Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Pathogen-specific antimicrobials engineered de novo through membrane-protein biomimicry


Precision antimicrobials aim to kill pathogens without damaging commensal bacteria in the host, and thereby cure disease without antibiotic-associated dysbiosis. Here we report the de novo design of a synthetic host defence peptide that targets a specific pathogen by mimicking key molecular features of the pathogen’s channel-forming membrane proteins. By exploiting physical and structural vulnerabilities within the pathogen’s cellular envelope, we designed a peptide sequence that undergoes instructed tryptophan-zippered assembly within the mycolic acid-rich outer membrane of Mycobacterium tuberculosis to specifically kill the pathogen without collateral toxicity towards lung commensal bacteria or host tissue. These mycomembrane-templated assemblies elicit rapid mycobactericidal activity and enhance the potency of antibiotics by improving their otherwise poor diffusion across the rigid M. tuberculosis envelope with respect to agents that exploit transmembrane protein channels for antimycobacterial activity. This biomimetic strategy may aid the design of other narrow-spectrum antimicrobial peptides.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Biomimetic design and biophysical analysis of MAD1.
Fig. 2: Atomistic mechanisms of MAD1 assembly.
Fig. 3: Ex cellulo analysis of MAD1 mycobacterial-membrane specificity.
Fig. 4: In situ characterization of Mtb envelope disruption by MAD1.
Fig. 5: MAD1 polymicrobial selectivity and combinatorial synergy.

Data availability

The main data supporting the results in this study are available within the paper and its Supplementary Information. The raw and analysed datasets generated during the study are too large to be publicly shared, but they are available for research purposes from the corresponding author on reasonable request.

Code availability

The parallelized DMD simulation engine (πDMD, v.1.0) with Medusa all-atom force field is available from Molecules In Action ( The software is available for free to academic users.


  1. 1.

    Blaser, M. J. Antibiotic use and its consequences for the normal microbiome. Science 352, 544–545 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Brito, I. L. et al. Mobile genes in the human microbiome are structured from global to individual scales. Nature 535, 435–439 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Smillie, C. S. et al. Ecology drives a global network of gene exchange connecting the human microbiome. Nature 480, 241–244 (2011).

    CAS  PubMed  Google Scholar 

  4. 4.

    Levy, M., Blacher, E. & Elinav, E. Microbiome, metabolites and host immunity. Curr. Opin. Microbiol. 35, 8–15 (2017).

    CAS  PubMed  Google Scholar 

  5. 5.

    Levy, M., Kolodziejczyk, A. A., Thaiss, C. A. & Elinav, E. Dysbiosis and the immune system. Nat. Rev. Immunol. 17, 219–232 (2017).

    CAS  PubMed  Google Scholar 

  6. 6.

    Spellberg, B. & Rex, J. H. The value of single-pathogen antibacterial agents. Nat. Rev. Drug Discov. 12, 963–963 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Lewis, K. Recover the lost art of drug discovery. Nature 485, 439–440 (2012).

    CAS  PubMed  Google Scholar 

  8. 8.

    Maxson, T. & Mitchell, D. A. Targeted treatment for bacterial infections: prospects for pathogen-specific antibiotics coupled with rapid diagnostics. Tetrahedron 72, 3609–3624 (2016).

    CAS  PubMed  Google Scholar 

  9. 9.

    Brown, E. D. & Wright, G. D. Antibacterial drug discovery in the resistance era. Nature 529, 336–343 (2016).

    CAS  PubMed  Google Scholar 

  10. 10.

    Melander, R. J., Zurawski, D. V. & Melander, C. Narrow-spectrum antibacterial agents. Medchemcomm 9, 12–21 (2018).

    CAS  PubMed  Google Scholar 

  11. 11.

    Niederweis, M. Mycobacterial porins—new channel proteins in unique outer membranes. Mol. Microbiol. 49, 1167–1177 (2003).

    CAS  PubMed  Google Scholar 

  12. 12.

    Mahfoud, M., Sukumaran, S., Hülsmann, P., Grieger, K. & Niederweis, M. Topology of the porin MspA in the outer membrane of Mycobacterium smegmatis. J. Biol. Chem. 281, 5908–5915 (2006).

    CAS  PubMed  Google Scholar 

  13. 13.

    Alderwick, L. J., Harrison, J., Lloyd, G. S. & Birch, H. L. The mycobacterial cell wall—peptidoglycan and arabinogalactan. Cold Spring Harb. Perspect. Med. 5, a021113 (2015).

    PubMed  PubMed Central  Google Scholar 

  14. 14.

    Tossi, A., Sandri, L. & Giangaspero, A. Amphipathic, α‐helical antimicrobial peptides. Pept. Sci. 55, 4–30 (2000).

    CAS  Google Scholar 

  15. 15.

    Huang, Y., Huang, J. & Chen, Y. Alpha-helical cationic antimicrobial peptides: relationships of structure and function. Protein Cell 1, 143–152 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Sharpe, H. J., Stevens, T. J. & Munro, S. A comprehensive comparison of transmembrane domains reveals organelle-specific properties. Cell 142, 158–169 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Wang, Q. et al. PE/PPE proteins mediate nutrient transport across the outer membrane of Mycobacterium tuberculosis. Science 367, 1147–1151 (2020).

    CAS  PubMed  Google Scholar 

  18. 18.

    Melly, G. & Purdy, G. E. MmpL proteins in physiology and pathogenesis of M. tuberculosis. Microorganisms 7, 70 (2019).

    CAS  PubMed Central  Google Scholar 

  19. 19.

    Vandal, O. H., Pierini, L. M., Schnappinger, D., Nathan, C. F. & Ehrt, S. A membrane protein preserves intrabacterial pH in intraphagosomal Mycobacterium tuberculosis. Nat. Med. 14, 849–854 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Vergne, I. et al. Mechanism of phagolysosome biogenesis block by viable Mycobacterium tuberculosis. Proc. Natl Acad. Sci. USA 102, 4033–4038 (2005).

    CAS  PubMed  Google Scholar 

  21. 21.

    Deretic, V. et al. Mycobacterium tuberculosis inhibition of phagolysosome biogenesis and autophagy as a host defence mechanism. Cell. Microbiol. 8, 719–727 (2006).

    CAS  PubMed  Google Scholar 

  22. 22.

    Cochran, A. G., Skelton, N. J. & Starovasnik, M. A. Tryptophan zippers: stable, monomeric β-hairpins. Proc. Natl Acad. Sci. USA 98, 5578–5583 (2001).

    CAS  PubMed  Google Scholar 

  23. 23.

    Liu, J., Yong, W., Deng, Y., Kallenbach, N. R. & Lu, M. Atomic structure of a tryptophan-zipper pentamer. Proc. Natl Acad. Sci. USA 101, 16156–16161 (2004).

    CAS  PubMed  Google Scholar 

  24. 24.

    Heinz, C., Karosi, S. & Niederweis, M. High-level expression of the mycobacterial porin MspA in Escherichia coli and purification of the recombinant protein. J. Chromatogr. B 790, 337–348 (2003).

    CAS  Google Scholar 

  25. 25.

    Ragazzon, G. & Prins, L. J. Energy consumption in chemical fuel-driven self-assembly. Nat. Nanotechnol. 13, 882–889 (2018).

    CAS  PubMed  Google Scholar 

  26. 26.

    Lin, Y. et al. Residue-specific solvation-directed thermodynamic and kinetic control over peptide self-assembly with 1D/2D structure selection. ACS Nano 13, 1900–1909 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Vandal, O. H., Nathan, C. F. & Ehrt, S. Acid resistance in Mycobacterium tuberculosis. J. Bacteriol. 191, 4714–4721 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. 28.

    The European Committee on Antimicrobial Susceptibility Testing Clinical Breakpoints and Dosing Version 8.1 (European Society of Clinical Microbiology and Infectious Diseases, 2018).

  29. 29.

    Ramón-García, S. et al. Targeting Mycobacterium tuberculosis and other microbial pathogens using improved synthetic antibacterial peptides. Antimicrob. Agents Chemother. 57, 2295–2303 (2013).

    PubMed  PubMed Central  Google Scholar 

  30. 30.

    Brown, L., Wolf, J. M., Prados-Rosales, R. & Casadevall, A. Through the wall: extracellular vesicles in Gram-positive bacteria, mycobacteria and fungi. Nat. Rev. Microbiol. 13, 620–630 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Maitra, A. et al. Cell wall peptidoglycan in Mycobacterium tuberculosis: an Achilles’ heel for the TB-causing pathogen. FEMS Microbiol. Rev. 43, 548–575 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Muheim, C. et al. Increasing the permeability of Escherichia coli using MAC13243. Sci. Rep. 7, 17629 (2017).

    PubMed  PubMed Central  Google Scholar 

  33. 33.

    Helander, I. & Mattila‐Sandholm, T. Fluorometric assessment of Gram‐negative bacterial permeabilization. J. Appl. Microbiol. 88, 213–219 (2000).

    CAS  PubMed  Google Scholar 

  34. 34.

    Eriksson, M., Nielsen, P. E. & Good, L. Cell permeabilization and uptake of antisense peptide-peptide nucleic acid (PNA) into Escherichia coli. J. Biol. Chem. 277, 7144–7147 (2002).

    CAS  PubMed  Google Scholar 

  35. 35.

    Halder, S. et al. Alteration of Zeta potential and membrane permeability in bacteria: a study with cationic agents. Springerplus 4, 672–672 (2015).

    PubMed  PubMed Central  Google Scholar 

  36. 36.

    Yavvari, P. S. et al. Clathrin-independent killing of intracellular mycobacteria and biofilm disruptions using synthetic antimicrobial polymers. Biomacromolecules 18, 2024–2033 (2017).

    CAS  PubMed  Google Scholar 

  37. 37.

    Butler, D., Goel, N., Goodnight, L., Tadigadapa, S. & Ebrahimi, A. Detection of bacterial metabolism in lag-phase using impedance spectroscopy of agar-integrated 3D microelectrodes. Biosens. Bioelectron. 129, 269–276 (2019).

    CAS  PubMed  Google Scholar 

  38. 38.

    Bolotsky, A. et al. Two-dimensional materials in biosensing and healthcare: from in vitro diagnostics to optogenetics and beyond. ACS Nano 13, 9781–9810 (2019).

    CAS  PubMed  Google Scholar 

  39. 39.

    Inoue, S. et al. Dielectrophoretic characterization of antibiotic-treated Mycobacterium tuberculosis complex cells. Anal. Bioanal. Chem. 407, 7673–7680 (2015).

    CAS  PubMed  Google Scholar 

  40. 40.

    Perera, A. S., Wang, H., Shrestha, T. B., Troyer, D. L. & Bossmann, S. H. Nanoscopic surfactant behavior of the porin MspA in aqueous media. Beilstein J. Nanotechnol. 4, 278–284 (2013).

    PubMed  PubMed Central  Google Scholar 

  41. 41.

    Hu, B. et al. Polyphenol-binding amyloid fibrils self-assemble into reversible hydrogels with antibacterial activity. ACS Nano 12, 3385–3396 (2018).

    CAS  PubMed  Google Scholar 

  42. 42.

    Torrent, M., Pulido, D., Nogués, M. V. & Boix, E. Exploring new biological functions of amyloids: bacteria cell agglutination mediated by host protein aggregation. PLoS Pathog. 8, e1003005 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Truant, J., Brett, W. & Thomas, W. Jr Fluorescence microscopy of tubercle bacilli stained with auramine and rhodamine. Henry Ford. Hosp. Med. J. 10, 287–296 (1962).

    CAS  PubMed  Google Scholar 

  44. 44.

    Danilchanka, O., Pavlenok, M. & Niederweis, M. Role of porins for uptake of antibiotics by Mycobacterium smegmatis. Antimicrob. Agents Chemother. 52, 3127–3134 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Chairatana, P. & Nolan, E. M. Molecular basis for self-assembly of a human host-defense peptide that entraps bacterial pathogens. J. Am. Chem. Soc. 136, 13267–13276 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Chairatana, P. & Nolan, E. M. Human α-defensin 6: a small peptide that self-assembles and protects the host by entangling microbes. Acc. Chem. Res. 50, 960–967 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Schroeder, B. et al. Paneth cell α-defensin 6 (HD-6) is an antimicrobial peptide. Mucosal Immunol. 8, 661–671 (2015).

    CAS  PubMed  Google Scholar 

  48. 48.

    Vetterli, S. U. et al. Thanatin targets the intermembrane protein complex required for lipopolysaccharide transport in Escherichia coli. Sci. Adv. 4, eaau2634 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Robinson, J. A. Folded synthetic peptides and other molecules targeting outer membrane protein complexes in Gram-negative bacteria. Front Chem. 7, 45–45 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Luther, A. et al. Chimeric peptidomimetic antibiotics against Gram-negative bacteria. Nature 576, 452–458 (2019).

    CAS  PubMed  Google Scholar 

  51. 51.

    Levitt, M. Conformational preferences of amino acids in globular proteins. Biochemistry 17, 4277–4285 (1978).

    CAS  PubMed  Google Scholar 

  52. 52.

    Gehman, J. D. et al. Effect of antimicrobial peptides from Australian tree frogs on anionic phospholipid membranes. Biochemistry 47, 8557–8565 (2008).

    CAS  PubMed  Google Scholar 

  53. 53.

    Jiang, Z. et al. Effects of net charge and the number of positively charged residues on the biological activity of amphipathic α-helical cationic antimicrobial peptides. Biopolymers 90, 369–383 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. 54.

    Mikut, R. et al. Improving short antimicrobial peptides despite elusive rules for activity. Biochim. Biophys. Acta, Biomembr. 1858, 1024–1033 (2016).

    CAS  Google Scholar 

  55. 55.

    Rekdal, Ø. et al. Relative spatial positions of tryptophan and cationic residues in helical membrane-active peptides determine their cytotoxicity. J. Biol. Chem. 287, 233–244 (2012).

    CAS  PubMed  Google Scholar 

  56. 56.

    Medina, S. H. et al. An intrinsically disordered peptide facilitates non-endosomal cell entry. Angew. Chem. Int. Ed. 55, 3369–3372 (2016).

    CAS  Google Scholar 

  57. 57.

    Rath, P. et al. Cord factor (trehalose 6,6′-dimycolate) forms fully stable and non-permeable lipid bilayers required for a functional outer membrane. Biochim. Biophys. Acta, Rev. Biomembr. 1828, 2173–2181 (2013).

    CAS  Google Scholar 

  58. 58.

    Epand, R. F., Savage, P. B. & Epand, R. M. Bacterial lipid composition and the antimicrobial efficacy of cationic steroid compounds (ceragenins). Biochim. Biophys. Acta Biomembr. 1768, 2500–2509 (2007).

    CAS  Google Scholar 

  59. 59.

    Lombardi, L. et al. Antimicrobial peptides at work: interaction of myxinidin and its mutant WMR with lipid bilayers mimicking the P. aeruginosa and E. coli membranes. Sci. Rep. 7, 44425–44425 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. 60.

    Zehethofer, N. et al. Lipid analysis of airway epithelial cells for studying respiratory diseases. Chromatographia 78, 403–413 (2015).

    CAS  PubMed  Google Scholar 

  61. 61.

    Andrews, J. M. Determination of minimum inhibitory concentrations. J. Antimicrob. Chemother. 48, 5–16 (2001).

    CAS  PubMed  Google Scholar 

  62. 62.

    Zhang, Y., Zhang, H. & Sun, Z. Susceptibility of Mycobacterium tuberculosis to weak acids. J. Antimicrob. Chemother. 52, 56–60 (2003).

    CAS  PubMed  Google Scholar 

  63. 63.

    Avitabile, C., D’Andrea, L. D. & Romanelli, A. Circular dichroism studies on the interactions of antimicrobial peptides with bacterial cells. Sci. Rep. 4, 4293–4293 (2014).

    PubMed  PubMed Central  Google Scholar 

  64. 64.

    Tao, L. et al. Probing the amyloid peptide–membrane interaction using a liposome model system. J. Self-Assem. Mol. Electron. 4, 1–18 (2016).

    CAS  Google Scholar 

  65. 65.

    Dokholyan, N. V., Buldyrev, S. V., Stanley, H. E. & Shakhnovich, E. I. Discrete molecular dynamics studies of the folding of a protein-like model. Fold. Des. 3, 577–587 (1998).

    CAS  PubMed  Google Scholar 

  66. 66.

    Proctor, E. A., Ding, F. & Dokholyan, N. V. Discrete molecular dynamics. WIREs Comput. Mol. Sci. 1, 80–92 (2011).

    CAS  Google Scholar 

  67. 67.

    Ding, F., Tsao, D., Nie, H. & Dokholyan, N. V. Ab initio folding of proteins with all-atom discrete molecular dynamics. Structure 16, 1010–1018 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. 68.

    Ding, F. & Dokholyan, N. V. Emergence of protein fold families through rational design. PLoS Comput. Biol. 2, e85 (2006).

    PubMed  PubMed Central  Google Scholar 

  69. 69.

    Lazaridis, T. & Karplus, M. Effective energy function for proteins in solution. Proteins Struct. Funct. Bioinf. 35, 133–152 (1999).

    CAS  Google Scholar 

  70. 70.

    Ding, F., Borreguero, J. M., Buldyrey, S. V., Stanley, H. E. & Dokholyan, N. V. Mechanism for the α‐helix to β‐hairpin transition. Proteins Struct. Funct. Bioinf. 53, 220–228 (2003).

    CAS  Google Scholar 

  71. 71.

    Sugita, Y. & Okamoto, Y. Replica-exchange molecular dynamics method for protein folding. Chem. Phys. Lett. 314, 141–151 (1999).

    CAS  Google Scholar 

  72. 72.

    Okamoto, Y. Generalized-ensemble algorithms: enhanced sampling techniques for Monte Carlo and molecular dynamics simulations. J. Mol. Graph. Model. 22, 425–439 (2004).

    CAS  PubMed  Google Scholar 

  73. 73.

    Feig, M., Karanicolas, J. & Brooks, C. L. III MMTSB Tool Set: enhanced sampling and multiscale modeling methods for applications in structural biology. J. Mol. Graph. Model. 22, 377–395 (2004).

    CAS  PubMed  Google Scholar 

  74. 74.

    Kumar, S., Rosenberg, J. M., Bouzida, D., Swendsen, R. H. & Kollman, P. A. The weighted histogram analysis method for free‐energy calculations on biomolecules. I. The method. J. Comput. Chem. 13, 1011–1021 (1992).

    CAS  Google Scholar 

  75. 75.

    Barton, G. OC-A cluster analysis program (Univ. of Dundee, 2002).

  76. 76.

    Coyne, J., Davis, B., Kauffman, D., Zhao, N. & Wang, Y. Polymer microneedle mediated local aptamer delivery for blocking the function of vascular endothelial growth factor. ACS Biomater. Sci. Eng. 3, 3395–3403 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. 77.

    Burch, J. M., Mashayekh, S., Wykoff, D. D. & Grimes, C. L. Bacterial derived carbohydrates bind Cyr1 and trigger hyphal growth in Candida albicans. ACS Infect. Dis. 4, 53–58 (2018).

    CAS  PubMed  Google Scholar 

  78. 78.

    Date, T., Sekine, J., Matsuno, H. & Serizawa, T. Polymer-binding peptides for the noncovalent modification of polymer surfaces: effects of peptide density on the subsequent immobilization of functional proteins. ACS Appl. Mater. Interfaces 3, 351–359 (2011).

    CAS  PubMed  Google Scholar 

  79. 79.

    Sudji, I. R., Subburaj, Y., Frenkel, N., García-Sáez, A. J. & Wink, M. Membrane disintegration caused by the steroid saponin digitonin is related to the presence of cholesterol. Molecules 20, 20146–20160 (2015).

    PubMed  PubMed Central  Google Scholar 

  80. 80.

    Bishop, J. G., Schanbacher, F., Ferguson, L. C. & Smith, K. L. In vitro growth inhibition of mastitis-causing coliform bacteria by bovine apo-lactoferrin and reversal of inhibition by citrate and high concentrations of apo-lactoferin. Infect. Immun. 14, 911–918 (1976).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. 81.

    Xie, Z. et al. Immune cell-mediated biodegradable theranostic nanoparticles for melanoma targeting and drug delivery. Small 13, 1603121 (2017).

    Google Scholar 

  82. 82.

    Singh, B., Saqib, M., Gupta, A., Kumar, P. & Bhaskar, S. Autophagy induction by Mycobacterium indicus pranii promotes Mycobacterium tuberculosis clearance from RAW 264.7 macrophages. PLoS ONE 12, e0189606 (2017).

    PubMed  PubMed Central  Google Scholar 

  83. 83.

    Iyoda, T. et al. A novel mechanism underlying the basic defensive response of macrophages against Mycobacterium infection. J. Immunol. 192, 4254–4262 (2014).

    CAS  PubMed  Google Scholar 

  84. 84.

    Jo, S. H. et al. Calreticulin modulates the intracellular survival of mycobacteria by regulating ER-stress-mediated apoptosis. Oncotarget 8, 58686 (2017).

    PubMed  PubMed Central  Google Scholar 

  85. 85.

    Xu, X. et al. Synergistic combination of two antimicrobial agents closing each other’s mutant selection windows to prevent antimicrobial resistance. Sci. Rep. 8, 7237 (2018).

    PubMed  PubMed Central  Google Scholar 

Download references


We thank the Penn State Microscopy and Cytometry Facility, University Park, PA for assistance with confocal and electron microscopy; the Penn State X-Ray Crystallography Facility, University Park, PA for use of the CD spectrophotometer; the Penn State NMR Facility, University Park, PA for use of NMR instrumentation. Funding for this research was provided by the Penn State Institute of Energy and the Environment Human Health and the Environment Seed Grant awarded to S.H.M. This work was also supported by NIH grant number AI123146 to A.D.B. A.W.S. was supported by funds from the Penn State Graduate Research Fellowship.

Author information




A.W.S. and S.H.M. conceived the hypothesis, designed the experiments and wrote the manuscript. A.W.S., A.S.M., M.R.A., J.N.A., D.C.C., A.L., M.D.H., A.B., T.K.M., C.G., A.E., A.D.B., E.A.P. and K.C.K. designed and performed the experiments, analysed the results and contributed to writing of the manuscript.

Corresponding author

Correspondence to Scott H. Medina.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Biomedical Engineering thanks Stephan Sieber and the other, anonymous, reviewers for their contribution to the peer review of this work. Peer reviewer reports are available.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary figures, tables and references.

Reporting Summary

Peer Review File

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Simonson, A.W., Mongia, A.S., Aronson, M.R. et al. Pathogen-specific antimicrobials engineered de novo through membrane-protein biomimicry. Nat Biomed Eng 5, 467–480 (2021).

Download citation


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing