Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A biomaterial-based vaccine eliciting durable tumour-specific responses against acute myeloid leukaemia

Abstract

Acute myeloid leukaemia (AML) is a malignancy of haematopoietic origin that has limited therapeutic options. The standard-of-care cytoreductive chemotherapy depletes AML cells to induce remission, but is infrequently curative. An immunosuppressive AML microenvironment in the bone marrow and the paucity of suitable immunotherapy targets limit the induction of effective immune responses. Here, in mouse models of AML, we show that a macroporous-biomaterial vaccine that delivers the cytokine granulocyte–macrophage colony-stimulating factor (GM-CSF), the Toll-like-receptor-9 agonist cytosine–guanosine oligodeoxynucleotide and one or multiple leukaemia antigens (in the form of a defined peptide antigen, cell lysates or antigens sourced from AML cells recruited in vivo) induces local immune-cell infiltration and activated dendritic cells, evoking a potent anti-AML response. The biomaterial-based vaccine prevented the engraftment of AML cells when administered as a prophylactic and when combined with chemotherapy, and eradicated established AML even in the absence of a defined vaccine antigen. Biomaterial-based AML vaccination can induce potent immune responses, deplete AML cells and prevent disease relapse.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: PEG-alginate-based cryogel vaccine sustains release of cytokine and adjuvant in vitro, and preferentially concentrates and activates antigen-presenting cells in vivo.
Fig. 2: Prophylactic immunization with bone marrow lysate or WT1 peptide prevents AML engraftment.
Fig. 3: Secondary transplants indicate the absence of residual AML cells and the transfer of immunity into transplant recipients.
Fig. 4: iCt induces immunogenic cell death in vitro and combination of iCt and cryogel vaccination with WT1 depletes established AML.
Fig. 5: Combination of iCt with antigen-free vaccination debulks AML, depletes Treg cells and enhances antigen-specific T cells.
Fig. 6: Secondary transplants indicate the absence of residual AML cells and the transference of immunity into transplant recipients.

Data availability

All data supporting the results of this study are provided with the in the Article and its Supplementary Information. Raw datasets are available at https://doi.org/10.7910/DVN/44ARAC.

References

  1. 1.

    Shlush, L. I. et al. Identification of pre-leukaemic haematopoietic stem cells in acute leukaemia. Nature 506, 328–333 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  2. 2.

    Jan, M. et al. Clonal evolution of preleukemic hematopoietic stem cells precedes human acute myeloid leukemia. Sci. Transl. Med. 4, 149RA118 (2012).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  3. 3.

    Yates, J. W., Wallace, H. J. Jr., Ellison, R. R. & Holland, J. F. Cytosine arabinoside (NSC-63878) and daunorubicin (NSC-83142) therapy in acute nonlymphocytic leukemia. Cancer Chemother. Rep. 57, 485–488 (1973).

    CAS  PubMed  Google Scholar 

  4. 4.

    Tallman, M. S., Gilliland, D. G. & Rowe, J. M. Drug therapy for acute myeloid leukemia. Blood 106, 1154–1163 (2005).

    CAS  PubMed  Article  Google Scholar 

  5. 5.

    Barrett, A. & Le Blanc, K. Immunotherapy prospects for acute myeloid leukaemia. Clin. Exp. Immunol. 161, 223–232 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Lawrence, M. S. et al. Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature 499, 214–218 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  7. 7.

    Zitvogel, L., Apetoh, L., Ghiringhelli, F. & Kroemer, G. Immunological aspects of cancer chemotherapy. Nat. Rev. Immunol. 8, 59–73 (2008).

    CAS  PubMed  Article  Google Scholar 

  8. 8.

    Obeid, M. et al. Calreticulin exposure dictates the immunogenicity of cancer cell death. Nat. Med. 13, 54–61 (2006).

    PubMed  Article  CAS  Google Scholar 

  9. 9.

    Apetoh, L. et al. Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nat. Med. 13, 1050–1059 (2007).

    CAS  PubMed  Article  Google Scholar 

  10. 10.

    Horowitz, M. M. et al. Graft-versus-leukemia reactions after bone marrow transplantation. Blood 75, 555–562 (1990).

    CAS  PubMed  Article  Google Scholar 

  11. 11.

    Li, H. W. & Sykes, M. Emerging concepts in haematopoietic cell transplantation. Nat. Rev. Immunol. 12, 403–416 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  12. 12.

    Cummins, K. D. & Gill, S. Chimeric antigen receptor T-cell therapy for acute myeloid leukemia: how close to reality? Haematologica 104, 1302–1308 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  13. 13.

    Chapuis, A. G. et al. T cell receptor gene therapy targeting WT1 prevents acute myeloid leukemia relapse post-transplant. Nat. Med. 25, 1064–1072 (2019).

    CAS  PubMed  Article  Google Scholar 

  14. 14.

    Anguille, S., Van Tendeloo, V. F. & Berneman, Z. N. Leukemia-associated antigens and their relevance to the immunotherapy of acute myeloid leukemia. Leukemia 26, 2186–2196 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  15. 15.

    Grosso, D. A., Hess, R. C. & Weiss, M. A. Immunotherapy in acute myeloid leukemia. Cancer 121, 2689–2704 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  16. 16.

    Oka, Y. et al. Cancer immunotherapy targeting Wilms’ tumor gene WT1 product. J. Immunol. 164, 1873–1880 (2000).

    CAS  PubMed  Article  Google Scholar 

  17. 17.

    Rosenfeld, C., Cheever, M. & Gaiger, A. WT1 in acute leukemia, chronic myelogenous leukemia and myelodysplastic syndrome: therapeutic potential of WT1 targeted therapies. Leukemia 17, 1301–1312 (2003).

    CAS  PubMed  Article  Google Scholar 

  18. 18.

    Maslak, P. G. et al. Phase 2 trial of a multivalent WT1 peptide vaccine (galinpepimut-S) in acute myeloid leukemia. Blood Adv. 2, 224–234 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  19. 19.

    Rezvani, K. et al. Leukemia-associated antigen-specific T cell responses following combined PR1 and WT1 peptide vaccination in patients with myeloid malignancies. Blood 111, 236–242 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  20. 20.

    Irvine, D. J. Materializing the future of vaccines and immunotherapy. Nat. Rev. Mater. 1, 15008 (2016).

    CAS  Article  Google Scholar 

  21. 21.

    Gu, L. & Mooney, D. J. Biomaterials and emerging anticancer therapeutics: engineering the microenvironment. Nat. Rev. Cancer 16, 56–66 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  22. 22.

    Zakrzewski, J. L., Van Den Brink, M. R. & Hubbell, J. A. Overcoming immunological barriers in regenerative medicine. Nat. Biotechnol. 32, 786–794 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  23. 23.

    Moynihan, K. D. et al. Eradication of large established tumors in mice by combination immunotherapy that engages innate and adaptive immune responses. Nat. Med. 22, 1402–1410 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  24. 24.

    Leleux, J. & Roy, K. Micro and nanoparticle‐based delivery systems for vaccine immunotherapy: an immunological and materials perspective. Adv. Healthc. Mater. 2, 72–94 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  25. 25.

    Rudra, J. S., Tian, Y. F., Jung, J. P. & Collier, J. H. A self-assembling peptide acting as an immune adjuvant. Proc. Natl Acad. Sci. USA 107, 622–627 (2010).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  26. 26.

    Ali, O. A., Huebsch, N., Cao, L., Dranoff, G. & Mooney, D. J. Infection-mimicking materials to program dendritic cells in situ. Nat. Mater. 8, 151–158 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  27. 27.

    Ali, O. A., Emerich, D., Dranoff, G. & Mooney, D. J. In situ regulation of DC subsets and T cells mediates tumor regression in mice. Sci. Transl. Med. 1, 8RA19 (2009).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  28. 28.

    Bencherif, S. A. et al. Injectable cryogel-based whole-cell cancer vaccines. Nat. Commun. 6, 7556 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  29. 29.

    Kim, J. et al. Injectable, spontaneously assembling, inorganic scaffolds modulate immune cells in vivo and increase vaccine efficacy. Nat. Biotechnol. 33, 64–72 (2015).

    CAS  PubMed  Article  Google Scholar 

  30. 30.

    Randolph, G. J., Ochando, J. & Partida-Sánchez, S. Migration of dendritic cell subsets and their precursors. Annu. Rev. Immunol. 26, 293–316 (2008).

    CAS  PubMed  Article  Google Scholar 

  31. 31.

    Dieu, M.-C. et al. Selective recruitment of immature and mature dendritic cells by distinct chemokines expressed in different anatomic sites. J. Exp. Med. 188, 373–386 (1998).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  32. 32.

    Zuber, J. Mouse models of human AML accurately predict chemotherapy response. Genes Dev. 23, 877–889 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  33. 33.

    Palucka, K. & Banchereau, J. Cancer immunotherapy via dendritic cells. Nat. Rev. Cancer 12, 265–277 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  34. 34.

    Delluc, S. et al. Dramatic efficacy improvement of a DC-based vaccine against AML by CD25 T cell depletion allowing the induction of a long-lasting T cell response. Cancer Immunol. Immunother. 58, 1669–1677 (2009).

    CAS  PubMed  Article  Google Scholar 

  35. 35.

    Gattinoni, L., Powell, D. J., Rosenberg, S. A. & Restifo, N. P. Adoptive immunotherapy for cancer: building on success. Nat. Rev. Immunol. 6, 383–393 (2006).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  36. 36.

    Davila, M. L. et al. Chimeric antigen receptors for the adoptive T cell therapy of hematologic malignancies. Int. J. Hematol. 99, 361–371 (2014).

    CAS  PubMed  Article  Google Scholar 

  37. 37.

    Gubin, M. M., Artyomov, M. N., Mardis, E. R. & Schreiber, R. D. Tumor neoantigens: building a framework for personalized cancer immunotherapy. J. Clin. Investig. 125, 3413–3421 (2015).

    PubMed  Article  PubMed Central  Google Scholar 

  38. 38.

    Ritchie, D. S. et al. Persistence and efficacy of second generation CAR T cell against the LeY antigen in acute myeloid leukemia. Mol. Ther. 21, 2122–2129 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  39. 39.

    Rosenblatt, J. et al. Individualized vaccination of AML patients in remission is associated with induction of antileukemia immunity and prolonged remissions. Sci. Transl. Med. 8, 368RA171 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  40. 40.

    Fucikova, J. et al. Calreticulin exposure by malignant blasts correlates with robust anticancer immunity and improved clinical outcome in AML patients. Blood 128, 3113–3124 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  41. 41.

    Pospori, C. et al. Specificity for the tumor-associated self-antigen WT1 drives the development of fully functional memory T cells in the absence of vaccination. Blood 117, 6813–6824 (2011).

    CAS  PubMed  Article  Google Scholar 

  42. 42.

    Kolb, H.-J. Graft-versus-leukemia effects of transplantation and donor lymphocytes. Blood 112, 4371–4383 (2008).

    CAS  PubMed  Article  Google Scholar 

  43. 43.

    Ho, V. et al. GM-CSF secreting leukemia cell vaccinations after allogeneic reduced-intensity peripheral blood stem cell transplantation (SCT) for advanced myelodysplastic syndrome (MDS) or refractory acute myeloid leukemia (AML). Blood 108, 3680–3680 (2006).

    Article  Google Scholar 

  44. 44.

    Ho, V. et al. GM-CSF secreting leukemia cell vaccination after allogeneic reduced intensity hematopoietic stem cell transplantation for advanced myeloid malignancies. Blood 112, 825–825 (2008).

    Article  Google Scholar 

  45. 45.

    Shah, N. J. et al. An injectable bone marrow–like scaffold enhances T cell immunity after hematopoietic stem cell transplantation. Nat. Biotechnol. 37, 293–302 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  46. 46.

    SEER Cancer Statistics Review (National Cancer Institute, 2016).

  47. 47.

    Hailemichael, Y. et al. Persistent antigen at vaccination sites induces tumor-specific CD8+ T cell sequestration, dysfunction and deletion. Nat. Med. 19, 465–472 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  48. 48.

    Melero, I. et al. Therapeutic vaccines for cancer: an overview of clinical trials. Nat. Rev. Clin. Oncol. 11, 509–524 (2014).

    CAS  PubMed  Article  Google Scholar 

  49. 49.

    Rezvani, K. et al. Repeated PR1 and WT1 peptide vaccination in Montanide-adjuvant fails to induce sustained high-avidity, epitope-specific CD8+ T cells in myeloid malignancies. Haematologica 96, 432–440 (2011).

    CAS  PubMed  Article  Google Scholar 

  50. 50.

    Herbert, W. The mode of action of mineral-oil emulsion adjuvants on antibody production in mice. Immunology 14, 301–318 (1968).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. 51.

    Sykes, D. B. et al. Inhibition of dihydroorotate dehydrogenase overcomes differentiation blockade in acute myeloid leukemia. Cell 167, 171–186 (2016).

    CAS  PubMed  Article  Google Scholar 

  52. 52.

    Haladyna, J., Pasteur, T., Riedel, S., Perraud, A. & Bernt, K. Transient potential receptor melastatin-2 (TRPM2) does not influence murine MLL-AF9 driven AML leukemogenesis or in vitro response to chemotherapy. Exp. Hematol. 44, 596–602 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  53. 53.

    Wonderlich, J., Shearer, G., Livingstone, A. & Brooks, A. Induction and measurement of cytotoxic T lymphocyte activity. Curr. Protoc. Immunol. 72, 3.11.1–3.11.23 (2006).

Download references

Acknowledgements

We thank M. Brennan, A. Spielmann, M. Sobral, M. Dellacherie and H. Wang for technical assistance. The work was supported by the National Institutes of Health through grants R01CA223255, R01EB023287, U19HL129903 and U01CA214369. N.J.S. received support from the Cancer Research Institute through the CRI Irvington Postdoctoral Fellowship. A.J.N. acknowledges a Graduate Research Fellowship from the National Science Foundation.

Author information

Affiliations

Authors

Contributions

N.J.S., A.J.N., T.-Y.S., A.S.M., D.T.S. and D.J.M. designed the experiments. N.J.S., A.J.N., T.-Y.S., A.S.M. and A.S. conducted experiments and analysed data. N.J.S., A.J.N., D.T.S and D.J.M. wrote the manuscript.

Corresponding authors

Correspondence to David T. Scadden or David J. Mooney.

Ethics declarations

Competing interests

Magenta Therapeutics, director, equity and consulting: D.T.S.; Agios Pharmaceuticals, director, equity: D.T.S.; Fate Therapeutics, equity and consulting: D.T.S.; Clear Creek Bio, director, equity and consulting: D.T.S.; FOG Pharma, consulting: D.T.S.; Red Oak Medicines, director, equity and consulting: D.T.S.; Lifevaultbio, director, equity: D.T.S.; Bone Therapeutics, consulting: D.T.S.; Indee Labs, consulting: A.J.N.; Novartis, sponsored research: D.T.S and D.J.M.; Agnovos, consulting: D.J.M.; Amgen, sponsored research: D.J.M.; Samyang Corp., consulting: D.J.M.; Decibel, sponsored research: D.J.M.; Merck, sponsored research: D.J.M.; Immulus, equity: D.J.M.; Inventors, patent applications: N.J.S., A.J.N., A.S.M., T.-Y.S., D.J.M. and D.T.S.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–14.

Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shah, N.J., Najibi, A.J., Shih, TY. et al. A biomaterial-based vaccine eliciting durable tumour-specific responses against acute myeloid leukaemia. Nat Biomed Eng 4, 40–51 (2020). https://doi.org/10.1038/s41551-019-0503-3

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing