Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Therapeutic vaccination against leukaemia via the sustained release of co-encapsulated anti-PD-1 and a leukaemia-associated antigen

An Author Correction to this article was published on 19 April 2021

This article has been updated


Therapeutic leukaemia vaccines have shown modest potency. Here, we show that the co-encapsulation of a leukaemia-associated epitope peptide highly expressed in leukaemia patients and of the immune checkpoint inhibitor anti-programmed-cell-death-protein-1 (anti-PD-1) in degradable poly(lactic acid) microcapsules resulted in the sustained release of the peptide and of the antibody, which led to the recruitment of activated antigen-presenting cells to the injection site, their uptake of the peptide and the transportation of the anti-PD-1 antibody to lymph nodes, enhancing the expansion of epitope-specific T cells and the activation of cytotoxic T cells. After single subcutaneous injections of vaccine formulations with different epitope peptides, mice bearing leukaemia xenografts derived from humanized cell lines or from primary cells from patients showed better therapeutic outcomes than mice receiving repeated injections of free antigen, antibody and a commercial adjuvant. The sustained release of a tumour-associated peptide and of anti-PD-1 may represent a generalizable strategy for boosting antitumour immune responses to leukaemia.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: High expression of Eps8 and PD-1/PD-L1 in acute leukaemia.
Fig. 2: Preparation and characterization of self-healing microcapsules.
Fig. 3: APCs responses enhanced by coordination of sustained antigen release and APCs recruitment at the injection site.
Fig. 4: T-cell modulation and proliferation in the lymph nodes.
Fig. 5: Potent CTLs responses against leukaemia cells.
Fig. 6: In vivo anti-leukaemia effects in humanized Nalm6/Eps8+/PD-L1+-engrafted xenografts.
Fig. 7: Anti-leukaemic effects in humanized Molm-13/0201+/PD-L1+-engrafted xenografts.
Fig. 8: Potent anti-leukaemia activity in the PBMCs-PDX model.

Data availability

The main data supporting the results in this study are available within the paper and its Supplementary Information. The raw and analysed datasets generated during the study are too large to be publicly shared, but they are available for research purposes from the corresponding authors on reasonable request. The raw sequence data in Supplementary Fig. 4 are available at the BioProject database under accession number PRJNA639217.

Change history


  1. 1.

    Liu, Y., Bewersdorf, J. P., Stahl, M. & Zeidan, A. M. Immunotherapy in acute myeloid leukemia and myelodysplastic syndromes: the dawn of a new era? Blood Rev. 34, 67–83 (2019).

    CAS  PubMed  Google Scholar 

  2. 2.

    Beyar-Katz, O. & Gill, S. Novel approaches to acute myeloid leukemia immunotherapy. Clin. Cancer Res. 24, 5502–5515 (2018).

    CAS  PubMed  Google Scholar 

  3. 3.

    Thol, F., Schlenk, R. F., Heuser, M. & Ganser, A. How I treat refractory and early relapsed acute myeloid leukemia. Blood 126, 319–327 (2015).

    CAS  PubMed  Google Scholar 

  4. 4.

    Pandey, R. et al. SHP2 inhibition reduces leukemogenesis in models of combined genetic and epigenetic mutations. J. Clin. Invest. 129, 5468–5473 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Maude, S. L. et al. Chimeric antigen receptor T cells for sustained remissions in leukemia. N. Engl. J. Med. 371, 1507–1517 (2014).

    PubMed  PubMed Central  Google Scholar 

  6. 6.

    Ebert, B. L. Introduction to a review series on precision hematology. Blood 130, 408–409 (2017).

    CAS  PubMed  Google Scholar 

  7. 7.

    Bollard, C. M. & Stevenson, F. K. Introduction to a review series on advances in cell-based immune therapeutics in hematology. Blood 127, 3293 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Rezvani, K. Peptide vaccine therapy for leukemia. Int. J. Hematol. 93, 274–280 (2011).

    CAS  PubMed  Google Scholar 

  9. 9.

    Anguille, S., Van Tendeloo, V. F. & Berneman, Z. N. Leukemia-associated antigens and their relevance to the immunotherapy of acute myeloid leukemia. Leukemia 26, 2186–2196 (2012).

    CAS  PubMed  Google Scholar 

  10. 10.

    Vincent, K., Roy, D. C. & Perreault, C. Next-generation leukemia immunotherapy. Blood 118, 2951–2959 (2011).

    CAS  PubMed  Google Scholar 

  11. 11.

    Lee, D. W. et al. T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: a phase 1 dose-escalation trial. Lancet 385, 517–528 (2015).

    CAS  PubMed  Google Scholar 

  12. 12.

    Kebriaei, P. et al. Phase I trials using Sleeping Beauty to generate CD19-specific CAR T cells. J. Clin. Invest. 126, 3363–3376 (2016).

    PubMed  PubMed Central  Google Scholar 

  13. 13.

    Labanieh, L., Majzner, R. G. & Mackall, C. L. Programming CAR-T cells to kill cancer. Nat. Biomed. Eng. 2, 377–391 (2018).

    CAS  PubMed  Google Scholar 

  14. 14.

    Porter, D., Frey, N., Wood, P. A., Weng, Y. & Grupp, S. A. Grading of cytokine release syndrome associated with the CAR T cell therapy tisagenlecleucel. J. Hematol. Oncol. 11, 35 (2018).

    PubMed  PubMed Central  Google Scholar 

  15. 15.

    Fan, M. et al. Chimeric antigen receptors for adoptive T cell therapy in acute myeloid leukemia. J. Hematol. Oncol. 10, 151 (2017).

    PubMed  PubMed Central  Google Scholar 

  16. 16.

    Shah, N. N. & Fry, T. J. Mechanisms of resistance to CAR T cell therapy. Nat. Rev. Clin. Oncol. 16, 372–385 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Avigan, D. & Rosenblatt, J. Vaccine therapy in hematologic malignancies. Blood 131, 2640–2650 (2018).

    CAS  PubMed  Google Scholar 

  18. 18.

    Rosenblatt, J. et al. Individualized vaccination of AML patients in remission is associated with induction of antileukemia immunity and prolonged remissions. Sci. Transl. Med. 8, 368ra171 (2016).

    PubMed  PubMed Central  Google Scholar 

  19. 19.

    Banchereau, J. & Palucka, K. Immunotherapy: cancer vaccines on the move. Nat. Rev. Clin. Oncol. 15, 9–10 (2018).

    PubMed  Google Scholar 

  20. 20.

    Branca, M. A. Rekindling cancer vaccines. Nat. Biotechnol. 34, 1019–1024 (2016).

    CAS  PubMed  Google Scholar 

  21. 21.

    Melief, C. J., van Hall, T., Arens, R., Ossendorp, F. & van der Burg, S. H. Therapeutic cancer vaccines. J. Clin. Invest. 125, 3401–3412 (2015).

    PubMed  PubMed Central  Google Scholar 

  22. 22.

    Anguille, S. et al. Dendritic cell vaccination as postremission treatment to prevent or delay relapse in acute myeloid leukemia. Blood 130, 1713–1721 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Borrello, I. M. et al. Granulocyte-macrophage colony-stimulating factor (GM-CSF)-secreting cellular immunotherapy in combination with autologous stem cell transplantation (ASCT) as postremission therapy for acute myeloid leukemia (AML). Blood 114, 1736–1745 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Tawara, I. et al. Safety and persistence of WT1-specific T-cell receptor gene-transduced lymphocytes in patients with AML and MDS. Blood 130, 1985–1994 (2017).

    CAS  PubMed  Google Scholar 

  25. 25.

    Tsuboi, A. et al. Long-term WT1 peptide vaccination for patients with acute myeloid leukemia with minimal residual disease. Leukemia 26, 1410–1413 (2012).

    CAS  PubMed  Google Scholar 

  26. 26.

    Bekaii-Saab, T. et al. Phase I immunotherapy trial with two chimeric HER-2 B-cell peptide vaccines emulsified in montanide ISA 720VG and Nor-MDP adjuvant in patients with advanced solid tumors. Clin. Cancer. Res. 25, 3495–3507 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Bae, J. et al. Identification and characterization of HLA-A24-specific XBP1, CD138 (Syndecan-1) and CS1 (SLAMF7) peptides inducing antigens-specific memory cytotoxic T lymphocytes targeting multiple myeloma. Leukemia 32, 752–764 (2018).

    CAS  PubMed  Google Scholar 

  28. 28.

    Migliorini, D. et al. Phase I/II trial testing safety and immunogenicity of the multipeptide IMA950/poly-ICLC vaccine in newly diagnosed adult malignant astrocytoma patients. Neuro Oncol. 21, 923–933 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Skwarczynski, M. & Toth, I. Peptide-based synthetic vaccines. Chem. Sci. 7, 842–854 (2016).

    CAS  PubMed  Google Scholar 

  30. 30.

    Qazilbash, M. H. et al. PR1 peptide vaccine induces specific immunity with clinical responses in myeloid malignancies. Leukemia 31, 697–704 (2017).

    CAS  PubMed  Google Scholar 

  31. 31.

    Narasimhan, B., Goodman, J. T. & Vela Ramirez, J. E. Rational design of targeted next-generation carriers for drug and vaccine delivery. Annu. Rev. Biomed. Eng. 18, 25–49 (2016).

    CAS  PubMed  Google Scholar 

  32. 32.

    Kuai, R., Ochyl, L. J., Bahjat, K. S., Schwendeman, A. & Moon, J. J. Designer vaccine nanodiscs for personalized cancer immunotherapy. Nat. Mater. 16, 489–496 (2017).

    CAS  PubMed  Google Scholar 

  33. 33.

    Bachmann, M. F. & Jennings, G. T. Vaccine delivery: a matter of size, geometry, kinetics and molecular patterns. Nat. Rev. Immunol. 10, 787–796 (2010).

    CAS  PubMed  Google Scholar 

  34. 34.

    Parmiani, G. et al. Peptide-based vaccines for cancer therapy. Hum. Vaccines Immunother. 10, 3175–3178 (2014).

    Google Scholar 

  35. 35.

    Hobo, W., Hutten, T. J. A., Schaap, N. P. M. & Dolstra, H. Immune checkpoint molecules in acute myeloid leukaemia: managing the double-edged sword. Br. J. Haematol. 181, 38–53 (2018).

    PubMed  Google Scholar 

  36. 36.

    Ok, C. Y. & Young, K. H. Checkpoint inhibitors in hematological malignancies. J. Hematol. Oncol. 10, 103 (2017).

    PubMed  PubMed Central  Google Scholar 

  37. 37.

    Seiffert, M. Checkpoint inhibition in the bone marrow. Nat. Biomed. Eng. 2, 793–794 (2018).

    PubMed  Google Scholar 

  38. 38.

    Topalian, S. L., Drake, C. G. & Pardoll, D. M. Immune checkpoint blockade: a common denominator approach to cancer therapy. Cancer cell 27, 450–461 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Tumeh, P. C. et al. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature 515, 568–571 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Hu, Q. et al. Conjugation of haematopoietic stem cells and platelets decorated with anti-PD-1 antibodies augments anti-leukaemia efficacy. Nat. Biomed. Eng. 2, 831–840 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Yang, Y. et al. Recent advance in polymer based microspheric systems for controlled protein and peptide delivery. Curr. Med. Chem. 26, 2285–2296 (2019).

    CAS  PubMed  Google Scholar 

  42. 42.

    Moyer, T. J., Zmolek, A. C. & Irvine, D. J. Beyond antigens and adjuvants: formulating future vaccines. J. Clin. Invest. 126, 799–808 (2016).

    PubMed  PubMed Central  Google Scholar 

  43. 43.

    Lin, S. & Huang, G. Establishment of peripheral blood mononuclear cell-derived humanized lung cancer mouse models for studying efficacy of PD-L1/PD-1 targeted immunotherapy. mAbs 10, 1301–1311 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Shultz, L. D. et al. Generation of functional human T-cell subsets with HLA-restricted immune responses in HLA class I expressing NOD/SCID/IL2r gamma(null) humanized mice. Proc. Natl Acad. Sci. USA 107, 13022–13027 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Jespersen, H. et al. Clinical responses to adoptive T-cell transfer can be modeled in an autologous immune-humanized mouse model. Nat. Commun. 8, 707 (2017).

    PubMed  PubMed Central  Google Scholar 

  46. 46.

    Chen, Y. et al. A synthetic cell-penetrating peptide derived from nuclear localization signal of EPS8 exerts anticancer activity against acute myeloid leukemia. J. Exp. Clin. Cancer Res. 37, 12 (2018).

    PubMed  PubMed Central  Google Scholar 

  47. 47.

    Xie, X. et al. A dual-function epidermal growth factor receptor pathway substrate 8 (Eps8)-derived peptide exhibits a potent cytotoxic T lymphocyte-activating effect and a specific inhibitory activity. Cell Death Dis. 9, 379 (2018).

    PubMed  PubMed Central  Google Scholar 

  48. 48.

    Li, Y. et al. Generation of cytotoxic T lymphocytes specific for native or modified peptides derived from the epidermal growth factor receptor pathway substrate 8 antigen. Cancer Immunol. Immunother. 64, 259–269 (2015).

    CAS  PubMed  Google Scholar 

  49. 49.

    Chen, H., Wu, X., Pan, Z. K. & Huang, S. Integrity of SOS1/EPS8/ABI1 tri-complex determines ovarian cancer metastasis. Cancer Res. 70, 9979–9990 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Reinsmoen, N. L. et al. Acceptable donor-specific antibody levels allowing for successful deceased and living donor kidney transplantation after desensitization therapy. Transplantation 86, 820–825 (2008).

    CAS  PubMed  Google Scholar 

  51. 51.

    Tyler, B., Gullotti, D., Mangraviti, A., Utsuki, T. & Brem, H. Polylactic acid (PLA) controlled delivery carriers for biomedical applications. Adv. Drug Delivery Rev. 107, 163–175 (2016).

    CAS  Google Scholar 

  52. 52.

    Peres, C. et al. Poly(lactic acid)-based particulate systems are promising tools for immune modulation. Acta Biomater. 48, 41–57 (2017).

    CAS  PubMed  Google Scholar 

  53. 53.

    Vermeulen, M. et al. Acidosis improves uptake of antigens and MHC class I-restricted presentation by dendritic cells. J. Immunol. 172, 3196–3204 (2004).

    CAS  PubMed  Google Scholar 

  54. 54.

    Tong, J. et al. Acid-sensing ion channels contribute to the effect of acidosis on the function of dendritic cells. J. Immunol. 186, 3686–3692 (2011).

    CAS  PubMed  Google Scholar 

  55. 55.

    Pavlick, A. et al. Combined vaccination with NY-ESO-1 protein, poly-ICLC, and montanide improves humoral and cellular immune responses in high-risk melanoma patients. Cancer Immunol. Res. 8, 70–80 (2019).

    PubMed  PubMed Central  Google Scholar 

  56. 56.

    Zauderer, M. G. et al. A randomized phase II trial of adjuvant galinpepimut-S, WT-1 analogue peptide vaccine, after multimodality therapy for patients with malignant pleural mesothelioma. Clin. Cancer Res. 23, 7483–7489 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. 57.

    Legat, A. et al. Vaccination with LAG-3Ig (IMP321) and peptides induces specific CD4 and CD8 T-cell responses in metastatic melanoma patients–report of a phase I/IIa clinical trial. Clin. Cancer Res. 22, 1330–1340 (2016).

    CAS  PubMed  Google Scholar 

  58. 58.

    Koshy, S. T., Ferrante, T. C., Lewin, S. A. & Mooney, D. J. Injectable, porous, and cell-responsive gelatin cryogels. Biomaterials 35, 2477–2487 (2014).

    CAS  PubMed  Google Scholar 

  59. 59.

    Li, J. et al. Tough composite hydrogels with high loading and local release of biological drugs. Adv. Healthcare Mater. 7, e1701393 (2018).

    Google Scholar 

  60. 60.

    Li, A. W. et al. A facile approach to enhance antigen response for personalized cancer vaccination. Nat. Mater. 17, 528–534 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. 61.

    Maes, T. et al. ORY-1001, a potent and selective covalent KDM1A inhibitor, for the treatment of acute leukemia. Cancer Cell 33, 495–511 (2018).

    CAS  PubMed  Google Scholar 

  62. 62.

    Lapillonne, H. et al. High WT1 expression after induction therapy predicts high risk of relapse and death in pediatric acute myeloid leukemia. J. Clin. Oncol. 24, 1507–1515 (2006).

    CAS  PubMed  Google Scholar 

  63. 63.

    Weisser, M. et al. Prognostic impact of RT-PCR-based quantification of WT1 gene expression during MRD monitoring of acute myeloid leukemia. Leukemia 19, 1416–1423 (2005).

    CAS  PubMed  Google Scholar 

  64. 64.

    Cilloni, D. et al. Quantitative assessment of WT1 expression by real time quantitative PCR may be a useful tool for monitoring minimal residual disease in acute leukemia patients. Leukemia 16, 2115–2121 (2002).

    CAS  PubMed  Google Scholar 

Download references


This work was supported by the National Natural Science Foundation of China (grant nos. 21821005 and 21622608), the Strategic Priority Research Program of the Chinese Academy of Sciences (grant no. XDB29040303), the National Key R&D Program of China (grant no. 2017YFA0207900), the Science and Technology Program of Guangzhou, China (grant no. 201704020216), the Natural Science Foundation of Guangdong Province, China (grant no. 2018B030311042), and the Guangzhou Regenerative Medicine and Health Guangdong Laboratory, China (grant no. 2018GZR110105014).

Author information




Y.L., G.M., W.W. and X.X. conceived and designed the study; X.X., Y.H., T.Y., Y.C. and L.Z. performed the experiments; T.Y. and X.X. helped to prepare the self-healing microcapsules and experimental assays. F.L., L.Z., S.W., Y.H. and X.G. facilitated the data and file processing. All authors discussed the results and commented on the manuscript. W.W. and X.X. wrote the initial manuscript. X.X., T.Y., Y.L., G.M. and W.W. further revised the manuscript.

Corresponding authors

Correspondence to Wei Wei, Guanghui Ma or Yuhua Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary figures and table.

Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xie, X., Hu, Y., Ye, T. et al. Therapeutic vaccination against leukaemia via the sustained release of co-encapsulated anti-PD-1 and a leukaemia-associated antigen. Nat Biomed Eng 5, 414–428 (2021).

Download citation


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing