Abstract
Prime editing enables diverse genomic alterations to be written into target sites without requiring double-strand breaks or donor templates. The design of prime-editing guide RNAs (pegRNAs), which must be customized for each edit, can however be complex and time consuming. Compared with single guide RNAs (sgRNAs), pegRNAs have an additional 3′ extension composed of a primer binding site and a reverse-transcription template. Here we report a web tool, which we named pegFinder (http://pegfinder.sidichenlab.org), for the rapid design of pegRNAs from reference and edited DNA sequences. pegFinder can incorporate sgRNA on-target and off-target scoring predictions into its ranking system, and nominates secondary nicking sgRNAs for increasing editing efficiency. CRISPR-associated protein 9 variants with expanded targeting ranges are also supported. To facilitate downstream experimentation, pegFinder produces a comprehensive table of candidate pegRNAs, along with oligonucleotide sequences for cloning.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
Data availability
The main data supporting the results in this study are available within the paper and its Supplementary Information. For the pegRNAs that were experimentally tested in this study, all relevant information is provided as Supplementary Information. This information can be used to recreate the pegRNA designs described here, via the pegFinder web portal (http://pegfinder.sidichenlab.org).
Code availability
The custom code is available at GitHub (https://github.com/rdchow/pegfinder). The web portal is accessible at http://pegfinder.sidichenlab.org.
References
Pickar-Oliver, A. & Gersbach, C. A. The next generation of CRISPR–Cas technologies and applications. Nat. Rev. Mol. Cell Biol. 20, 490–507 (2019).
Anzalone, A. V. et al. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 576, 149–157 (2019).
Liu, Y. et al. Efficient generation of mouse models with the prime editing system. Cell Discov. 6, 27 (2020).
Lin, Q. et al. Prime genome editing in rice and wheat. Nat. Biotechnol. 38, 582–585 (2020).
Meier, J. A., Zhang, F. & Sanjana, N. E. GUIDES: sgRNA design for loss-of-function screens. Nat. Methods 14, 831–832 (2017).
Doench, J. G. et al. Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR–Cas9. Nat. Biotechnol. 34, 184–191 (2016).
Listgarten, J. et al. Prediction of off-target activities for the end-to-end design of CRISPR guide RNAs. Nat. Biomed. Eng. 2, 38–47 (2018).
Moreno-Mateos, M. A. et al. CRISPRscan: designing highly efficient sgRNAs for CRISPR–Cas9 targeting in vivo. Nat. Methods 12, 982–988 (2015).
Haeussler, M. et al. Evaluation of off-target and on-target scoring algorithms and integration into the guide RNA selection tool CRISPOR. Genome Biol. 17, 148 (2016).
Labun, K. et al. CHOPCHOP v3: expanding the CRISPR web toolbox beyond genome editing. Nucleic Acids Res. 47, W171–W174 (2019).
Park, J., Bae, S. & Kim, J.-S. Cas-Designer: a web-based tool for choice of CRISPR–Cas9 target sites. Bioinformatics 31, 4014–4016 (2015).
Needleman, S. B. & Wunsch, C. D. A general method applicable to the search for similarities in the amino acid sequence of two proteins. J. Mol. Biol. 48, 443–453 (1970).
Walton, R. T., Christie, K. A., Whittaker, M. N. & Kleinstiver, B. P. Unconstrained genome targeting with near-PAMless engineered CRISPR–Cas9 variants. Science 368, 290–296 (2020).
Sanjana, N. E., Shalem, O. & Zhang, F. Improved vectors and genome-wide libraries for CRISPR screening. Nat. Methods 11, 783–784 (2014).
Acknowledgements
We thank S. Eisenbarth for support. R.D.C. is supported by the Yale NIH Medical Scientist Training Program (MSTP) training grant (no. T32GM136651) and an NIH National Research Service Award (NRSA) fellowship from NCI (no. F30CA250249). J.S.C. is supported by the Yale MSTP training grant from NIH (no. T32GM136651) and an NIH NSRA fellowship from NHLBI (no. F30HL149151). S.C. is supported by Yale SBI/Genetics Startup Fund, NIH/NCI/NIDA (nos. DP2CA238295, 1R01CA231112, U54CA209992-8697, R33CA225498, RF1DA048811), DoD (no. W81XWH-20-1-0072/BC190094), AACR (nos. 499395, 17-20-01-CHEN), Cancer Research Institute (CLIP), V Foundation, Ludwig Family Foundation, Sontag Foundation (DSA), Blavatnik Family Foundation and Chenevert Family Foundation.
Author information
Authors and Affiliations
Contributions
R.D.C. conceived the pegRNA design tool and developed the pegFinder algorithm. J.S.C. developed the web interface. R.D.C. and J.S. performed experiments. R.D.C. and J.S.C. wrote the manuscript. S.C. provided conceptual advice and supervised the work.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests. For full disclosure, S.C. is a co-founder, funding recipient and scientific advisor of EvolveImmune Therapeutics; the company has no relation to this study.
Additional information
Peer review information Peer reviewer reports are available.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Supplementary figures and notes.
Supplementary Dataset 1
DNA sequences used as inputs to pegFinder.
Supplementary Dataset 2
Example results produced by pegFinder, detailing candidate pegRNAs and cloning oligos for generating mutant KRAS G12D in human cells.
Rights and permissions
About this article
Cite this article
Chow, R.D., Chen, J.S., Shen, J. et al. A web tool for the design of prime-editing guide RNAs. Nat Biomed Eng 5, 190–194 (2021). https://doi.org/10.1038/s41551-020-00622-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41551-020-00622-8
This article is cited by
-
Genotoxic effects of base and prime editing in human hematopoietic stem cells
Nature Biotechnology (2024)
-
Massively parallel screen uncovers many rare 3′ UTR variants regulating mRNA abundance of cancer driver genes
Nature Communications (2024)
-
CRISPR technologies for genome, epigenome and transcriptome editing
Nature Reviews Molecular Cell Biology (2024)
-
Glycosylase-based base editors for efficient T-to-G and C-to-G editing in mammalian cells
Nature Biotechnology (2024)
-
High-throughput evaluation of genetic variants with prime editing sensor libraries
Nature Biotechnology (2024)