Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Transient blood thinning during extracorporeal blood purification via the inactivation of coagulation factors by hydrogel microspheres

Abstract

During extracorporeal blood purification, anticoagulants are administered to prevent thrombogenesis. However, haemorrhagic complications owing to near-complete inactivation of blood coagulation and delayed recovery of haemostasis pose serious risks to patients. Here, we show in vitro and in beagle dogs that hydrogel microspheres that adsorb the coagulation factors VIII, IX and XI provide transient blood thinning when placed in the extracorporeal circuit before blood purification. The microspheres inhibited the activities of the coagulation factors by levels (~8–30%) similar to those occurring in mild haemophilia. On its reintroduction into the animal, the purified pseudo-haemophilic blood favoured faster recovery of haemostasis. The transient blood-thinning strategy may increase the safety of clinical blood-purification procedures.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Design and evaluation of the biocompatibility of the spheres in vitro.
Fig. 2: Design and evaluation of the blood-thinning properties of the spheres in vitro.
Fig. 3: Establishment of the pseudo-haemophilia model and its safety in vivo.
Fig. 4: Efficacy of the pseudo-haemophilia model in vivo.
Fig. 5: Practical application of the pseudo-haemophilia model in haemodialysis.

Data availability

The main data supporting the results in this study are available within the paper and its SupplementaryInformation. The raw and analysed datasets generated during the study are too large to be publicly shared; however, they are available for research purposes from the corresponding authors upon reasonable request.

References

  1. 1.

    Neri, M. et al. Nomenclature for renal replacement therapy in acute kidney injury: basic principles. Critical Care https://doi.org/10.1186/s13054-016-1489-9 (2016).

  2. 2.

    Eckardt, K.-U. et al. Evolving importance of kidney disease: from subspecialty to global health burden. Lancet 382, 158–169 (2013).

    PubMed  Article  Google Scholar 

  3. 3.

    Zoccali, C. et al. The systemic nature of CKD. Nat. Rev. Nephrol. 13, 344–358 (2017).

    PubMed  Article  Google Scholar 

  4. 4.

    Carpentier, B., Gautier, A. & Legallais, C. Artificial and bioartificial liver devices: present and future. Gut 58, 1690–1702 (2009).

    CAS  Article  Google Scholar 

  5. 5.

    Holubek, W. J., Hoffman, R. S., Goldfarb, D. S. & Nelson, L. S. Use of hemodialysis and hemoperfusion in poisoned patients. Kidney Int. 74, 1327–1334 (2008).

    CAS  PubMed  Article  Google Scholar 

  6. 6.

    Ronco, C. et al. Renal replacement therapy in acute kidney injury: controversy and consensus. Critical Care https://doi.org/10.1186/s13054-015-0850-8 (2015).

  7. 7.

    Mackman, N. Triggers, targets and treatments for thrombosis. Nature 451, 914–918 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  8. 8.

    Davenport, A. What are the anticoagulation options for intermittent hemodialysis? Nat. Rev. Nephrol. 7, 499–508 (2011).

    CAS  PubMed  Article  Google Scholar 

  9. 9.

    Caruana, R. J., Raja, R. M., Bush, J. V., Kramer, M. S. & Goldstein, S. J. Heparin free dialysis: comparative data and results in high risk patients. Kidney Int. 31, 1351–1355 (1987).

    CAS  PubMed  Article  Google Scholar 

  10. 10.

    Levine, M. et al. A comparison of low-molecular-weight heparin administered primarily at home with unfractionated heparin administered in the hospital for proximal deep-vein thrombosis. N. Engl. J. Med. 334, 677–681 (1996).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  11. 11.

    Parasa, S., Navaneethan, U., Sridhar, A. R. M., Venkatesh, P. G. K. & Olden, K. End-stage renal disease is associated with worse outcomes in hospitalized patients with peptic ulcer bleeding. Gastrointest. Endosc. 77, 609–616 (2013).

    PubMed  Article  PubMed Central  Google Scholar 

  12. 12.

    Cheung, J., Yu, A., LaBossiere, J., Zhu, Q. & Fedorak, R. N. Peptic ulcer bleeding outcomes adversely affected by end-stage renal disease. Gastrointest. Endosc. 71, 44–49 (2010).

    PubMed  Article  PubMed Central  Google Scholar 

  13. 13.

    Rath, C. E., Mailliard, J. A. & Schreiner, G. E. Bleeding tendency in uremia. N. Engl. J. Med. 257, 808–811 (1957).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  14. 14.

    Lu, G. M. et al. A specific antidote for reversal of anticoagulation by direct and indirect inhibitors of coagulation factor Xa. Nat. Med. 19, 446–44 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  15. 15.

    Crowther, M. A. & Warkentin, T. E. Bleeding risk and the management of bleeding complications in patients undergoing anticoagulant therapy: focus on new anticoagulant agents. Blood 111, 4871–4879 (2008).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  16. 16.

    Ainle, F. N. et al. Protamine sulfate down-regulates thrombin generation by inhibiting factor V activation. Blood 114, 1658–1665 (2009).

    CAS  Article  Google Scholar 

  17. 17.

    Shenoi, R. A. et al. Affinity-based design of a synthetic universal reversal agent for heparin anticoagulants. Sci. Transl Med. https://doi.org/10.1126/scitranslmed.3009427 (2014).

  18. 18.

    Kindgen-Milles, D., Brandenburger, T. & Dimski, T. Regional citrate anticoagulation for continuous renal replacement therapy. Curr. Opin. Crit. Care 24, 450–454 (2018).

    PubMed  Article  PubMed Central  Google Scholar 

  19. 19.

    Kreuzer, M. et al. Regional citrate anticoagulation is safe in intermittent high-flux haemodialysis treatment of children and adolescents with an increased risk of bleeding. Nephrol. Dialysis Transplant. 25, 3337–3342 (2010).

    CAS  Article  Google Scholar 

  20. 20.

    Evenepoel, P., Maes, B. & Vanwalleghem, J. Regional citrate anticoagulation for hemodialysis using a conventional calcium-containing dialysate. Am. J. Kidney Dis. 39, 315–323 (2002).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  21. 21.

    Ji, H. et al. Reinforced-concrete structured hydrogel microspheres with ultrahigh mechanical strength, restricted water uptake, and superior adsorption capacity. ACS Sustain. Chem. Eng. 6, 5950–5958 (2018).

    CAS  Article  Google Scholar 

  22. 22.

    He, C. et al. Heparin-based and heparin-inspired hydrogels: size-effect, gelation and biomedical applications. J. Mater. Chem. B 7, 1186–1208 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  23. 23.

    Paluck, S. J., Nguyen, T. H. & Maynard, H. D. Heparin-mimicking polymers: synthesis and biological applications. Biomacromolecules 17, 3417–3440 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  24. 24.

    Song, X. et al. Design of carrageenan-based heparin-mimetic gel beads as self-anticoagulant hemoperfusion adsorbents. Biomacromolecules 19, 1966–1978 (2018).

    CAS  PubMed  Article  Google Scholar 

  25. 25.

    Zhao, C., Xue, J., Ran, F. & Sun, S. Modification of polyethersulfone membranes—a review of methods. Prog. Mater. Sci. 58, 76–150 (2013).

    CAS  Article  Google Scholar 

  26. 26.

    Niewiarowski, S. & Thomas, D. P. Platelet factor 4 and adenosine diphosphate release during human platelet aggregation. Nature 222, 1269–126 (1969).

    CAS  PubMed  Article  Google Scholar 

  27. 27.

    Schmaier, A. H. The contact activation and kallikrein/kinin systems: pathophysiologic and physiologic activities. J. Thrombosis Haemost. 14, 28–39 (2016).

    CAS  Article  Google Scholar 

  28. 28.

    Hong, J., Ekdahl, K. N., Reynolds, H., Larsson, R. & Nilsson, B. A new in vitro model to study interaction between whole blood and biomaterials. Studies of platelet and coagulation activation acid the effect of aspirin. Biomaterials 20, 603–611 (1999).

    CAS  PubMed  Article  Google Scholar 

  29. 29.

    Flanders, M. M., Crist, R. & Rodgers, G. M. Comparison of five thrombin time reagents. Clin. Chem. 49, 169–172 (2003).

    CAS  PubMed  Article  Google Scholar 

  30. 30.

    Kanmangne, F. M., Labarre, D., Serne, H. & Jozefowicz, M. Heparin-like activity of insoluble sulphonated polystyrene resins. Part I: influence of the surface density, nature and binding of substituted anionic groups. Biomaterials 6, 297–302 (1985).

    CAS  PubMed  Article  Google Scholar 

  31. 31.

    Jozefowicz, M. & Jozefonvicz, J. Randomness and biospecificity: random copolymers are capable of biospecific molecular recognition in living systems. Biomaterials 18, 1633–1644 (1997).

    CAS  PubMed  Article  Google Scholar 

  32. 32.

    Razi, N. et al. Structural and functional properties of heparin analogs obtained by chemical sulfation of Escherichia coli K5 capsular polysaccharide. Biochem. J. 309, 465–472 (1995).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  33. 33.

    Shworak, N. W., Kobayashi, T., de Agostini, A. & Smits, N. C. in Progress in Molecular Biology and Translational Science: Glycosaminoglycans in Development, Health and Disease Vol. 93 (ed. Zhang, L.) 153–178 (2010).

  34. 34.

    Li, W., Johnson, D. J. D., Esmon, C. T. & Huntington, J. A. Structure of the antithrombin–thrombin–heparin ternary complex reveals the antithrombotic mechanism of heparin. Nat. Struct. Mol. Biol. 11, 857–862 (2004).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  35. 35.

    Kalathottukaren, M. T. et al. Alteration of blood clotting and lung damage by protamine are avoided using the heparin and polyphosphate inhibitor UHRA. Blood 129, 1368–1379 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  36. 36.

    Guglietta, S. et al. Coagulation induced by C3aR-dependent NETosis drives protumorigenic neutrophils during small intestinal tumorigenesis. Nat. Commun. https://doi.org/10.1038/ncomms11037 (2016).

  37. 37.

    Engelmann, B. & Massberg, S. Thrombosis as an intravascular effector of innate immunity. Nat. Rev. Immunol. 13, 34–45 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  38. 38.

    Hirsh, J., Anand, S. S., Halperin, J. L. & Fuster, V. Guide to anticoagulant therapy: heparin a statement for healthcare professionals from the American Heart Association. Circulation 103, 2994–3018 (2001).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  39. 39.

    Prince, R. et al. Targeting anticoagulant protein S to improve hemostasis in hemophilia. Blood 131, 1360–1371 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  40. 40.

    Peyvandi, F., Garagiola, I. & Young, G. The past and future of haemophilia: diagnosis, treatments, and its complications. Lancet 388, 187–197 (2016).

    PubMed  Article  PubMed Central  Google Scholar 

  41. 41.

    Hall, J. E. Guyton and Hall Textbook of Medical Physiology (Elsevier Health Sciences, 2015).

  42. 42.

    Srivastava, A. et al. Guidelines for the management of hemophilia. Haemophilia 19, E1–E47 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  43. 43.

    Mannucci, P. M. Desmopressin (DDAVP) in the treatment of bleeding disorders: the first 20 years. Blood 90, 2515–2521 (1997).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  44. 44.

    White, G. C. et al. Definitions in hemophilia—recommendation of the scientific subcommittee on factor VIII and factor IX of the Scientific and Standardization Committee of the International Society on Thrombosis and Haemostasis. Thrombosis Haemost. 85, 560–560 (2001).

    CAS  Article  Google Scholar 

  45. 45.

    Gao, A. et al. Linker-free covalent immobilization of heparin, SDF-1 alpha, and CD47 on PTFE surface for antithrombogenicity, endothelialization and anti-inflammation. Biomaterials 140, 201–211 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  46. 46.

    Laville, M. et al. Results of the HepZero study comparing heparin-grafted membrane and standard care show that heparin-grafted dialyzer is safe and easy to use for heparin-free dialysis. Kidney Int. 86, 1260–1267 (2014).

    CAS  PubMed  Article  Google Scholar 

  47. 47.

    Biran, R. & Pond, D. Heparin coatings for improving blood compatibility of medical devices. Adv. Drug Deliv. Rev. 112, 12–23 (2017).

    CAS  PubMed  Article  Google Scholar 

  48. 48.

    Islam, M. S. et al. Vitamin E-coated and heparin-coated dialyzer membranes for heparin-free hemodialysis: a multicenter, randomized, crossover trial. Am. J. Kidney Dis. 68, 752–762 (2016).

    CAS  PubMed  Article  Google Scholar 

  49. 49.

    Meng, F. et al. MXene sorbents for removal of urea from dialysate: a step toward the wearable artificial kidney. ACS Nano 12, 10518–10528 (2018).

    CAS  PubMed  Article  Google Scholar 

  50. 50.

    Davenport, A. et al. A wearable haemodialysis device for patients with end-stage renal failure: a pilot study. Lancet 370, 2005–2010 (2007).

    PubMed  Article  Google Scholar 

  51. 51.

    Davenport, A. A wearable dialysis device: the first step to continuous therapy. Nat. Rev. Nephrol. 12, 512–514 (2016).

    CAS  PubMed  Article  Google Scholar 

  52. 52.

    Song, X., Wang, R., Zhao, W., Sun, S. & Zhao, C. A facile approach towards amino-coated polyethersulfone particles for the removal of toxins. J. Colloid Interface Sci. 485, 39–50 (2017).

    CAS  PubMed  Article  Google Scholar 

Download references

Acknowledgements

This work was financially sponsored by the State Key Research Development Programme of China (grant numbers 2016YFC1103000 and 2018YFC1106400), the National Natural Science Foundation of China (grant numbers 51433007, 51673125, 51773127, 51873115, 51803131 and 51803134) and the Science and Technology Program of Sichuan Province (2017SZ0011 and 2019YJ0132). We also gratefully acknowledge the help of H. Wang, of the Analytical and Testing Center at Sichuan University, for the SEM micrographs. Moreover, we thank our laboratory members for their generous help. J.N.K. acknowledges funding from the Canadian Institutes of Health Research and Natural Sciences and Engineering Council of Canada (NSERC). J.N.K. is a recipient of a Michael Smith Foundation for Health Research Career Scholar Award.

Author information

Affiliations

Authors

Contributions

X.S., H.J., W.Z. and C.Z. conceived the early pseudo-haemophilia model concepts and/or designed the experiments. X.S. and H.J. performed initial development work and analysed the data. X.S. and H.J. prepared, characterized and performed the in vitro biocompatibility evaluation of the microspheres. Y.L. and Y.X. designed and conducted the animal experiments. R.Z. and M.T. designed and conducted the studies for the coagulation factors. L.Q., J.N.K., B.S. and Q.W. provided conceptual advice and technical support. X.S., Y.L. and W.Z. drafted the manuscript. W.Z. and C.Z. supervised the study and revised the paper. All authors gave approval to the final version of the manuscript.

Corresponding authors

Correspondence to Weifeng Zhao or Changsheng Zhao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Peer review information Nature Biomedical Engineering thanks the anonymous reviewers for their contribution to the peer review of this work.

Supplementary information

Supplementary Information

Supplementary methods, figures, tables, scheme, video captions and references.

41551_2020_673_MOESM2_ESM.pdf

Reporting Summary

Supplementary Video 1

Simulated pseudo-haemophilia model.

Supplementary Video 2

Treatment and recovery process in a transfused dog.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Song, X., Ji, H., Li, Y. et al. Transient blood thinning during extracorporeal blood purification via the inactivation of coagulation factors by hydrogel microspheres. Nat Biomed Eng (2021). https://doi.org/10.1038/s41551-020-00673-x

Download citation

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing