Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

In vivo cytidine base editing of hepatocytes without detectable off-target mutations in RNA and DNA

Abstract

Base editors are RNA-programmable deaminases that enable precise single-base conversions in genomic DNA. However, off-target activity is a concern in the potential use of base editors to treat genetic diseases. Here, we report unbiased analyses of transcriptome-wide and genome-wide off-target modifications effected by cytidine base editors in the liver of mice with phenylketonuria. The intravenous delivery of intein-split cytidine base editors by dual adeno-associated viruses led to the repair of the disease-causing mutation without generating off-target mutations in the RNA and DNA of the hepatocytes. Moreover, the transient expression of a cytidine base editor mRNA and a relevant single-guide RNA intravenously delivered by lipid nanoparticles led to ~21% on-target editing and to the reversal of the disease phenotype; there were also no detectable transcriptome-wide and genome-wide off-target edits. Our findings support the feasibility of therapeutic cytidine base editing to treat genetic liver diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Transcriptome-wide C-to-U editing analysis after AAV-mediated SaKKH–CBE3 treatment.
Fig. 2: Genome-wide off-target analysis after AAV-mediated SaKKH–CBE3 treatment.
Fig. 3: Correction of the disease locus of the Pahenu2 mouse model using LNP-mediated delivery of base-editing components.
Fig. 4: Transcriptome- and genome-wide off-target analysis after LNP-mediated SaKKH–CBE3 treatment.

Similar content being viewed by others

Data availability

The main data supporting the results in this study are available within the paper and its Supplementary Information. The raw and analysed datasets generated during the study are too large to be publicly shared, yet they are available for research purposes from the corresponding author on reasonable request. High-throughput data are publicly available under the following accession numbers: GSE148349 (Gene Expression Omnibus datasets for HTS and RNA-seq), PRJEB38134 (Sequence Read Archive dataset for WGS) and PRJEB40008 (fastq files).

Code availability

The scripts used to quantify on-target and off-target editing are available at https://github.com/HLindsay/Villiger_deaminase.

References

  1. Komor, A. C., Kim, Y. B., Packer, M. S., Zuris, J. A. & Liu, D. R. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533, 420–424 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Gaudelli, N. M. et al. Programmable base editing of A·T to G·C in genomic DNA without DNA cleavage. Nature 551, 464–471 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Chadwick, A. C., Wang, X. & Musunuru, K. In vivo base editing of PCSK9 (proprotein convertase subtilisin/kexin Type 9) as a therapeutic alternative to genome editing. Arterioscler. Thromb. Vasc. Biol. https://doi.org/10.1161/ATVBAHA.117.309881 (2017).

  4. Ryu, S.-M. et al. Adenine base editing in mouse embryos and an adult mouse model of Duchenne muscular dystrophy. Nat. Biotechnol. 36, 536–539 (2018).

    Article  CAS  PubMed  Google Scholar 

  5. Villiger, L. et al. Treatment of a metabolic liver disease by in vivo genome base editing in adult mice. Nat. Med. 24, 1519–1525 (2018).

    Article  CAS  PubMed  Google Scholar 

  6. Grünewald, J. et al. Transcriptome-wide off-target RNA editing induced by CRISPR-guided DNA base editors. Nature https://doi.org/10.1038/s41586-019-1161-z (2019).

  7. Grünewald, J., Zhou, R., Iyer, S., Lareau, C. A. & Garcia, S. P. CRISPR adenine and cytosine base editors with reduced RNA off-target activities. Nat. Biotechnol. 37, 1041–1048 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Rees, H. A., Wilson, C., Doman, J. L. & Liu, D. R. Analysis and minimization of cellular RNA editing by DNA adenine base editors. Sci. Adv. https://doi.org/10.1126/sciadv.aax5717 (2019).

  9. Zhou, C. et al. Off-target RNA mutation induced by DNA base editing and its elimination by mutagenesis. Nature https://doi.org/10.1038/s41586-019-1314-0 (2019).

  10. Zuo, E. et al. Cytosine base editor generates substantial off-target single-nucleotide variants in mouse embryos. Science 364, 289–292 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. McGrath, E. et al. Targeting specificity of APOBEC-based cytosine base editor in human iPSCs determined by whole genome sequencing. Nat. Commun. 10, 5353 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Yamanaka, S., Poksay, K. S., Driscoll, D. M. & Innerarity, T. L. Hyperediting of multiple cytidines of apolipoprotein B mRNA by APOBEC-1 requires auxiliary protein(s) but not a mooring sequence motif. J. Biol. Chem. 271, 11506–11510 (1996).

    Article  CAS  PubMed  Google Scholar 

  13. Rosenberg, B. R., Hamilton, C. E., Mwangi, M. M., Dewell, S. & Papavasiliou, F. N. Transcriptome-wide sequencing reveals numerous APOBEC1 mRNA-editing targets in transcript 3′ UTRs. Nat. Struct. Mol. Biol. 18, 230–238 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sowden, M., Hamm, J. K. & Smith, H. C. Overexpression of APOBEC-1 results in mooring sequence-dependent promiscuous RNA editing. J. Biol. Chem. 271, 3011–3017 (1996).

    Article  CAS  PubMed  Google Scholar 

  15. Yamanaka, S. et al. Apolipoprotein B mRNA-editing protein induces hepatocellular carcinoma and dysplasia in transgenic animals. Proc. Natl Acad. Sci. USA 92, 8483–8487 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zincarelli, C., Soltys, S., Rengo, G. & Rabinowitz, J. E. Analysis of AAV serotypes 1-9 mediated gene expression and tropism in mice after systemic injection. Mol. Ther. 16, 1073–1080 (2008).

    Article  CAS  PubMed  Google Scholar 

  17. Hou, Y. et al. Single-cell exome sequencing and monoclonal evolution of a JAK2-negative myeloproliferative neoplasm. Cell https://doi.org/10.1016/j.cell.2012.02.028 (2012).

  18. Katsuda, T. et al. Conversion of terminally committed hepatocytes to culturable bipotent progenitor cells with regenerative capacity. Cell Stem Cell https://doi.org/10.1016/j.stem.2016.10.007 (2017).

  19. Jager, M. et al. Measuring mutation accumulation in single human adult stem cells by whole-genome sequencing of organoid cultures. Nat. Protoc. 13, 59–78 (2018).

    Article  CAS  PubMed  Google Scholar 

  20. Blokzijl, F. et al. Tissue-specific mutation accumulation in human adult stem cells during life. Nature 538, 260–264 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Komor, A. C. et al. Improved base excision repair inhibition and bacteriophage Mu Gam protein yields C:G-to-T:A base editors with higher efficiency and product purity. Sci. Adv. https://doi.org/10.1126/sciadv.aao4774 (2017).

  22. Nathwani, A. C. et al. Adenovirus-associated virus vector–mediated gene transfer in hemophilia B. N. Engl. J. Med. 365, 2357–2365 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Finn, J. D. et al. A single administration of CRISPR/Cas9 lipid nanoparticles achieves robust and persistent in vivo genome editing. Cell Rep. 22, 2227–2235 (2018).

    Article  CAS  PubMed  Google Scholar 

  24. Yin, H. et al. Structure-guided chemical modification of guide RNA enables potent non-viral in vivo genome editing. Nat. Biotechnol. 35, 1179–1187 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Nishimasu, H. et al. Crystal structure of Staphylococcus aureus Cas9. Cell 162, 1113–1126 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Conway, A. et al. Non-viral delivery of zinc finger nuclease mRNA enables highly efficient in vivo genome editing of multiple therapeutic gene targets. Mol. Ther. 27, 866–877 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mitchell, J. J., Trakadis, Y. J. & Scriver, C. R. Phenylalanine hydroxylase deficiency. Genet. Med. 13, 697–707 (2011).

    Article  CAS  PubMed  Google Scholar 

  28. Akinc, A. et al. Targeted delivery of RNAi therapeutics with endogenous and exogenous ligand-based mechanisms. Mol. Ther. 18, 1357–1364 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mui, B. L. et al. Influence of polyethylene glycol lipid desorption rates on pharmacokinetics and pharmacodynamics of siRNA lipid nanoparticles. Mol. Ther. Nucleic Acids 2, e139 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Haeussler, M. et al. Evaluation of off-target and on-target scoring algorithms and integration into the guide RNA selection tool CRISPOR. Genome Biol. https://doi.org/10.1186/s13059-016-1012-2 (2016).

  31. Song, C.-Q. et al. Adenine base editing in an adult mouse model of tyrosinaemia. Nat. Biomed. Eng. 4, 125–130 (2020).

    Article  CAS  PubMed  Google Scholar 

  32. Okano, Y. et al. Molecular basis of phenotypic heterogeneity in phenylketonuria. N. Engl. J. Med. 324, 1232–1238 (1991).

    Article  CAS  PubMed  Google Scholar 

  33. Nelson, C. E. et al. Long-term evaluation of AAV-CRISPR genome editing for duchenne muscular dystrophy. Nat. Med. 25, 427–432 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kay, M. A. State-of-the-art gene-based therapies: the road ahead. Nat. Rev. Genet. 12, 316–328 (2011).

    Article  CAS  PubMed  Google Scholar 

  35. Kaiser, J. How safe is a popular gene therapy vector? Science 367, 131 (2020).

    CAS  PubMed  Google Scholar 

  36. Yu, Y. et al. Cytosine base editors with minimized unguided DNA and RNA off-target events and high on-target activity. Nat. Commun. 11, 2052 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kim, Y. B. et al. Increasing the genome-targeting scope and precision of base editing with engineered Cas9-cytidine deaminase fusions. Nat. Biotechnol. 35, 371–376 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Grünewald, J. et al. CRISPR DNA base editors with reduced RNA off-target and self-editing activities. Nat. Biotechnol. https://doi.org/10.1038/s41587-019-0236-6 (2019).

  39. Doman, J. L., Raguram, A., Newby, G. A. & Liu, D. R. Evaluation and minimization of Cas9-independent off-target DNA editing by cytosine base editors. Nat. Biotechnol. 38, 620–628 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Du, X. & Ansell, S. M. Novel lipids and lipid nanoparticle formulations for delivery of nucleic acids. US patent US 2016/0376224 A1 (2016).

  41. Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).

    CAS  PubMed  Google Scholar 

  42. Zhang, J., Kobert, K., Flouri, T. & Stamatakis, A. PEAR: a fast and accurate Illumina paired-end read merger. Bioinformatics 30, 614–620 (2014).

    Article  CAS  PubMed  Google Scholar 

  43. Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. Preprint at https://arxiv.org/abs/1303.3997 (2013).

  44. Lindsay, H. et al. CrispRVariants charts the mutation spectrum of genome engineering experiments. Nat. Biotechnol. 34, 701–702 (2016).

    Article  CAS  PubMed  Google Scholar 

  45. Pagès, H., Aboyoun, P., Gentleman, R. & DebRoy, S. Biostrings: efficient manipulation of biological strings. R package version 2.58.0 https://bioconductor.org/packages/Biostrings (2020).

  46. Faust, G. G. & Hall, I. M. SAMBLASTER: fast duplicate marking and structural variant read extraction. Bioinformatics https://doi.org/10.1093/bioinformatics/btu314 (2014).

  47. Li, H. et al. The Sequence Alignment/Map (SAM) format and SAMtools 1000 genome project data processing subgroup. Bioinformatics https://doi.org/10.1093/bioinformatics/btp352 (2009).

  48. Layer, R. M., Chiang, C., Quinlan, A. R. & Hall, I. M. LUMPY: a probabilistic framework for structural variant discovery. Genome Biol. https://doi.org/10.1186/gb-2014-15-6-r84 (2014).

  49. Rausch, T. et al. DELLY: structural variant discovery by integrated paired-end and split-read analysis. Bioinformatics https://doi.org/10.1093/bioinformatics/bts378 (2012).

  50. Hansen, K. D., Brenner, S. E. & Dudoit, S. Biases in Illumina transcriptome sequencing caused by random hexamer priming. Nucleic Acids Res. 38, e131 (2010).

  51. Depristo, M. A. et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat. Genet. 43, 491–501 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Boeva, V. et al. Control-FREEC: a tool for assessing copy number and allelic content using next-generation sequencing data. Bioinformatics 28, 423–425 (2012).

    Article  CAS  PubMed  Google Scholar 

  53. Blokzijl, F., Janssen, R., van Boxtel, R. & Cuppen, E. MutationalPatterns: comprehensive genome-wide analysis of mutational processes. Genome Med. 10, 33 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Petljak, M. et al. Characterizing mutational signatures in human cancer cell lines reveals episodic APOBEC mutagenesis. Cell 176, 1282–1294 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Alexandrov, L. B. et al. Signatures of mutational processes in human cancer. Nature 500, 415–421 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Martincorena, I. et al. Universal patterns of selection in cancer and somatic tissues. Cell https://doi.org/10.1016/j.cell.2017.09.042 (2017).

  57. Wickham, H. ggplot2: elegant graphics for data analysis. J. R. Stat. Soc. Ser. A https://doi.org/10.1007/978-3-319-24277-4 (2016).

Download references

Acknowledgements

We thank S. Iyer and J. K. Joung for sharing technical details about variant filtering for transcriptome off-target identification; H. Vatandaslar and S. Pantasis for their support with primary hepatocyte isolations and microscopy analysis; the members of the FGCZ for WGS and RNA-seq; H. M. Grisch-Chan for her help with l-Phe analysis; M. Tanner and N. Rimann for their support with animal work; and D. Lenggenhager for the evaluation of histological samples for pathologies. This work was supported by a Swiss National Science Foundation grant (no. 310030_185293, to G.S.), Swiss National Science Foundation Sinergia grant (no. 180257, to B.T.), the Swiss National Science Foundation grant (no. 205 321_169 612, to J.H.), the Novartis Foundation for Medical-Biological Research (no. 19A004, to D.W.) and a PHRT grant (no. 528, to G.S., M.S. and B.T.).

Author information

Authors and Affiliations

Authors

Contributions

L.V. and T.R. designed the study, performed experiments, analysed data and wrote the manuscript. D.W. contributed to the design of the study and edited the manuscript. P.J.C.L. and Y.K.T. developed, prepared and characterized LNPs, contributed to the design of the study and edited the manuscript. M.B.B. assisted with LNP formulation. C.B. and J.H. assisted with the design of sgRNA modifications. F.R. conducted in vitro transfection experiments. S.J. conducted HTS data analysis. W.Q. and H.R. analysed RNA-seq data. R.O. and R.v.B. performed WGS analysis. M.S. and B.T. provided reagents and conceptual advice. G.S. designed and supervised the research and wrote the manuscript. All of the authors approved the final version.

Corresponding author

Correspondence to Gerald Schwank.

Ethics declarations

Competing interests

P.J.C.L., M.B.B. and Y.K.T. are employees of Acuitas Therapeutics.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary figures and references.

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Villiger, L., Rothgangl, T., Witzigmann, D. et al. In vivo cytidine base editing of hepatocytes without detectable off-target mutations in RNA and DNA. Nat Biomed Eng 5, 179–189 (2021). https://doi.org/10.1038/s41551-020-00671-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41551-020-00671-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing