Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Rapid optofluidic detection of biomarkers for traumatic brain injury via surface-enhanced Raman spectroscopy


Current technologies for the point-of-care diagnosis of traumatic brain injury (TBI) lack sensitivity, require specialist handling or involve complicated and costly procedures. Here, we report the development and testing of an optofluidic device for the rapid and label-free detection, via surface-enhanced Raman scattering (SERS), of picomolar concentrations of biomarkers for TBI in biofluids. The SERS-active substrate of the device consists of electrohydrodynamically fabricated submicrometre pillars covered with a plasmon-active nanometric gold layer, integrated in an optofluidic chip. We show that the device can detect N-acetylasparate in finger-prick blood samples from patients with TBI, and that the biomarker is released immediately from the central nervous system after TBI. The simplicity, sensitivity and robustness of SERS-integrated optofluidic technology might eventually help the triaging of TBI patients and assist clinical decision making at point-of-care settings.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Optimized biodiagnostic platforms.
Fig. 2: Analytical and computational quantification of TBI-indicative biomarkers with optofluidic SERS device.
Fig. 3: Temporal profiling of NAA blood plasma levels post TBI.
Fig. 4: Rapid POC microengineered device technology for TBI biodiagnostics.

Data availability

The main data supporting the results in this study are available within the paper and its Supplementary Information. The raw and analysed datasets generated in this study and the source data for the figures are available on figshare at

Code availability

The custom MATLAB code can be downloaded from


  1. 1.

    Dash, P. K., Zhao, J., Hergenroeder, G. & Moore, A. N. Biomarkers for the diagnosis, prognosis, and evaluation of treatment efficacy for traumatic brain injury. Neurotherapeutics 7, 100–114 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  2. 2.

    Neurotrauma (WHO, 2016).

  3. 3.

    Robertson, C. & Rangel-Castilla, L. in Critical Care Management of Traumatic Brain Injury Vol. 4 (ed. Winn, H.) Ch. 334 (Elsevier, 2015).

  4. 4.

    DeKosky, S. T., Ikonomovic, M. D. & Gandy, S. Traumatic brain injury—football, warfare, and long-term effects. N. Engl. J. Med. 363, 1293–1296 (2010).

    CAS  PubMed  Article  Google Scholar 

  5. 5.

    Carney, N. et al. Guidelines for the Management of Severe Traumatic Brain Injury (Brain Trauma Foundation, 2016).

  6. 6.

    Aquino, C., Woolen, S. & Steenburg, S. D. Magnetic resonance imaging of traumatic brain injury: a pictorial review. Emerg. Radiol. 22, 65–78 (2015).

    PubMed  Article  Google Scholar 

  7. 7.

    Di Costanzo, A. et al. High-field proton MRS of human brain. Eur. J. Radiol. 48, 146–153 (2003).

    PubMed  Article  Google Scholar 

  8. 8.

    Xiong, K.-L., Zhu, Y.-S. & Zhang, W.-G. Diffusion tensor imaging and magnetic resonance spectroscopy in traumatic brain injury: a review of recent literature. Brain Imaging Behav. 8, 487–496 (2014).

    PubMed  Article  Google Scholar 

  9. 9.

    Croall, I., Smith, F. E. & Blamire, A. M. Magnetic resonance spectroscopy for traumatic brain injury. Top. Magn. Reson. Imaging 24, 267–274 (2015).

    PubMed  Article  Google Scholar 

  10. 10.

    Dennis, E. L. et al. Magnetic resonance spectroscopy of fiber tracts in children with traumatic brain injury: a combined MRS–diffusion MRI study. Hum. Brain Mapp. 39, 3759–1768 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  11. 11.

    Haddad, H. S. & Arabi, M. Y. Critical care management of severe traumatic brain injury in adults. Scand. J. Trauma, Resuscitation Emerg. Med. 20, 1–15 (2012).

    Article  Google Scholar 

  12. 12.

    Ling, G. S. F. & Marshall, S. A. Management of traumatic brain injury in the intensive care unit. Neurologic Clin. 26, 409–426 (2008).

    Article  Google Scholar 

  13. 13.

    Dinsmore, J. Traumatic brain injury: an evidence-based review of management. Continuing Educ. Anaesth. Crit. Care Pain. 13, 189–195 (2013).

    Article  Google Scholar 

  14. 14.

    Zetterberg, H., Smith, D. H. & Blennow, K. Biomarkers of mild traumatic brain injury in cerebrospinal fluid and blood. Nat. Rev. Neurol. 9, 201–210 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  15. 15.

    Skolnick, B. E. et al. A clinical trial of progesterone for severe traumatic brain injury. N. Engl. J. Med. 371, 2467–2476 (2014).

    PubMed  Article  CAS  Google Scholar 

  16. 16.

    Teasdale, G. & Jennett, B. Assessment of coma and impaired consciousness: a practical scale. Lancet 304, 81–84 (1974).

    Article  Google Scholar 

  17. 17.

    Teasdale, G., Murray, G., Parker, L. & Jennett, B. Adding up the Glasgow Coma Score. In Proc. of the 6th European Congress of Neurosurgery (eds. Brihaye, J. et al.) 13–16 (Springer, 1979).

  18. 18.

    Azouvi, P., Arnould, A., Dromer, E. & Vallat-Azouvi, C. Neuropsychology of traumatic brain injury: An expert overview. Rev. Neurologique 173, 461–472 (2017).

    CAS  Article  Google Scholar 

  19. 19.

    Dadas, A., Washington, J., Diaz-Arrastia, R. & Janigro, D. Biomarkers in traumatic brain injury (TBI): a review. Neuropsychiatr. Dis. Treat. 14, 2989–3000 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  20. 20.

    Maas, A. I. R. et al. Traumatic brain injury: integrated approaches to improve prevention, clinical care, and research. Lancet Neurol. 16, 987–1048 (2017).

    PubMed  Article  Google Scholar 

  21. 21.

    Moffett, J., Arun, P., Ariyannur, P. & Namboodiri, A. N-acetylaspartate reductions in brain injury: impact on post-injury neuroenergetics, lipid synthesis, and protein acetylation. Front. Neuroenergetics 8, 00011 (2013).

    Google Scholar 

  22. 22.

    O’Connell, B. et al. Use of blood biomarkers in the assessment of sports-related concussion—A systematic review in the context of their biological significance. Clin. J. Sport Med. 28, 561–571 (2018).

    PubMed  Article  Google Scholar 

  23. 23.

    Rubenstein, R. et al. Comparing plasma phospho tau, total tau, and phospho tau–total tau ratio as acute and chronic traumatic brain injury biomarkers. JAMA Neurol. 74, 1063–1072 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  24. 24.

    Vella, M. A., Crandall, M. L. & Patel, M. B. Acute management of traumatic brain injury. Surgical Clin. North Am. 97, 1015–1030 (2017).

    Article  Google Scholar 

  25. 25.

    Bazarian, J. J. et al. Serum GFAP and UCH-L1 for prediction of absence of intracranial injuries on head CT (ALERT-TBI): a multicentre observational study. Lancet Neurol. 17, 782–789 (2018).

    CAS  PubMed  Article  Google Scholar 

  26. 26.

    Stocchetti, N. et al. Severe traumatic brain injury: targeted management in the intensive care unit. Lancet Neurol. 16, 452–464 (2017).

    PubMed  Article  Google Scholar 

  27. 27.

    Mapstone, M. et al. Plasma phospholipids identify antecedent memory impairment in older adults. Nat. Med. 20, 415 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  28. 28.

    Sharma, R. & Laskowitz, D. T. Biomarkers in traumatic brain injury. Curr. Neurol. Neurosci. Rep. 12, 560–569 (2012).

    CAS  PubMed  Article  Google Scholar 

  29. 29.

    Papa, L. et al. Elevated levels of serum glial fibrillary acidic protein breakdown products in mild and moderate traumatic brain injury are associated with intracranial lesions and neurosurgical intervention. Ann. Emerg. Med. 59, 471–483 (2012).

    PubMed  Article  Google Scholar 

  30. 30.

    Sen, J. et al. Extracellular fluid S100B in the injured brain: a future surrogate marker of acute brain injury? Acta Neurochirurgica 147, 897–900 (2005).

    CAS  PubMed  Article  Google Scholar 

  31. 31.

    Thelin, E. P. et al. Utility of neuron-specific enolase in traumatic brain injury; relations to S100B levels, outcome, and extracranial injury severity. Crit. Care 20, 285 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  32. 32.

    B. Patel, T. & B. Clark, J. Synthesis of N-acetyl-l-aspartate by rat brain mitochondria and its involvement in mitochondrial/cytosolic carbon transport. Biochemical J. 184, 539–546 (1980).

    Article  Google Scholar 

  33. 33.

    Shannon, R. J. et al. Extracellular N-acetylaspartate in human traumatic brain injury. J. Neurotrauma 33, 319–329 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  34. 34.

    Belli, A. et al. Extracellular N-acetylaspartate depletion in traumatic brain injury. J. Neurochemistry 96, 861–869 (2006).

    CAS  Article  Google Scholar 

  35. 35.

    Vespa, P. et al. Metabolic crisis without brain ischemia is common after traumatic brain injury: a combined microdialysis and positron emission tomography study. J. Cereb. Blood Flow. Metab. 25, 763–774 (2005).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  36. 36.

    Nadler, J. V. & Cooper, J. R. N-acetyl-l-aspartic acid content of human neural tumours and bovine perioheralnervous tissues. J. Neurochemistry 19, 313–319 (1972).

    CAS  Article  Google Scholar 

  37. 37.

    Benarroch, E. E. N-acetylaspartate and N-acetylaspartylglutamate. Neurology 70, 1353–1357 (2008).

  38. 38.

    Sinson, G. et al. Magnetization transfer imaging and proton MR spectroscopy in the evaluation of axonal injury: Correlation with clinical outcome after traumatic brain injury. Am. J. Neuroradiol. 22, 143–151 (2001).

    CAS  PubMed  Google Scholar 

  39. 39.

    Blamire, A. M., Rajagopalan, B., Garnett, M. R., Styles, P. & Cadoux-Hudson, T. A. D. Evidence for cellular damage in normal-appearing white matter correlates with injury severity in patients following traumatic brain injury: A magnetic resonance spectroscopy study. Brain 123, 1403–1409 (2000).

    PubMed  Article  Google Scholar 

  40. 40.

    Kahraman, M., Mullen Emma, R., Korkmaz, A. & Wachsmann-Hogiu, S. Fundamentals and applications of SERS-based bioanalytical sensing. Nanophotonics 6, 831–852 (2017).

  41. 41.

    Weigao, X., Nannan, M. & Jin, Z. Graphene: a platform for surface-enhanced Raman spectroscopy. Small 9, 1206–1224 (2013).

    Article  CAS  Google Scholar 

  42. 42.

    Huang, S. et al. Molecular selectivity of graphene-enhanced Raman scattering. Nano Lett. 15, 2892–2901 (2015).

    CAS  PubMed  Article  Google Scholar 

  43. 43.

    Moore, T. et al. In vitro and in vivo SERS biosensing for disease diagnosis. Biosensors 8, 46 (2018).

    PubMed Central  Article  CAS  Google Scholar 

  44. 44.

    Wang, R. et al. in Frontiers and Advances in Molecular Spectroscopy (ed. J. Laane) 307–326 (Elsevier, 2018).

  45. 45.

    Han, X. X., Ozaki, Y. & Zhao, B. Label-free detection in biological applications of surface-enhanced Raman scattering. Trends Anal. Chem. 38, 67–78 (2012).

    CAS  Article  Google Scholar 

  46. 46.

    Han, X. X., Zhao, B. & Ozaki, Y. Surface-enhanced Raman scattering for protein detection. Anal. Bioanal. Chem. 394, 1719–1727 (2009).

    CAS  PubMed  Article  Google Scholar 

  47. 47.

    Wang, Y. et al. Quantitative molecular phenotyping with topically applied SERS nanoparticles for intraoperative guidance of breast cancer lumpectomy. Sci. Rep. 6, 21242 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  48. 48.

    Wang, Y. W. et al. Rapid ratiometric biomarker detection with topically applied SERS nanoparticles. Technology 2, 118–132 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  49. 49.

    McQueenie, R. et al. Detection of inflammation in vivo by surface-enhanced Raman scattering provides higher sensitivity than conventional fluorescence imaging. Anal. Chem. 84, 5968–5975 (2012).

    CAS  PubMed  Article  Google Scholar 

  50. 50.

    Barnes, W. L., Dereux, A. & Ebbesen, T. W. Surface plasmon subwavelength optics. Nature 424, 824–830 (2003).

    CAS  PubMed  Article  Google Scholar 

  51. 51.

    Kneipp, K. et al. Single molecule detection using surface-enhanced Raman scattering (SERS). Phys. Rev. Lett. 78, 1667–1670 (1997).

    CAS  Article  Google Scholar 

  52. 52.

    Nie, S. & Emory, S. R. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275, 1102–1106 (1997).

    CAS  PubMed  Article  Google Scholar 

  53. 53.

    Ozbay, E. Plasmonics: merging photonics and electronics at nanoscale dimensions. Science 311, 189–193 (2006).

    CAS  PubMed  Article  Google Scholar 

  54. 54.

    Dinish, U. S., Balasundaram, G., Chang, Y. T. & Olivo, M. Sensitive multiplex detection of serological liver cancer biomarkers using SERS-active photonic crystal fiber probe. J. Biophotonics 7, 956–965 (2014).

    CAS  PubMed  Article  Google Scholar 

  55. 55.

    Dinish, U. S., Balasundaram, G., Chang, Y.-T. & Olivo, M. Actively targeted in vivo multiplex detection of intrinsic cancer biomarkers using biocompatible SERS nanotags. Sci. Rep. 4, 4075 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  56. 56.

    Socrates, G. Infrared and Raman Characteristic Group Frequencies: Tables and Charts. 3rd edn. (John Wiley & Sons, 2001).

  57. 57.

    Durucan, O. et al. Detection of bacterial metabolites through dynamic acquisition from surface enhanced Raman spectroscopy substrates integtrated in a centrifugal microfluidic platform. In 19th International Conference on Miniaturized Systems for Chemistry and Life Sciences 1831–1833 (2015).

  58. 58.

    Hoonejani, M. R., Pallaoro, A., Braun, G. B., Moskovits, M. & Meinhart, C. D. Quantitative multiplexed simulated-cell identification by SERS in microfluidic devices. Nanoscale 7, 16834–16840 (2015).

    CAS  PubMed  Article  Google Scholar 

  59. 59.

    Chen, G. et al. A highly sensitive microfluidics system for multiplexed surface-enhanced Raman scattering (SERS) detection based on Ag nanodot arrays. RSC Adv. 4, 54434–54440 (2014).

    CAS  Article  Google Scholar 

  60. 60.

    Jahn, I. J. et al. Surface-enhanced Raman spectroscopy and microfluidic platforms: challenges, solutions and potential applications. Analyst 142, 1022–1047 (2017).

    CAS  PubMed  Article  Google Scholar 

  61. 61.

    Chen, L. & Choo, J. Recent advances in surface-enhanced Raman scattering detection technology for microfluidic chips. Electrophoresis 29, 1815–1828 (2008).

    CAS  PubMed  Article  Google Scholar 

  62. 62.

    Gauglitz, G. & Moore, D. S. Handbook of Spectroscopy. (John Wiley & Sons, 2014).

  63. 63.

    Pennathur, S. & Fygenson, D. Improving fluorescence detection in lab on chip devices. Lab Chip 8, 649–652 (2008).

    CAS  PubMed  Article  Google Scholar 

  64. 64.

    Kho, K. et al. Polymer-based microfluidics with surface-enhanced Raman-spectroscopy-active periodic metal nanostructures for biofluid analysis. J. Biomed. Opt. 13, 054026 (2008).

    PubMed  Article  CAS  Google Scholar 

  65. 65.

    Granger, J. H., Schlotter, N. E., Crawford, A. C. & Porter, M. D. Prospects for point-of-care pathogen diagnostics using surface-enhanced Raman scattering (SERS). Chem. Soc. Rev. 45, 3865–3882 (2016).

    CAS  PubMed  Article  Google Scholar 

  66. 66.

    Goldberg-Oppenheimer, P., Mahajan, S. & Steiner, U. Hierarchical electrohydrodynamic structures for surface-enhanced raman scattering. Adv. Mater. 24, OP175–OP180 (2012).

    CAS  PubMed  Google Scholar 

  67. 67.

    Mahajan, S., Hutter, T., Steiner, U. & Goldberg-Oppenheimer, P. Tunable microstructured surface-enhanced Raman scattering substrates via electrohydrodynamic lithography. J. Phys. Chem. Lett. 4, 4153–4159 (2013).

    CAS  Article  Google Scholar 

  68. 68.

    Banbury, C., Rickard, J. J. S., Mahajan, S. & Goldberg Oppenheimer, P. Tuneable metamaterial-like platforms for surface-enhanced Raman scattering via three-dimensional block co-polymer-based nanoarchitectures. ACS Appl. Mater. Interfaces 11, 14437–14444 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  69. 69.

    Goldberg-Oppenheimer, P. et al. Optimized vertical carbon nanotube forests for multiplex surface-enhanced raman scattering detection. J. Phys. Chem. Lett. 3, 3486–3492 (2012).

    CAS  PubMed  Article  Google Scholar 

  70. 70.

    Piorek, B. D. et al. Free-surface microfluidic control of surface-enhanced Raman spectroscopy for the optimized detection of airborne molecules. Proc. Natl Acad. Sci. USA 104, 18898–18901 (2007).

    CAS  PubMed  Article  Google Scholar 

  71. 71.

    Qian, X., Zhou, X. & Nie, S. Surface-enhanced Raman nanoparticle beacons based on bioconjugated gold nanocrystals and long range plasmonic coupling. J. Am. Chem. Soc. 130, 14934–14935 (2008).

    PubMed  PubMed Central  Article  Google Scholar 

  72. 72.

    Ackermann, L., Althammer, A. & Born, R. Catalytic arylation reactions by CH bond activation with aryl tosylates. Angew. Chem. Int. Ed. 45, 2619–2622 (2006).

    CAS  Article  Google Scholar 

  73. 73.

    Lim, C., Hong, J., Chung, B. G., deMello, A. J. & Choo, J. Optofluidic platforms based on surface-enhanced Raman scattering. Analyst 135, 837–844 (2010).

    CAS  PubMed  Article  Google Scholar 

  74. 74.

    Jie Chang, X. Z. & Zhang, Amin Application of graphene in surface-enhanced Raman spectroscopy. Nano Biomedicine Eng. 9, 49–56 (2017).

    Google Scholar 

  75. 75.

    Goldberg Oppenheimer, P., Rickard, J. J. S., Di-Pietro, V. & Belli, A. International patent PCT/GB2018/050193 (2017).

  76. 76.

    Danielson, E. R. & Ross, B. In Magnetic Resonance Spectroscopy Diagnosis of Neurological Diseases 1st edn (Marcel Dekker, 1999).

  77. 77.

    Tshibanda, J.-F. L., Demertzi, A. & Soddu, A. in Coma and Disorders of Consciousness (eds. Schnakers, C. & Laureys, S.) 45–54 (Springer, 2012).

  78. 78.

    Coon, A. L. et al. Correlation of cerebral metabolites with functional outcome in experimental primate stroke using in vivo H-magnetic resonance spectroscopy. Am. J. Neuroradiol. 27, 1053–1058 (2006).

    CAS  PubMed  Google Scholar 

  79. 79.

    Schuff, N. et al. Selective reduction of N-acetylaspartate in medial temporal and parietal lobes in AD. Neurology 58, 928–935 (2002).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  80. 80.

    Hoshino, H. & Kubota, M. Canavan disease: clinical features and recent advances in research. Pediatrics Int. 56, 477–483 (2014).

    CAS  Article  Google Scholar 

  81. 81.

    Di Pietro, V. et al. New T530C mutation in the aspartoacylase gene caused Canavan disease with no correlation between severity and N-acetylaspartate excretion. Clin. Biochem. 46, 1902–1904 (2013).

    PubMed  Article  CAS  Google Scholar 

  82. 82.

    Dadas, A., Washington, J., Marchi, N. & Janigro, D. Improving the clinical management of traumatic brain injury through the pharmacokinetic modeling of peripheral blood biomarkers. Fluids Barriers CNS 13, 21 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  83. 83.

    Lin, S.-N., Slopis, J. M., Butler, I. J. & Caprioli, R. M. In vivo microdialysis and gas chromatography/mass spectrometry for studies on release of N-acetylaspartlyglutamate and N-acetylaspartate in rat brain hypothalamus. J. Neurosci. Methods 62, 199–205 (1995).

    CAS  PubMed  Article  Google Scholar 

  84. 84.

    Rigotti, D. J., Inglese, M. & Gonen, O. Whole-brain N-acetylaspartate as a surrogate marker of neuronal damage in diffuse neurologic disorders. Am. J. Neuroradiol. 28, 1843–1849 (2007).

    CAS  PubMed  Article  Google Scholar 

  85. 85.

    Park, A., Baek, S.-J., Shen, A. & Hu, J. Detection of Alzheimer’s disease by Raman spectra of rat’s platelet with a simple feature selection. Chemometrics Intell. Lab. Syst. 121, 52–56 (2013).

    CAS  Article  Google Scholar 

  86. 86.

    Shen, A. et al. In vivo study on the protection of indole‐3‐carbinol (I3C) against the mouse acute alcoholic liver injury by micro‐Raman spectroscopy. J. Raman Spectroc. 40, 550–555 (2009).

    CAS  Article  Google Scholar 

  87. 87.

    Duda, R. O., Hart, P. E. & Stork, D. G. Pattern Classification (John Wiley & Sons, 2007).

  88. 88.

    Vagnozzi, R. et al. Temporal window of metabolic brain vulnerability to concussions: mitochondrial-related impairment—part I. Neurosurgery 61, 379–388 (2007).

    PubMed  Article  Google Scholar 

  89. 89.

    Vagnozzi, R. et al. Temporal window of metabolic brain vulnerability to concussion: a pilot 1H-magnetic resonance spectroscopic study in concussed athletes—part III. Neurosurgery 62, 1286–1295 (2008).

    PubMed  Article  Google Scholar 

  90. 90.

    Veeramuthu, V. et al. Neurometabolites alteration in the acute phase of mild traumatic brain injury (mTBI). Acad. Radiol. 25, 1167–1177 (2018).

    PubMed  Article  Google Scholar 

  91. 91.

    Dimov, I. K. et al. Stand-alone self-powered integrated microfluidic blood analysis system (SIMBAS). Lab Chip 11, 845–850 (2011).

    CAS  PubMed  Article  Google Scholar 

  92. 92.

    Szydzik, C., Khoshmanesh, K., Mitchell, A. & Karnutsch, C. Microfluidic platform for separation and extraction of plasma from whole blood using dielectrophoresis. Biomicrofluidics 9, 064120 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  93. 93.

    Srivastava, S. K. et al. Highly sensitive and specific detection of E. coli by a SERS nanobiosensor chip utilizing metallic nanosculptured thin films. Analyst 140, 3201–3209 (2015).

    CAS  PubMed  Article  Google Scholar 

  94. 94.

    Lin, D. et al. Label-free blood plasma test based on surface-enhanced Raman scattering for tumor stages detection in nasopharyngeal cancer. Sci. Rep. 4, 4751 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  95. 95.

    Yang, S., Dai, X., Stogin, B. B. & Wong, T.-S. Ultrasensitive surface-enhanced Raman scattering detection in common fluids. Proc. Natl Acad. Sci. USA 113, 268–273 (2016).

    CAS  PubMed  Article  Google Scholar 

  96. 96.

    Muniz-Miranda, M. et al. Nanostructured films of metal particles obtained by laser ablation. Thin Solid Films 543, 118–121 (2013).

    CAS  Article  Google Scholar 

  97. 97.

    Premasiri, W. R., Lee, J. C. & Ziegler, L. D. Surface-enhanced Raman scattering of whole human blood, blood plasma, and red blood cells: cellular processes and bioanalytical sensing. J. Phys. Chem. B 116, 9376–9386 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  98. 98.

    Tran Cao, D. et al. Trace detection of herbicides by SERS technique, using SERS-active substrates fabricated from different silver nanostructures deposited on silicon. Adv. Nat. Sci.: Nanosci. Nanotechnol. 6, 035012 (2015).

    Google Scholar 

  99. 99.

    Dinish, U. S. et al. Highly sensitive SERS detection of cancer proteins in low sample volume using hollow core photonic crystal fiber. Biosens. Bioelectron. 33, 293–298 (2012).

    Article  CAS  Google Scholar 

  100. 100.

    Juncker, D. et al. Autonomous microfluidic capillary system. Anal. Chem. 74, 6139–6144 (2002).

    CAS  PubMed  Article  Google Scholar 

  101. 101.

    Brown, M. et al. Magnetic resonance spectroscopy abnormalities in traumatic brain injury: a meta-analysis. J. Neuroradiol. 45, 123–129 (2018).

    PubMed  Article  Google Scholar 

  102. 102.

    Andrew, G., L., I. G. & Peter, S. A systematic review of proton magnetic resonance spectroscopy findings in sport-related concussion. J. Neurotrauma 31, 1–18 (2014).

    Article  Google Scholar 

  103. 103.

    Vagnozzi, R. et al. Assessment of metabolic brain damage and recovery following mild traumatic brain injury: a multicentre, proton magnetic resonance spectroscopic study in concussed patients. Brain 133, 3232–3242 (2010).

    PubMed  Article  Google Scholar 

  104. 104.

    Stovell, M. G. et al. Assessing metabolism and injury in acute human traumatic brain injury with magnetic resonance spectroscopy: current and future applications. Front. Neurol. 8, 426 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

Download references


We acknowledge funding from the Wellcome Trust (grant no. 174ISSFPP), the Royal Academy of Engineering (grant no. RF1415\14\28) and the National Institute for Health Research (grant no. DTAARGCQ19497). P.G.O. is a Royal Academy of Engineering Research Fellowship holder. The authors also thank M. J. Rowney and F. M. Colacino for helpful discussions about the technology and insights into classification analyses. Components of the developed device were fabricated using the facilities at the Cavendish Laboratory at the Department of Physics and the Nanoscience Centre for Fabrication, University of Cambridge.

Author information




P.G.O. and A.B. conceptualized the study and designed the project and the experiments with J.J.S.R. J.J.S.R. fabricated the SERS substrates and the optofluidic devices and performed imaging with P.G.O. J.J.S.R. performed material and device characterization, D.J.S. performed the computational and statistical data analysis and classification and D.J.D. carried out the MRI and 1H-MRS data collection and the corresponding data analysis. V.D.-P. and D.J.D. collected and coordinated the clinical samples and, with A.B., established the ethics for this study. J.J.S.R., V.D.-P. and P.G.O. prepared the schematics and images and J.J.S.R. and P.G.O. carried out device engineering and optimization. J.J.S.R. and V.D.P. performed tests on the clinical samples and the corresponding statistical analyses, and analysed the data with P.G.O. All authors carried out the data analysis on the corresponding parts of the study. J.J.S.R., A.B. and P.G.O. wrote the manuscript. All authors reviewed and commented on the manuscript.

Corresponding authors

Correspondence to Jonathan J. S. Rickard or Pola Goldberg Oppenheimer.

Ethics declarations

Competing interests

Authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Supplementary Information

Supplementary figures and tables.

Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rickard, J.J.S., Di-Pietro, V., Smith, D.J. et al. Rapid optofluidic detection of biomarkers for traumatic brain injury via surface-enhanced Raman spectroscopy. Nat Biomed Eng 4, 610–623 (2020).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing