Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Lentiviral delivery of co-packaged Cas9 mRNA and a Vegfa-targeting guide RNA prevents wet age-related macular degeneration in mice

Abstract

Therapeutic genome editing requires effective and targeted delivery methods. The delivery of Cas9 mRNA using adeno-associated viruses has led to potent in vivo therapeutic efficacy, but can cause sustained Cas9 expression, anti-Cas9 immune responses and off-target edits. Lentiviral vectors have been engineered to deliver nucleases that are expressed transiently, but in vivo evidence of their biomedical efficacy is lacking. Here, we show that the lentiviral codelivery of Streptococcus pyogenes Cas9 mRNA and expression cassettes that encode a guide RNA that targets vascular endothelial growth factor A (Vegfa) is efficacious in a mouse model of wet age-related macular degeneration induced by Vegfa. A single subretinal injection of engineered lentiviruses knocked out 44% of Vegfa in retinal pigment epithelium and reduced the area of choroidal neovascularization by 63% without inducing off-target edits or anti-Cas9 immune responses. Engineered lentiviruses for the transient expression of nucleases may form the basis of new treatments for retinal neovascular diseases.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Construction of a lentiviral system for efficient mRNA delivery.
Fig. 2: mLP-Cas9 edits genomes by time-restricted nuclease exposure.
Fig. 3: All-in-one mLP-CRISPR enhances gene-editing efficiency.
Fig. 4: mLP-CRISPR targets RPE cells efficiently and specifically in vivo.
Fig. 5: In vivo knockout of Vegfa after a single injection of mLP-CRISPR.
Fig. 6: Immune responses to mLP-CRISPR.
Fig. 7: mLP-CRISPR prevents CNV in a mouse model of laser-induced wAMD.

Data availability

The main data supporting the results in this study are available within the paper and its Supplementary Information. Source data for the figures are available at Figshare (https://doi.org/10.6084/m9.figshare.12611819)76. The deep-sequencing and Nanopore DNA-sequencing data are available at the NCBI BioProject under the identifiers PRJNA642029, PRJNA593168 and PRJNA628164.

References

  1. 1.

    Dever, D. P. et al. CRISPR/Cas9 β-globin gene targeting in human haematopoietic stem cells. Nature 539, 384–389 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Kim, K. et al. Genome surgery using Cas9 ribonucleoproteins for the treatment of age-related macular degeneration. Genome Res. 27, 419–426 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. 3.

    van Diemen, F. R. et al. CRISPR/Cas9-mediated genome editing of herpesviruses limits productive and latent infections. PLoS Pathog. 12, e1005701 (2016).

    PubMed  PubMed Central  Google Scholar 

  4. 4.

    Maeder, M. L. et al. Development of a gene-editing approach to restore vision loss in Leber congenital amaurosis type 10. Nat. Med. 25, 229–233 (2019).

    CAS  PubMed  Google Scholar 

  5. 5.

    Beyret, E. et al. Single-dose CRISPR-Cas9 therapy extends lifespan of mice with Hutchinson–Gilford progeria syndrome. Nat. Med. 25, 419–422 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Santiago-Fernandez, O. et al. Development of a CRISPR/Cas9-based therapy for Hutchinson–Gilford progeria syndrome. Nat. Med. 25, 423–426 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Kim, E. et al. In vivo genome editing with a small Cas9 orthologue derived from Campylobacter jejuni. Nat. Commun. 8, 14500 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Li, A. et al. A self-deleting AAV-CRISPR system for in vivo genome editing. Mol. Ther. Methods Clin. Dev. 12, 111–122 (2019).

    CAS  PubMed  Google Scholar 

  9. 9.

    Chew, W. L. et al. A multifunctional AAV-CRISPR-Cas9 and its host response. Nat. Methods 13, 868–874 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Mingozzi, F. et al. Overcoming preexisting humoral immunity to AAV using capsid decoys. Sci. Transl. Med. 5, 194ra192 (2013).

    Google Scholar 

  11. 11.

    Nelson, C. E. et al. Long-term evaluation of AAV-CRISPR genome editing for Duchenne muscular dystrophy. Nat. Med. 25, 427–432 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Wagner, D. L. et al. High prevalence of Streptococcus pyogenes Cas9-reactive T cells within the adult human population. Nat. Med. 25, 242–248 (2019).

    CAS  PubMed  Google Scholar 

  13. 13.

    Wignakumar, T. & Fairchild, P. J. Evasion of pre-existing immunity to Cas9: a prerequisite for successful genome editing in vivo? Curr. Transplant. Rep. 6, 127–133 (2019).

    Google Scholar 

  14. 14.

    Gao, X. et al. Treatment of autosomal dominant hearing loss by in vivo delivery of genome editing agents. Nature 553, 217–221 (2018).

    CAS  Google Scholar 

  15. 15.

    Montagna, C. et al. VSV-G-enveloped vesicles for traceless delivery of CRISPR-Cas9. Mol. Ther. Nucleic Acids 12, 453–462 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Lee, K. et al. Nanoparticle delivery of Cas9 ribonucleoprotein and donor DNA in vivo induces homology-directed DNA repair. Nat. Biomed. Eng. 1, 889–901 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Lee, B. et al. Nanoparticle delivery of CRISPR into the brain rescues a mouse model of fragile X syndrome from exaggerated repetitive behaviours. Nat. Biomed. Eng. 2, 497–507 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Shahbazi, R. et al. Targeted homology-directed repair in blood stem and progenitor cells with CRISPR nanoformulations. Nat. Mater. 18, 1124–1132 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Alkilany, A. M. & Murphy, C. J. Toxicity and cellular uptake of gold nanoparticles: what we have learned so far? J. Nanopart. Res. 12, 2313–2333 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Perry B Hackett, N. V. S. Gene therapy: delivering the second revolution in site-specific nucleases. eLife 3, e02904 (2014).

    PubMed  PubMed Central  Google Scholar 

  21. 21.

    Cai, Y. & Mikkelsen, J. G. Lentiviral delivery of proteins for genome engineering. Curr. Gene Ther. 16, 194–206 (2016).

    CAS  PubMed  Google Scholar 

  22. 22.

    Naldini, L., Trono, D. & Verma, I. M. Lentiviral vectors, two decades later. Science 353, 1101–1102 (2016).

    CAS  PubMed  Google Scholar 

  23. 23.

    Cai, Y., Bak, R. O. & Mikkelsen, J. G. Targeted genome editing by lentiviral protein transduction of zinc-finger and TAL-effector nucleases. eLife 3, e01911 (2014).

    PubMed  PubMed Central  Google Scholar 

  24. 24.

    Cai, Y. et al. DNA transposition by protein transduction of the PiggyBac transposase from lentiviral Gag precursors. Nucleic Acids Res. 42, e28 (2014).

    CAS  PubMed  Google Scholar 

  25. 25.

    Choi, J. G. et al. Lentivirus pre-packed with Cas9 protein for safer gene editing. Gene Ther. 23, 627–633 (2016).

    CAS  PubMed  Google Scholar 

  26. 26.

    Lu, B. et al. Delivering SaCas9 mRNA by lentivirus-like bionanoparticles for transient expression and efficient genome editing. Nucleic Acids Res. 47, e44 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Lyu, P., Javidi-Parsijani, P., Atala, A. & Lu, B. Delivering Cas9/sgRNA ribonucleoprotein (RNP) by lentiviral capsid-based bionanoparticles for efficient ‘hit-and-run’ genome editing. Nucleic Acids Res. 47, e99 (2019).

    PubMed  PubMed Central  Google Scholar 

  28. 28.

    Voelkel, C. et al. Protein transduction from retroviral Gag precursors. Proc. Natl Acad. Sci. USA 107, 7805–7810 (2010).

    CAS  PubMed  Google Scholar 

  29. 29.

    Prel, A. et al. Highly efficient in vitro and in vivo delivery of functional RNAs using new versatile MS2-chimeric retrovirus-like particles. Mol. Ther. Methods Clin. Dev. 2, 15039 (2015).

    PubMed  PubMed Central  Google Scholar 

  30. 30.

    Mangeot, P. E. et al. Genome editing in primary cells and in vivo using viral-derived nanoblades loaded with Cas9-sgRNA ribonucleoproteins. Nat. Commun. 10, 45 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Lim, L. S., Mitchell, P., Seddon, J. M., Holz, F. G. & Wong, T. Y. Age-related macular degeneration. Lancet 379, 1728–1738 (2012).

    PubMed  Google Scholar 

  32. 32.

    Andreoli, C. M. & Miller, J. W. Anti-vascular endothelial growth factor therapy for ocular neovascular disease. Curr. Opin. Ophthalmol. 18, 502–508 (2007).

    PubMed  Google Scholar 

  33. 33.

    Usui-Ouchi, A. & Friedlander, M. Anti-VEGF therapy: higher potency and long-lasting antagonism are not necessarily better. J. Clin. Invest. 129, 3032–3034 (2019).

    PubMed  PubMed Central  Google Scholar 

  34. 34.

    Campochiaro, P. A. et al. Lentiviral vector gene transfer of endostatin/angiostatin for macular degeneration (GEM) study. Hum. Gene Ther. 28, 99–111 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Hughes, C. P. et al. AAV2/8 anti-angiogenic gene therapy using single-chain antibodies inhibits murine choroidal neovascularization. Mol. Ther. Methods Clin. Dev. 13, 86–98 (2019).

    CAS  PubMed  Google Scholar 

  36. 36.

    Murakami, Y. et al. Inhibition of choroidal neovascularization via brief subretinal exposure to a newly developed lentiviral vector pseudotyped with sendai viral envelope proteins. Hum. Gene Ther. 21, 199–209 (2009).

    Google Scholar 

  37. 37.

    Ortinski, P. I., O’Donovan, B., Dong, X. & Kantor, B. Integrase-deficient lentiviral vector as an all-in-one platform for highly efficient CRISPR/Cas9-mediated gene editing. Mol. Ther. Methods Clin. Dev. 5, 153–164 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Sürün, D. et al. High efficiency gene correction in hematopoietic cells by donor-template-free CRISPR/Cas9 genome editing. Mol. Ther. Nucleic Acids 10, 1–8 (2018).

    PubMed  Google Scholar 

  39. 39.

    Holmgaard, A. et al. In vivo knockout of the Vegfa gene by lentiviral delivery of CRISPR/Cas9 in mouse retinal pigment epithelium cells. Mol. Ther. Nucleic Acids 9, 89–99 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Koo, T. et al. CRISPR-LbCpf1 prevents choroidal neovascularization in a mouse model of age-related macular degeneration. Nat. Commun. 9, 1855 (2018).

    PubMed  PubMed Central  Google Scholar 

  41. 41.

    Saint-Geniez, M., Maldonado, A. E. & D’Amore, P. A. VEGF expression and receptor activation in the choroid during development and in the adult. Invest. Ophthalmol. Vis. Sci. 47, 3135–3142 (2006).

    PubMed  Google Scholar 

  42. 42.

    Kuzembayeva, M., Dilley, K., Sardo, L. & Hu, W. S. Life of psi: how full-length HIV-1 RNAs become packaged genomes in the viral particles. Virology 454–455, 362–370 (2014).

    PubMed  PubMed Central  Google Scholar 

  43. 43.

    Pickett, G. G. & Peabody, D. S. Encapsidation of heterologous RNAs by bacteriophage MS2 coat protein. Nucleic Acids Res. 21, 4621–4626 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Cai, Y. & Mikkelsen, J. G. Driving DNA transposition by lentiviral protein transduction. Mob. Genet. Elem. 4, e29591 (2014).

    Google Scholar 

  45. 45.

    Skipper, K. A. et al. Time-restricted PiggyBac DNA transposition by transposase protein delivery using lentivirus-derived nanoparticles. Mol. Ther. Nucleic Acids 11, 253–262 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Ihry, R. J. et al. p53 inhibits CRISPR–Cas9 engineering in human pluripotent stem cells. Nat. Med. 24, 939–946 (2018).

    CAS  PubMed  Google Scholar 

  47. 47.

    Ellis, J. Silencing and variegation of gammaretrovirus and lentivirus vectors. Hum. Gene Ther. 16, 1241–1246 (2005).

    CAS  PubMed  Google Scholar 

  48. 48.

    Sanjana, N. E., Shalem, O. & Zhang, F. Improved vectors and genome-wide libraries for CRISPR screening. Nat. Methods 11, 783–784 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Kim, S., Kim, D., Cho, S. W., Kim, J. & Kim, J. S. Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins. Genome Res. 24, 1012–1019 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Dang, Y. et al. Optimizing sgRNA structure to improve CRISPR-Cas9 knockout efficiency. Genome Biol. 16, 280 (2015).

    PubMed  PubMed Central  Google Scholar 

  51. 51.

    Wang, D. et al. Adenovirus-mediated somatic genome editing of Pten by CRISPR/Cas9 in mouse liver in spite of Cas9-Specific immune responses. Hum. Gene Ther. 26, 432–442 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. 52.

    Zeka, B. et al. Aquaporin 4-specific T cells and NMO-IgG cause primary retinal damage in experimental NMO/SD. Acta Neuropathol. Commun. 4, 82 (2016).

    PubMed  PubMed Central  Google Scholar 

  53. 53.

    Kosicki, M., Tomberg, K. & Bradley, A. Repair of double-strand breaks induced by CRISPR–Cas9 leads to large deletions and complex rearrangements. Nat. Biotechnol. 36, 765–771 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. 54.

    Gong, Y. et al. Optimization of an Image-guided laser-induced choroidal neovascularization model in mice. PLoS ONE 10, e0132643 (2015).

    PubMed  PubMed Central  Google Scholar 

  55. 55.

    Staunstrup, N. H. et al. Hybrid lentivirus-transposon vectors with a random integration profile in human cells. Mol. Ther. 17, 1205–1214 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. 56.

    Paludan, S. R., Reinert, L. S. & Hornung, V. DNA-stimulated cell death: implications for host defence, inflammatory diseases and cancer. Nat. Rev. Immunol. 19, 141–153 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. 57.

    Akcakaya, P. et al. In vivo CRISPR editing with no detectable genome-wide off-target mutations. Nature 561, 416–419 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. 58.

    Tsai, S. Q. et al. GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR–Cas nucleases. Nat. Biotechnol. 33, 187–197 (2015).

    CAS  PubMed  Google Scholar 

  59. 59.

    Cheng, Y. & Tsai, S. Q. Illuminating the genome-wide activity of genome editors for safe and effective therapeutics. Genome Biol. 19, 226 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. 60.

    Stemmer, M., Thumberger, T., del Sol Keyer, M., Wittbrodt, J. & Mateo, J. L. CCTop: an intuitive, flexible and reliable CRISPR/Cas9 target prediction tool. PLoS ONE 10, e0124633 (2015).

    PubMed  PubMed Central  Google Scholar 

  61. 61.

    Kurihara, T., Westenskow, P. D., Bravo, S., Aguilar, E. & Friedlander, M. Targeted deletion of Vegfa in adult mice induces vision loss. J. Clin. Invest. 122, 4213–4217 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. 62.

    Grishanin, R. et al. Preclinical evaluation of ADVM-022, a novel gene therapy approach to treating wet age-related macular degeneration. Mol. Ther. 27, 118–129 (2019).

    CAS  PubMed  Google Scholar 

  63. 63.

    Nishimura, T., Machida, S., Harada, T. & Kurosaka, D. Retinal ganglion cell function after repeated intravitreal injections of ranibizumab in patients with age-related macular degeneration. Clin. Ophthalmol. 6, 1073–1082 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. 64.

    Rakoczy, E. P. et al. Three-year follow-up of phase 1 and 2a rAAV.sFLT-1 subretinal gene therapy trials for exudative age-related macular degeneration. Am. J. Ophthalmol. 204, 113–123 (2019).

    PubMed  Google Scholar 

  65. 65.

    Rakoczy, E. P. et al. Gene therapy with recombinant adeno-associated vectors for neovascular age-related macular degeneration: 1 year follow-up of a phase 1 randomised clinical trial. Lancet 386, 2395–2403 (2015).

    CAS  PubMed  Google Scholar 

  66. 66.

    Campochiaro, P. A. Low risk to retina from sustained suppression of VEGF. J. Clin. Invest. 129, 3029–3031 (2019).

    PubMed  PubMed Central  Google Scholar 

  67. 67.

    Richner, J. M. et al. Modified mRNA vaccines protect against Zika virus infection. Cell 168, 1114–1125 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. 68.

    Thuronyi, B. W. et al. Continuous evolution of base editors with expanded target compatibility and improved activity. Nat. Biotechnol. 37, 1070–1079 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. 69.

    Koblan, L. W. et al. Improving cytidine and adenine base editors by expression optimization and ancestral reconstruction. Nat. Biotechnol. 36, 843–846 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. 70.

    Park, J., Lim, K., Kim, J. S. & Bae, S. Cas-analyzer: an online tool for assessing genome editing results using NGS data. Bioinformatics 33, 286–288 (2017).

    CAS  PubMed  Google Scholar 

  71. 71.

    Brinkman, E. K., Chen, T., Amendola, M. & van Steensel, B. Easy quantitative assessment of genome editing by sequence trace decomposition. Nucleic Acids Res. 42, e168 (2014).

    PubMed  PubMed Central  Google Scholar 

  72. 72.

    Kluesner, M. G. et al. EditR: a method to quantify base editing from Sanger sequencing. CRISPR J. 1, 239–250 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. 73.

    Li, H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34, 3094–3100 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. 74.

    Sedlazeck, F. J. et al. Accurate detection of complex structural variations using single-molecule sequencing. Nat. Methods 15, 461–468 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. 75.

    Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. 76.

    Ling, S. et al. Dataset for Lentiviral delivery of co-packaged Cas9 mRNA and a Vegfa-targeting guide RNA prevents wet age-related macular degeneration in mice. Fighare https://doi.org/10.6084/m9.figshare.12611819 (2020).

Download references

Acknowledgements

We thank W. Yang at the Southern Medical University, China, for discussions and scientific input for the immunology part of the study. Y.C. is supported by the National Natural Science Foundation of China (no. 31971364), Pujiang Talent Project of Shanghai (no. 18PJ1404500), Shanghai Municipal Natural Science Foundation (no. 18ZR1419300), and startup funding from Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University (no. WF220441504).

Author information

Affiliations

Authors

Contributions

S.L. and Y.C. conceived the study and designed the experiments; S.L., S.Y., X.H., D.Y., Y.D., X.Q., D.W. and J.H. performed the experiments; all of the authors analysed the data; S.L. and Y.C. wrote the manuscript with help from all of the authors.

Corresponding author

Correspondence to Yujia Cai.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ling, S., Yang, S., Hu, X. et al. Lentiviral delivery of co-packaged Cas9 mRNA and a Vegfa-targeting guide RNA prevents wet age-related macular degeneration in mice. Nat Biomed Eng 5, 144–156 (2021). https://doi.org/10.1038/s41551-020-00656-y

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing