Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The sustained expression of Cas9 targeting toxic RNAs reverses disease phenotypes in mouse models of myotonic dystrophy type 1

Abstract

Myotonic dystrophy type I (DM1) is a multisystemic autosomal-dominant inherited human disorder that is caused by CTG microsatellite repeat expansions (MREs) in the 3′ untranslated region of DMPK. Toxic RNAs expressed from such repetitive sequences can be eliminated using CRISPR-mediated RNA targeting, yet evidence of its in vivo efficacy and durability is lacking. Here, using adult and neonatal mouse models of DM1, we show that intramuscular or systemic injections of adeno-associated virus (AAV) vectors encoding nuclease-dead Cas9 and a single-guide RNA targeting CUG repeats results in the expression of the RNA-targeting Cas9 for up to three months, redistribution of the RNA-splicing protein muscleblind-like splicing regulator 1, elimination of foci of toxic RNA, reversal of splicing biomarkers and amelioration of myotonia. The sustained reversal of DM1 phenotypes provides further support that RNA-targeting Cas9 is a viable strategy for treating DM1 and other MRE-associated diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Treatment of adult skeletal muscle in the HSALR DM1 mouse model with RNA-targeting Cas9 eliminates CUG RNA foci.
Fig. 2: RNA-targeting Cas9 releases MBNL1 protein and reverses hallmarks of splicing dysfunction in HSALR DM1 adult muscle.
Fig. 3: RNA-targeting Cas9 promotes a global reversal of DM1-associated splicing dysfunction and increases the expression of genes associated with proper muscle function and mature muscle.
Fig. 4: Sustained expression of RNA-targeting Cas9 in WT adult muscle.
Fig. 5: Transient pharmacological immunosuppression promotes sustained expression of RNA-targeting Cas9 in adult muscle.
Fig. 6: Systemic treatment of HSALR DM1 mice with RNA-targeting Cas9 leads to sustained expression in various tissues, eliminates toxic RNA foci and reverses DM1-related mis-splicing.
Fig. 7: Systemic treatment of HSALR DM1 mouse model with RNA-targeting Cas9 reverses behavioural and electrophysiological features of the disease.

Similar content being viewed by others

Data availability

The main data supporting the results in this study are available within the paper and its Supplementary Information. Intramuscular RCas9 injection NGS data are available at the GEO repository (GSE152033) and can also be viewed using the UCSC genome browser (https://genome.ucsc.edu/s/ranjan99/RCas9_HSA_IM). The raw and analysed datasets generated during the study are available for research purposes from the corresponding author on reasonable request.

References

  1. Iyer, R. R., Pluciennik, A., Napierala, M. & Wells, R. D. DNA triplet repeat expansion and mismatch repair. Annu. Rev. Biochem. 84, 199–226 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Dion, V. Tissue specificity in DNA repair: lessons from trinucleotide repeat instability. Trends Genet. 30, 220–229 (2014).

    CAS  PubMed  Google Scholar 

  3. Lopez Castel, A., Cleary, J. D. & Pearson, C. E. Repeat instability as the basis for human diseases and as a potential target for therapy. Nat. Rev. Mol. Cell Biol. 11, 165–170 (2010).

    PubMed  Google Scholar 

  4. McGinty, R. J. & Mirkin, S. M. Cis- and trans-modifiers of repeat expansions: blending model systems with human genetics. Trends Genet. 34, 448–465 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Pearson, C. E. Slipping while sleeping? Trinucleotide repeat expansions in germ cells. Trends Mol. Med. 9, 490–495 (2003).

    CAS  PubMed  Google Scholar 

  6. Schmidt, M. H. M. & Pearson, C. E. Disease-associated repeat instability and mismatch repair. DNA Repair 38, 117–126 (2016).

    CAS  PubMed  Google Scholar 

  7. Cinesi, C., Aeschbach, L., Yang, B. & Dion, V. Contracting CAG/CTG repeats using the CRISPR–Cas9 nickase. Nat. Commun. 7, 13272 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Dastidar, S. et al. Efficient CRISPR/Cas9-mediated editing of trinucleotide repeat expansion in myotonic dystrophy patient-derived iPS and myogenic cells. Nucleic Acids Res. 46, 8275–8298 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Lo Scrudato, M. et al. Genome editing of expanded CTG repeats within the human DMPK gene reduces nuclear RNA foci in the muscle of DM1 mice. Mol. Ther. 27, 1372–1388 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Provenzano, C. et al. CRISPR/Cas9-mediated deletion of CTG expansions recovers normal phenotype in myogenic cells derived from myotonic dystrophy 1 patients. Mol. Ther. Nucleic Acids 9, 337–348 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. van Agtmaal, E. L. et al. CRISPR/Cas9-induced (CTGCAG)n repeat instability in the myotonic dystrophy type 1 locus: implications for therapeutic genome editing. Mol. Ther. 25, 24–43 (2017).

    PubMed  PubMed Central  Google Scholar 

  12. La Spada, A. R., Wilson, E. M., Lubahn, D. B., Harding, A. E. & Fischbeck, K. H. Androgen receptor gene mutations in X-linked spinal and bulbar muscular atrophy. Nature 352, 77–79 (1991).

    PubMed  Google Scholar 

  13. La Spada, A. R. & Taylor, J. P. Repeat expansion disease: progress and puzzles in disease pathogenesis. Nat. Rev. Genet. 11, 247–258 (2010).

    PubMed  PubMed Central  Google Scholar 

  14. O’Rourke, J. R. & Swanson, M. S. Mechanisms of RNA-mediated disease. J. Biol. Chem. 284, 7419–7423 (2009).

    PubMed  PubMed Central  Google Scholar 

  15. Batra, R., Manchanda, M. & Swanson, M. S. Global insights into alternative polyadenylation regulation. RNA Biol. 12, 597–602 (2015).

    PubMed  PubMed Central  Google Scholar 

  16. Renton, A. E. et al. A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron 72, 257–268 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. DeJesus-Hernandez, M. et al. Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron 72, 245–256 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Wilburn, B. et al. An antisense CAG repeat transcript at JPH3 locus mediates expanded polyglutamine protein toxicity in Huntington’s disease-like 2 mice. Neuron 70, 427–440 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Du, J. et al. RNA toxicity and missplicing in the common eye disease Fuchs endothelial corneal dystrophy. J. Biol. Chem. 290, 5979–5990 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. The Huntington’s Disease Collaborative Research Group. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell 72, 971–983 (1993).

  21. Miller, J. W. et al. Recruitment of human muscleblind proteins to (CUG)n expansions associated with myotonic dystrophy. EMBO J. 19, 4439–4448 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Shin, J., Charizanis, K. & Swanson, M. S. Pathogenic RNAs in microsatellite expansion disease. Neurosci. Lett. 466, 99–102 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Kanadia, R. N. et al. Reversal of RNA missplicing and myotonia after muscleblind overexpression in a mouse poly(CUG) model for myotonic dystrophy. Proc. Natl Acad. Sci. USA 103, 11748–11753 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Batra, R. et al. Loss of MBNL leads to disruption of developmentally regulated alternative polyadenylation in RNA-mediated disease. Mol. Cell 56, 311–322 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Wheeler, T. M., Lueck, J. D., Swanson, M. S., Dirksen, R. T. & Thornton, C. A. Correction of ClC-1 splicing eliminates chloride channelopathy and myotonia in mouse models of myotonic dystrophy. J. Clin. Invest. 117, 3952–3957 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Du, H. et al. Aberrant alternative splicing and extracellular matrix gene expression in mouse models of myotonic dystrophy. Nat. Struct. Mol. Biol. 17, 187–193 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Kumar, A., Agarwal, S., Agarwal, D. & Phadke, S. R. Myotonic dystrophy type 1 (DM1): a triplet repeat expansion disorder. Gene 522, 226–230 (2013).

    CAS  PubMed  Google Scholar 

  28. Johnson, N. et al. Genetic prevalence of myotonic dystrophy type 1. Neurology 92, S23.003 (2019).

  29. Wang, Y. et al. Therapeutic genome editing for myotonic dystrophy type 1 using CRISPR/Cas9. Mol. Ther. 26, 2617–2630 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Krishnan, J., Athar, F., Rani, T. S. & Mishra, R. K. Simple sequence repeats showing ‘length preference’ have regulatory functions in humans. Gene 628, 156–161 (2017).

    CAS  PubMed  Google Scholar 

  31. Wheeler, T. M. et al. Reversal of RNA dominance by displacement of protein sequestered on triplet repeat RNA. Science 325, 336–339 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Pinto, B. S. et al. Impeding transcription of expanded microsatellite repeats by deactivated Cas9. Mol. Cell 68, 479–490 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Bisset, D. R. et al. Therapeutic impact of systemic AAV-mediated RNA interference in a mouse model of myotonic dystrophy. Hum. Mol. Genet. 24, 4971–4983 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Rzuczek, S. G. et al. Precise small-molecule recognition of a toxic CUG RNA repeat expansion. Nat. Chem. Biol. 13, 188–193 (2017).

    CAS  PubMed  Google Scholar 

  35. Grimm, D. et al. Argonaute proteins are key determinants of RNAi efficacy, toxicity, and persistence in the adult mouse liver. J. Clin. Invest. 120, 3106–3119 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Janas, M. M. et al. Selection of GalNAc-conjugated siRNAs with limited off-target-driven rat hepatotoxicity. Nat. Commun. 9, 723 (2018).

    PubMed  PubMed Central  Google Scholar 

  37. Batra, R. et al. Elimination of toxic microsatellite repeat expansion RNA by RNA-targeting Cas9. Cell 170, 899–912 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Lagrue, E. et al. A large multicenter study of pediatric myotonic dystrophy type 1 for evidence-based management. Neurology 92, e852–e865 (2019).

    PubMed  Google Scholar 

  39. Mankodi, A. et al. Myotonic dystrophy in transgenic mice expressing an expanded CUG repeat. Science 289, 1769–1773 (2000).

    CAS  PubMed  Google Scholar 

  40. Lee, J. E., Bennett, C. F. & Cooper, T. A. RNase H-mediated degradation of toxic RNA in myotonic dystrophy type 1. Proc. Natl Acad. Sci. USA 109, 4221–4226 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Wheeler, T. M. et al. Targeting nuclear RNA for in vivo correction of myotonic dystrophy. Nature 488, 111–115 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Chen, B. et al. Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system. Cell 155, 1479–1491 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Bengtsson, N. E. et al. Muscle-specific CRISPR/Cas9 dystrophin gene editing ameliorates pathophysiology in a mouse model for Duchenne muscular dystrophy. Nat. Commun. 8, 14454 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Lin, X. et al. Failure of MBNL1-dependent post-natal splicing transitions in myotonic dystrophy. Hum. Mol. Genet. 15, 2087–2097 (2006).

    CAS  PubMed  Google Scholar 

  45. Kalsotra, A. et al. A postnatal switch of CELF and MBNL proteins reprograms alternative splicing in the developing heart. Proc. Natl Acad. Sci. USA 105, 20333–20338 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Charizanis, K. et al. Muscleblind-like 2-mediated alternative splicing in the developing brain and dysregulation in myotonic dystrophy. Neuron 75, 437–450 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Poulos, M. G. et al. Progressive impairment of muscle regeneration in muscleblind-like 3 isoform knockout mice. Hum. Mol. Genet. 22, 3547–3558 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Wagner, S. D. et al. Dose-dependent regulation of alternative splicing by MBNL proteins reveals biomarkers for myotonic dystrophy. PLoS Genet. 12, e1006316 (2016).

    PubMed  PubMed Central  Google Scholar 

  49. Nakamori, M. et al. Splicing biomarkers of disease severity in myotonic dystrophy. Ann. Neurol. 74, 862–872 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Sebastian, S. et al. Tissue-specific splicing of a ubiquitously expressed transcription factor is essential for muscle differentiation. Genes Dev. 27, 1247–1259 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Thomas, J. D., Oliveira, R., Sznajder, L. J. & Swanson, M. S. Myotonic dystrophy and developmental regulation of RNA processing. Compr. Physiol. 8, 509–553 (2018).

    PubMed  Google Scholar 

  52. Huang, D., Sherman, B. T. & Lempicki, R. A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4, 44–57 (2009).

    CAS  Google Scholar 

  53. Amack, J. D. & Mahadevan, M. S. Myogenic defects in myotonic dystrophy. Dev. Biol. 265, 294–301 (2004).

    CAS  PubMed  Google Scholar 

  54. Konermann, S. et al. Transcriptome engineering with RNA-targeting type VI-D CRISPR effectors. Cell 173, 665–676 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Yan, W. X. et al. Cas13d is a compact RNA-targeting type VI CRISPR effector positively modulated by a WYL-domain-containing accessory protein. Mol. Cell 70, 327–339 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Guibinga, G. H. et al. Combinatorial blockade of calcineurin and CD28 signaling facilitates primary and secondary therapeutic gene transfer by adenovirus vectors in dystrophic (mdx) mouse muscles. J. Virol. 72, 4601–4609 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Wang, Z. et al. Immunity to adeno-associated virus-mediated gene transfer in a random-bred canine model of Duchenne muscular dystrophy. Hum. Gene Ther. 18, 18–26 (2007).

    PubMed  Google Scholar 

  58. Zhou, J., Liu, B., Liang, C., Li, Y. & Song, Y. H. Cytokine signaling in skeletal muscle wasting. Trends Endocrinol. Metab. 27, 335–347 (2016).

    CAS  PubMed  Google Scholar 

  59. Mammarella, A. et al. Tumor necrosis factor-alpha and myocardial function in patients with myotonic dystrophy type 1. J. Neurol. Sci. 201, 59–64 (2002).

    CAS  PubMed  Google Scholar 

  60. Nakamori, M. et al. Aberrant myokine signaling in congenital myotonic dystrophy. Cell Rep. 21, 1240–1252 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Zhang, L., Lee, J. E., Wilusz, J. & Wilusz, C. J. The RNA-binding protein CUGBP1 regulates stability of tumor necrosis factor mRNA in muscle cells: implications for myotonic dystrophy. J. Biol. Chem. 283, 22457–22463 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Ward, A. J., Rimer, M., Killian, J. M., Dowling, J. J. & Cooper, T. A. CUGBP1 overexpression in mouse skeletal muscle reproduces features of myotonic dystrophy type 1. Hum. Mol. Genet. 19, 3614–3622 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Sznajder, L. J. et al. Loss of MBNL1 induces RNA misprocessing in the thymus and peripheral blood. Nat. Commun. 11, 2022 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Yang, L. et al. A myocardium tropic adeno-associated virus (AAV) evolved by DNA shuffling and in vivo selection. Proc. Natl Acad. Sci. USA 106, 3946–3951 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Lai, Y. et al. Efficient in vivo gene expression by trans-splicing adeno-associated viral vectors. Nat. Biotechnol. 23, 1435–1439 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Trapani, I. Adeno-associated viral vectors as a tool for large gene delivery to the retina. Genes 10, 287 (2019).

    CAS  PubMed Central  Google Scholar 

  67. Choudhury, R., Tsai, Y. S., Dominguez, D., Wang, Y. & Wang, Z. Engineering RNA endonucleases with customized sequence specificities. Nat. Commun. 3, 1147 (2012).

    PubMed  Google Scholar 

  68. Hagedorn, P. H. et al. Identifying and avoiding off-target effects of RNase H-dependent antisense oligonucleotides in mice. Nucleic Acids Res. 46, 5366–5380 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Nelson, C. E. et al. Long-term evaluation of AAV-CRISPR genome editing for Duchenne muscular dystrophy. Nat. Med. 25, 427–432 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Ferdosi, S. R. et al. Multifunctional CRISPR–Cas9 with engineered immunosilenced human T cell epitopes. Nat. Commun. 10, 1842 (2019).

    PubMed  PubMed Central  Google Scholar 

  71. Hinderer, C. et al. Neonatal systemic AAV induces tolerance to CNS gene therapy in MPS I dogs and nonhuman primates. Mol. Ther. 23, 1298–1307 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Cooper, M. et al. Improved induction of immune tolerance to factor IX by hepatic AAV-8 gene transfer. Hum. Gene Ther. 20, 767–776 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Doerfler, P. A. et al. Copackaged AAV9 vectors promote simultaneous immune tolerance and phenotypic correction of Pompe disease. Hum. Gene Ther. 27, 43–59 (2016).

    CAS  PubMed  Google Scholar 

  74. Puzzo, F. et al. Rescue of Pompe disease in mice by AAV-mediated liver delivery of secretable acid α-glucosidase. Sci. Transl. Med. 9, eaam6375 (2017).

    PubMed  PubMed Central  Google Scholar 

  75. Nelles, D. A. et al. Programmable RNA tracking in live cells with CRISPR/Cas9. Cell 165, 488–496 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. O’Connell, M. R. et al. Programmable RNA recognition and cleavage by CRISPR/Cas9. Nature 516, 263–266 (2014).

    PubMed  PubMed Central  Google Scholar 

  77. Cox, D. B. T. et al. RNA editing with CRISPR–Cas13. Science 358, 1019–1027 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Bravo-Hernandez, M. Spinal subpial delivery of AAV9 enables widespread gene silencing and blocks motoneuron degeneration in ALS. Nat. Med. 26, 118–130 (2020).

    CAS  PubMed  Google Scholar 

  79. Bravo-Hernandez, M. et al. Spinal subpial delivery of AAV9 enables widespread gene silencing and blocks motoneuron degeneration in ALS. Nat. Med. 26, 118–130 (2020).

    CAS  PubMed  Google Scholar 

  80. Batra, R. et al. RNA-binding protein CPEB1 remodels host and viral RNA landscapes. Nat. Struct. Mol. Biol. 23, 1101–1110 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Wu, J., Anczukow, O., Krainer, A. R., Zhang, M. Q. & Zhang, C. OLego: fast and sensitive mapping of spliced mRNA-seq reads using small seeds. Nucleic Acids Res. 41, 5149–5163 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Chamberlain, C. M. & Ranum, L. P. W. Mouse model of muscleblind-like 1 overexpression: skeletal muscle effects and therapeutic promise. Hum. Mol. Genet. 21, 4645–4654 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the NIH (grant no. NS103172) to G.W.Y. and M.S.S. This work is also partially supported by the Muscular Dystrophy Association MVP (grant no. 575855) to R.B. and Locanabio.

Author information

Authors and Affiliations

Authors

Contributions

G.W.Y., R.B., D.A.N. and M.S.S. conceptualized and designed the study and wrote the paper. R.B., D.A.N., F.K. and H.L.G. performed tissue sectioning, staining and histopathology. R.B., D.M.R., S.M.B. and H.L.G. performed RNA extractions and qPCR. M.S.S. provided the HSALR mouse colony. R.B., J.D.T., C.A.N. and Ł.J.S. maintained the HSALR colony, performed adult injections and collected tissues. T.T. and M.M. performed P0 neonatal injections. S.A. and R.B. generated next-generation sequencing (NGS) libraries. R.B., P.L., F.K. and G.W.Y. performed NGS data analysis. A.M. packaged AAV and performed quality control of the virus. R.B., O.P. and M.M. performed electrophysiology. R.B. performed functional assays. R.B., D.A.N. and G.W.Y. analysed all data. G.W.Y. supervised the study.

Corresponding author

Correspondence to Gene W. Yeo.

Ethics declarations

Competing interests

G.W.Y. is a cofounder, member of the board of directors, equity holder and paid consultant of Locanabio. D.A.N. is a cofounder and an equity holder of Locanabio. R.B. is an equity holder and employee of Locanabio. M.S.S. is an equity holder of Locanabio and a Scientific Advisory Board member of Skyhawk Therapeutics. The terms of this arrangement have been reviewed and approved by the University of California San Diego and the University of Florida, Gainesville in accordance with their conflict of interest policies. The other authors declare no other competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary figures, video captions and dataset captions.

Reporting Summary

Supplementary Video 1

Representative video of hindlimb pull-test measurements showing myotonia and latency to muscle relaxation in P0 neonatal control-treated and P0 neonatal RCas9-CTG-treated HSALR mice.

Supplementary Video 2

Representative video of hindlimb pull-test measurements showing myotonia and latency to muscle relaxation in 8-week-old control-treated and 8-week-old RCas9-CTG-treated HSALR mice.

Supplementary Dataset 1

Differential alternative-splicing events inferred by analysis of RNA-seq data.

Supplementary Dataset 2

Differential gene expression inferred by analysis of RNA-seq data.

Supplementary Dataset 3

GO analysis.

Supplementary Dataset 4

Differential gene expression inferred by analysis of RNA-seq data.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Batra, R., Nelles, D.A., Roth, D.M. et al. The sustained expression of Cas9 targeting toxic RNAs reverses disease phenotypes in mouse models of myotonic dystrophy type 1. Nat Biomed Eng 5, 157–168 (2021). https://doi.org/10.1038/s41551-020-00607-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41551-020-00607-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing