Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A cutaneous mechanoneural interface for neuroprosthetic feedback

Abstract

Amputation destroys sensory end organs and does not provide an anatomical interface for cutaneous neuroprosthetic feedback. Here, we report the design and a biomechanical and electrophysiological evaluation of the cutaneous mechanoneural interface consisting of an afferent neural system that comprises a muscle actuator coupled to a natively pedicled skin flap in a cuff-like architecture. Muscle is actuated through electrical stimulation to induce strains or oscillatory vibrations on the skin flap that are proportional to a desired contact duration or contact pressure. In rat hindlimbs, the mechanoneural interface elicited native dermal mechanotransducers to generate at least four levels of graded contact and eight distinct vibratory afferents that were not significantly different from analogous mechanical stimulation of intact skin. The application of different patterns of electrical stimulation independently engaged slowly adapting and rapidly adapting mechanotransducers, and recreated an array of cutaneous sensations. The cutaneous mechanoneural interface can be integrated with current prosthetic technologies for tactile feedback.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic of the CMI.
Fig. 2: Construction and characterization of the CMI in a rat model.
Fig. 3: Afferent response of the CMI.
Fig. 4: Afferent response of the CMI to muscular vibration.
Fig. 5: Histological analysis of the CMI.

Similar content being viewed by others

Data availability

The data supporting the results in this study are available within the paper and its Supplementary Information. The raw data are in a format that is proprietary to the electrophysiology software Synapse, and are available for research purposes from the corresponding authors on reasonable request.

References

  1. Strzalkowski, N. D. J., Peters, R. M., Inglis, J. T. & Bent, L. R. Cutaneous afferent innervation of the human foot sole: what can we learn from single-unit recordings? J. Neurophysiol. 120, 1233–1246 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Fallon, J. B., Bent, L. R., McNulty, P. A. & Macefield, V. G. Evidence for strong synaptic coupling between single tactile afferents from the sole of the foot and motoneurons supplying leg muscles. J. Neurophysiol. 94, 3795–3804 (2005).

    Article  PubMed  Google Scholar 

  3. Sainburg, R. L., Ghilardi, M. F., Poizner, H. & Ghez, C. Control of limb dynamics in normal subjects and patients without proprioception. J. Neurophysiol. 73, 820–835 (1995).

    Article  CAS  PubMed  Google Scholar 

  4. Resnik, L. et al. Advanced upper limb prosthetic devices: implications for upper limb prosthetic rehabilitation. Arch. Phys. Med. Rehabil. 93, 710–717 (2012).

  5. Graczyk, E. L., Resnik, L., Schiefer, M. A., Schmitt, M. S. & Tyler, D. J. Home use of a neural-connected sensory prosthesis provides the functional and psychosocial experience of having a hand again. Sci. Rep. 8, 9866 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Biddiss, E. & Chau, T. Upper-limb prosthetics: critical factors in device abandonment. Am. J. Phys. Med. Rehabil. 86, 977–987 (2007).

  7. Petrini, F. M. et al. Sensory feedback restoration in leg amputees improves walking speed, metabolic cost and phantom pain. Nat. Med. 25, 1356–1363 (2019).

    Article  CAS  PubMed  Google Scholar 

  8. Ortiz-Catalan, M., Håkansson, B. & Brånemark, R. An osseointegrated human-machine gateway for long-term sensory feedback and motor control of artificial limbs. Sci. Transl. Med. 6, 257re6 (2014).

    Article  PubMed  Google Scholar 

  9. Page, D. M. et al. Motor control and sensory feedback enhance prosthesis embodiment and reduce phantom pain after long-term hand amputation. Front. Hum. Neurosci. 12, 352 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Clippinger, F. W., Avery, R. & Titus, B. R. A sensory feedback system for an upper-limb amputation prosthesis. Bull. Prosthet. Res. 247–258 (1974).

  11. Clippinger, F. W., Seaber, A. V., McElhaney, J. H., Harrelson, J. M. & Maxwell, G. M. Afferent sensory feedback for lower extremity prosthesis. Clin. Orthop. Relat. Res. 169, 202–206 (1982).

    Article  Google Scholar 

  12. Markovic, M. et al. The clinical relevance of advanced artificial feedback in the control of a multi-functional myoelectric prosthesis. J. Neuroeng. Rehabil. 15, 28 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Wendelken, S. et al. Restoration of motor control and proprioceptive and cutaneous sensation in humans with prior upper-limb amputation via multiple Utah slanted electrode arrays (USEAs) implanted in residual peripheral arm nerves. J. Neuroeng. Rehabil. 14, 121 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Raspopovic, S. et al. Restoring natural sensory feedback in real-time bidirectional hand prostheses. Sci. Transl. Med. 6, 222ra19 (2014).

    Article  PubMed  Google Scholar 

  15. Schiefer, M., Tan, D., Sidek, S. M. & Tyler, D. J. Sensory feedback by peripheral nerve stimulation improves task performance in individuals with upper limb loss using a myoelectric prosthesis. J. Neural Eng. 13, 016001 (2016).

    Article  PubMed  Google Scholar 

  16. Mastinu, E. et al. Grip control and motor coordination with implanted and surface electrodes while grasping with an osseointegrated prosthetic hand. J. Neuroeng. Rehabil. 16, 49 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  17. George, J. A. et al. Biomimetic sensory feedback through peripheral nerve stimulation improves dexterous use of a bionic hand. Sci. Robot. 4, eaax2352 (2019).

    Article  PubMed  Google Scholar 

  18. Tan, D. W. et al. A neural interface provides long-term stable natural touch perception. Sci. Transl. Med. 6, 257ra138 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Ciancio, A. L. et al. Control of prosthetic hands via the peripheral nervous system. Front. Neurosci. 10, 116 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Dhillon, G. S., Lawrence, S. M., Hutchinson, D. T. & Horch, K. W. Residual function in peripheral nerve stumps of amputees: implications for neural control of artificial limbs. J. Hand Surg. 29, 605–615 (2004).

    Article  Google Scholar 

  21. Alahakone, A. U. & Senanayake, S. M. N. A. Vibrotactile feedback systems: current trends in rehabilitation, sports and information display. In Proc. 2009 IEEE/ASME International Conference on Advanced Intelligent Mechatronics 1148–1153 https://doi.org/10.1109/AIM.2009.5229741 (IEEE, 2009).

  22. Hebert, J. S. et al. Novel targeted sensory reinnervation technique to restore functional hand sensation after transhumeral amputation. IEEE Trans. Neural Syst. Rehabil. Eng. 22, 765–773 (2014).

    Article  PubMed  Google Scholar 

  23. Marasco, P. D., Schultz, A. E. & Kuiken, T. A. Sensory capacity of reinnervated skin after redirection of amputated upper limb nerves to the chest. Brain 132, 1441–1448 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Hebert, J. S., Elzinga, K., Chan, K. M., Olson, J. & Morhart, M. Updates in targeted sensory reinnervation for upper limb amputation. Curr. Surg. Rep. 2, 45 (2014).

    Article  Google Scholar 

  25. Clemente, F., D’Alonzo, M., Controzzi, M., Edin, B. B. & Cipriani, C. Non-invasive, temporally discrete feedback of object contact and release improves grasp control of closed-loop myoelectric transradial prostheses. IEEE Trans. Neural Syst. Rehabil. Eng. 24, 1314–1322 (2016).

    Article  PubMed  Google Scholar 

  26. Ruhe, A., Fejer, R. & Walker, B. Center of pressure excursion as a measure of balance performance in patients with non-specific low back pain compared to healthy controls: a systematic review of the literature. Eur. Spine J. 20, 358–368 (2011).

    Article  PubMed  Google Scholar 

  27. Lugade, V. & Kaufman, K. Center of pressure trajectory during gait: a comparison of four foot positions. Gait Posture 40, 252–254 (2014).

    Article  PubMed  Google Scholar 

  28. Sardain, P. & Bessonnet, G. Forces acting on a biped robot. Center of pressure-zero moment point. IEEE Trans. Syst. Man Cybern. A Syst. Hum. 34, 630–637 (2004).

    Article  Google Scholar 

  29. Herr, H. M., Riso, R. R., Song, K. W., Casler Jr, R. J. & Carty, M. J. Peripheral neural interface via nerve regeneration to distal tissues. US patent US9474634B2 (2016).

  30. Ziegler-Graham, K., MacKenzie, E. J., Ephraim, P. L., Travison, T. G. & Brookmeyer, R. Estimating the prevalence of limb loss in the United States: 2005 to 2050. Arch. Phys. Med. Rehabil. 89, 422–429 (2008).

    Article  PubMed  Google Scholar 

  31. Pasquina, P. F. et al. Special considerations for multiple limb amputation. Curr. Phys. Med. Rehabil. Rep. 2, 273–289 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Herr, H. M. et al. Reinventing extremity amputation in the era of functional limb restoration. Ann. Surg. https://doi.org/10.1097/SLA.0000000000003895 (2020).

  33. Geiss, L. S. et al. Resurgence of diabetes-related nontraumatic lower-extremity amputation in the young and middle-aged adult U.S. population. Diabetes Care 42, 50–54 (2019).

    Article  PubMed  Google Scholar 

  34. Zimmerman, A., Bai, L. & Ginty, D. D. The gentle touch receptors of mammalian skin. Science 346, 950–954 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Walcher, J. et al. Specialized mechanoreceptor systems in rodent glabrous skin: glabrous skin mechanoreceptors. J. Physiol. 596, 4995–5016 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Jenkins, B. A. & Lumpkin, E. A. Developing a sense of touch. Development 144, 4078–4090 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hahn, J. M. et al. Identification of Merkel cells associated with neurons in engineered skin substitutes after grafting to full thickness wounds. PLoS ONE 14, e0213325 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Fleming, M. S. & Luo, W. The anatomy, function, and development of mammalian Aβ low-threshold mechanoreceptors. Front. Biol. 8, 4 (2013).

    Article  CAS  Google Scholar 

  39. Coleman, G. T., Bahramali, H., Zhang, H. Q. & Rowe, M. J. Characterization of tactile afferent fibers in the hand of the marmoset monkey. J. Neurophysiol. 85, 1793–1804 (2001).

    Article  CAS  PubMed  Google Scholar 

  40. Fitzgerald, M. Cutaneous primary afferent properties in the hind limb of the neonatal rat. J. Physiol. 383, 79–92 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Yu, X. et al. Skin-integrated wireless haptic interfaces for virtual and augmented reality. Nature 575, 473–479 (2019).

    Article  CAS  PubMed  Google Scholar 

  42. Casal, D. et al. A model of free tissue transfer: the rat epigastric free flap. J. Vis. Exp. https://doi.org/10.3791/55281 (2017).

  43. Nissen, T. D. et al. Translational aspects of rectal evoked potentials: a comparative study in rats and humans. Am. J. Physiol. Gastrointest. Liver Physiol. 305, G119–G128 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Srinivasan, S. S. et al. On prosthetic control: a regenerative agonist-antagonist myoneural interface. Sci. Robot. 2, eaan2971 (2017).

    Article  PubMed  Google Scholar 

  45. Srinivasan, S. S., Diaz, M., Carty, M. & Herr, H. M. Towards functional restoration for persons with limb amputation: a dual-stage implementation of regenerative agonist-antagonist myoneural interfaces. Sci. Rep. 9, 1981 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Kung, T. A. et al. Regenerative peripheral nerve interface viability and signal transduction with an implanted electrode. Plast. Reconstr. Surg. 133, 1380–1394 (2014).

    Article  CAS  PubMed  Google Scholar 

  47. Kubiak, C. A., Kemp, S. W. P., Cederna, P. S. & Kung, T. A. Prophylactic regenerative peripheral nerve interfaces to prevent postamputation pain. Plast. Reconstr. Surg. 144, 421e–430e (2019).

    Article  CAS  PubMed  Google Scholar 

  48. Armiger, R. S. et al. Enabling closed-loop control of the modular prosthetic limb through haptic feedback. Johns. Hopkins APL Tech. Dig. 31, 345–353 (2013).

    Google Scholar 

  49. Haslinger, G. The grip-stabilising-sensor ‘an example for integrating miniaturized sensorics into a myo-electric hand’. In MEC 97 Proc. 1997 MyoElectric Controls/Powered Prosthetics Symposium (1997).

  50. Osborn, L. E. et al. Prosthesis with neuromorphic multilayered e-dermis perceives touch and pain. Sci. Robot. 3, eaat3818 (2018).

  51. Rossini, P. M. et al. Double nerve intraneural interface implant on a human amputee for robotic hand control. Clin. Neurophysiol. 121, 777–783 (2010).

    Article  PubMed  Google Scholar 

  52. Arakawa, T. et al. Electrical stimulation prevents apoptosis in denervated skeletal muscle. NeuroRehabilitation 27, 147–154 (2010).

    Article  PubMed  Google Scholar 

  53. Eberstein, A. & Eberstein, S. Electrical stimulation of denervated muscle: is it worthwhile? Med. Sci. Sports Exerc. 28, 1463–1469 (1996).

    Article  CAS  PubMed  Google Scholar 

  54. La, G. et al. Proteomics and transcriptomics analysis reveals clues into the mechanism of the beneficial effect of electrical stimulation on rat denervated gastrocnemius muscle. Cell. Physiol. Biochem. 52, 769–786 (2019).

    Article  CAS  PubMed  Google Scholar 

  55. Dow, D. E., Dennis, R. G. & Faulkner, J. A. Electrical stimulation attenuates denervation and age-related atrophy in extensor digitorum longus muscles of old rats. J. Gerontol. A 60, 416–424 (2005).

    Article  Google Scholar 

  56. Nghiem, B. T., Sando, I. C., Hu, Y., Urbanchek, M. G. & Cederna, P. S. Sensory protection to enhance functional recovery following proximal nerve injuries: current trends. Plast. Aesthet. Res. https://doi.org/10.4103/2347-9264.156982 (2015).

  57. Irwin, Z. T. et al. Chronic recording of hand prosthesis control signals via a regenerative peripheral nerve interface in a rhesus macaque. J. Neural Eng. 13, 046007 (2016).

    Article  CAS  PubMed  Google Scholar 

  58. Kolasinski, J. et al. Perceptually relevant remapping of human somatotopy in 24 hours. eLife 5, e17280 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Dempsey-Jones, H. et al. Transfer of tactile perceptual learning to untrained neighboring fingers reflects natural use relationships. J. Neurophysiol. 115, 1088–1097 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Granata, G. et al. ID 287—sensory feedback generated by intraneural electrical stimulation of peripheral nerves drives cortical reorganization and relieves phantom limb pain: a case study. Clin. Neurophysiol. 127, e63 (2016).

    Article  Google Scholar 

  61. Di Pino, G., Guglielmelli, E. & Rossini, P. M. Neuroplasticity in amputees: main implications on bidirectional interfacing of cybernetic hand prostheses. Prog. Neurobiol. 88, 114–126 (2009).

    Article  PubMed  Google Scholar 

  62. Serino, A. et al. Upper limb cortical maps in amputees with targeted muscle and sensory reinnervation. Brain 140, 2993–3011 (2017).

    Article  PubMed  Google Scholar 

  63. Luis-Delgado, O. E. et al. Calibrated forceps: a sensitive and reliable tool for pain and analgesia studies. J. Pain 7, 32–39 (2006).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank V. Shah, R. Rodarte and H. G. Song for their assistance in animal surgeries. This work was funded by the MIT Media Lab Consortium.

Author information

Authors and Affiliations

Authors

Contributions

S.S.S. conceptualized the CMI, performed the surgeries, data collection, analysis and writing of the manuscript. H.M.H. conceptualized the CMI, provided project management, contributed to the experimental design and manuscript preparations.

Corresponding authors

Correspondence to Shriya S. Srinivasan or Hugh M. Herr.

Ethics declarations

Competing interests

The authors are inventors on patents (United States application no. 63/029,137) that describe the CMI.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Discussion and Figs. 1–10.

Reporting Summary

Supplementary Video 1

Stimulation at 12 mA producing maximal contractions of the skin flap.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

S. Srinivasan, S., M. Herr, H. A cutaneous mechanoneural interface for neuroprosthetic feedback. Nat. Biomed. Eng 6, 731–740 (2022). https://doi.org/10.1038/s41551-020-00669-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41551-020-00669-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing