to a smooth muscle fate. J. Cell Biol. 141, 805–814 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Zonneville, J., Safina, A., Truskinovsky, A. M., Arteaga, C. L. & Bakin, A. V. TGF-β signaling promotes tumor vasculature by enhancing the pericyte-endothelium association. BMC Cancer 18, 670 (2018).

    PubMed  PubMed Central  Google Scholar 

  58. Di Bernardini, E. et al. Endothelial lineage differentiation from induced pluripotent stem cells is regulated by microRNA-21 and transforming growth factor β2 (TGF-β2) pathways. J. Biol. Chem. 289, 3383–3393 (2014).

    PubMed  Google Scholar 

  59. Ai, W. J. et al. R-Smad signaling-mediated VEGF expression coordinately regulates endothelial cell differentiation of rat mesenchymal stem cells. Stem Cells Dev. 24, 1320–1331 (2015).

    CAS  PubMed  Google Scholar 

  60. Choi, H. J. et al. Yes-associated protein regulates endothelial cell contact-mediated expression of angiopoietin-2. Nat. Commun. 6, 6943 (2015).

    CAS  PubMed  Google Scholar 

  61. Shih, S. C. et al. Transforming growth factor beta1 induction of vascular endothelial growth factor receptor 1: mechanism of pericyte-induced vascular survival in vivo. Proc. Natl Acad. Sci. USA 100, 15859–15864 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Tsukada, T. et al. TGFβ signaling reinforces pericyte properties of the non-endocrine mouse pituitary cell line TtT/GF. Cell Tissue Res. 371, 339–350 (2018).

    CAS  PubMed  Google Scholar 

  63. Sieczkiewicz, G. J. & Herman, I. M. TGF-β1 signaling controls retinal pericyte contractile protein expression. Microvasc. Res. 66, 190–196 (2003).

    CAS  PubMed  Google Scholar 

  64. Sato, Y. & Rifkin, D. B. Inhibition of endothelial cell movement by pericytes and smooth muscle cells: activation of a latent transforming growth factor-beta 1-like molecule by plasmin during co-culture. J. Cell Biol. 109, 309–315 (1989).

    CAS  PubMed  Google Scholar 

  65. O’Cearbhaill, E. D. et al. Response of mesenchymal stem cells to the biomechanical environment of the endothelium on a flexible tubular silicone substrate. Biomaterials 29, 1610–1619 (2008).

    PubMed  Google Scholar 

  66. Jang, J. Y. et al. Combined effects of surface morphology and mechanical straining magnitudes on the differentiation of mesenchymal stem cells without using biochemical reagents. J. Biomed. Biotechnol. 2011, 860652 (2011).

    PubMed  PubMed Central  Google Scholar 

  67. Kim, D. H. et al. Shear stress magnitude is critical in regulating the differentiation of mesenchymal stem cells even with endothelial growth medium. Biotechnol. Lett. 33, 2351–2359 (2011).

    CAS  PubMed  Google Scholar 

  68. Wingate, K., Floren, M., Tan, Y., Tseng, P. O. & Tan, W. Synergism of matrix stiffness and vascular endothelial growth factor on mesenchymal stem cells for vascular endothelial regeneration. Tissue Eng. Part A 20, 2503–2512 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Dunn, A. K., Bolay, H., Moskowitz, M. A. & Boas, D. A. Dynamic imaging of cerebral blood flow using laser speckle. J. Cereb. Blood Flow Metab. 21, 195–201 (2001).

    CAS  PubMed  Google Scholar 

  70. Patro, R., Duggal, G., Love, M. I., Irizarry, R. A. & Kingsford, C. Salmon provides fast and bias-aware quantification of transcript expression. Nat. Methods 14, 417–419 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Soneson, C., Love, M. I. & Robinson, M. D. Differential analyses for RNA-seq: transcript-level estimates improve gene-level inferences. F1000Res. 4, 1521 (2015).

    PubMed  Google Scholar 

  72. Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge funding through the American Heart Association (grant no. 17IRG33410888), the DOD CDMRP (grant nos W81XWH-16-1-0580 and W81XWH-16-1-0582) and the National Institutes of Health (grant nos 1R21EB023551-01, 1R21EB024147-01A1 and 1R01HL141761-01) to A.B.B.

Author information

Authors and Affiliations

Authors

Contributions

J.L. and A.B.B. initiated the project and oversaw all aspects of the project. J.L., K.H., M.W.M., M.A.-O., B.G.I., A.V., P.M., E.Y., L.S., M.W. and A.B.B. performed experiments, processed and analysed data. B.-K.L., M.K. and J.K. performed GSEA analyses on the RNA-seq data. A.K.D. provided instrumentation and expertise in laser speckle imaging and data processing. J.L. and A.B.B. wrote and edited the manuscript. All of the authors reviewed and approved the manuscript before publication.

Corresponding author

Correspondence to Aaron B. Baker.

Ethics declarations

Competing interests

J.L. and A.B.B. have filed a patent (USPTO (US20200268801A1)) on the technology/techniques described in this paper.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary figures and tables.

Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lee, J., Henderson, K., Massidda, M.W. et al. Mechanobiological conditioning of mesenchymal stem cells for enhanced vascular regeneration. Nat Biomed Eng 5, 89–102 (2021). https://doi.org/10.1038/s41551-020-00674-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41551-020-00674-w

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing